

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Machine Learning
2024/2025

AMCO
ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

Lecture #02 Introduction & Basic Statistics

Gian Antonio Susto

Before starting

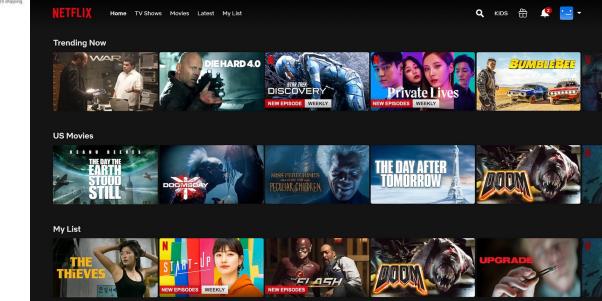
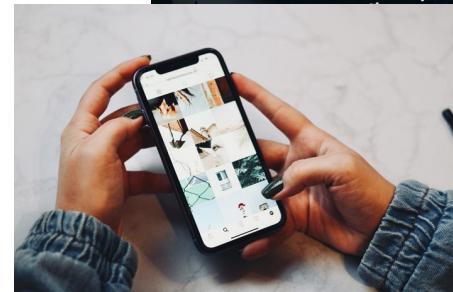
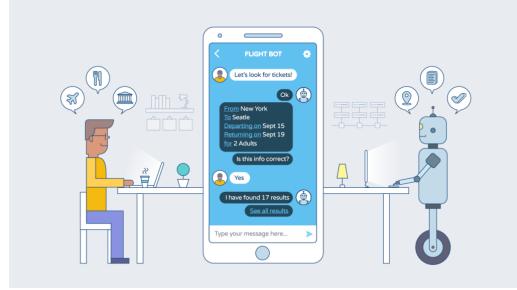
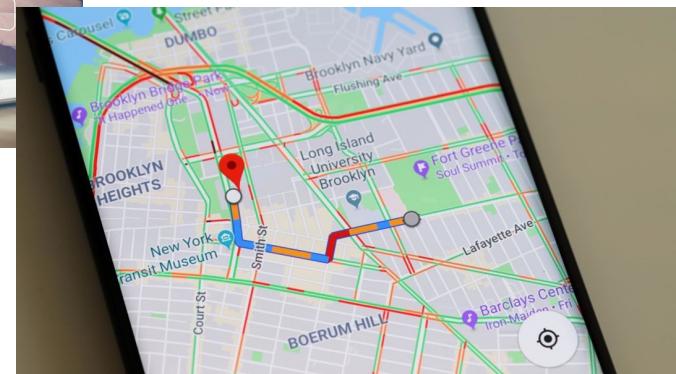
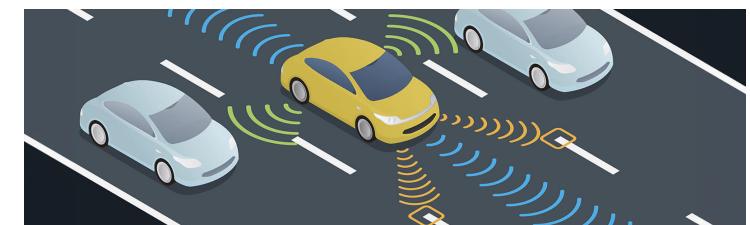
IPSE DIXIT:

‘Lecture and laboratories recordings will be made available shortly after the lecture.’

... from this lecture! As I forgot to record the first one...



Many technologies, let's put some order



Many technologies, let's put some order

Different tasks (objectives), different models, different data type... and different stages of development!

Many technologies, let's put some order

Different **tasks** (**objectives**), different models, different data type... and different stages of development!

A task refers to the specific problem that the model is designed to solve. It defines the objective that the model aims to achieve based on input data

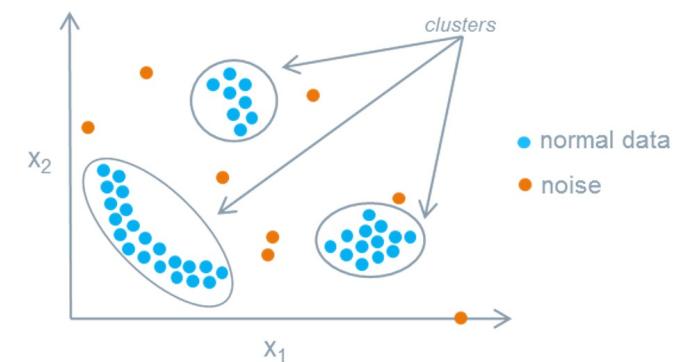
Supervised Learning

Setup: Observation of the environment

Data: (x, y)

Task: learn a map from inputs x to outputs y

Unsupervised Learning



Setup: Observation of the environment

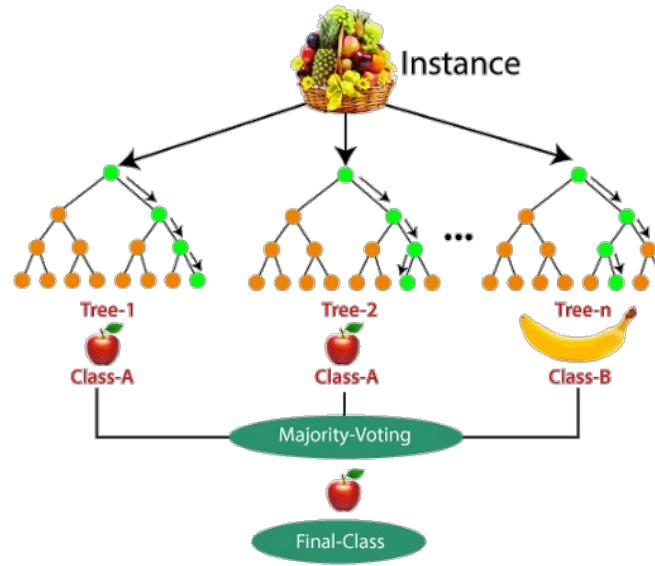
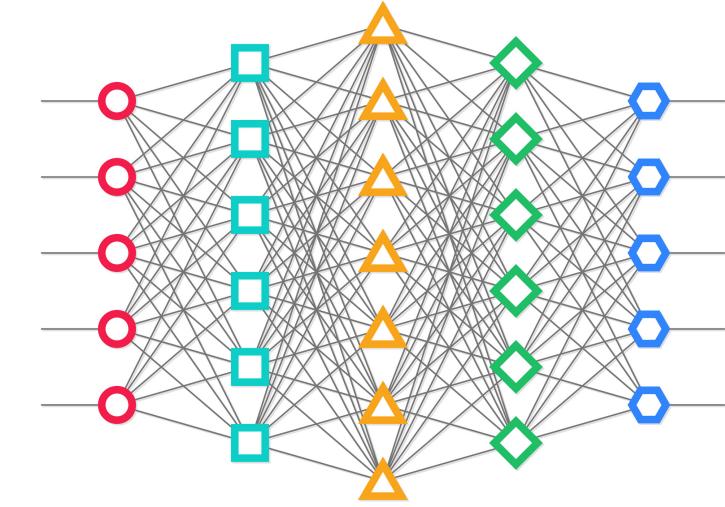
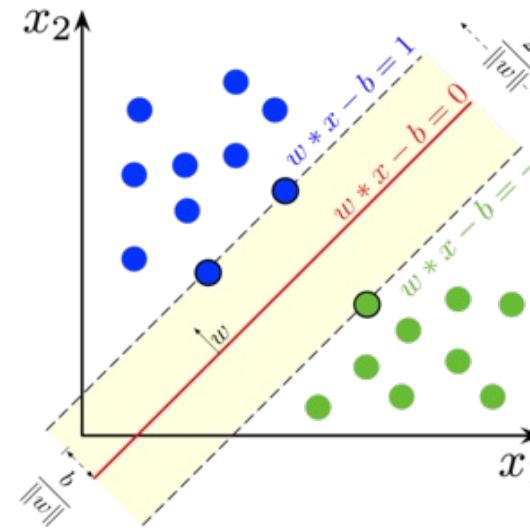
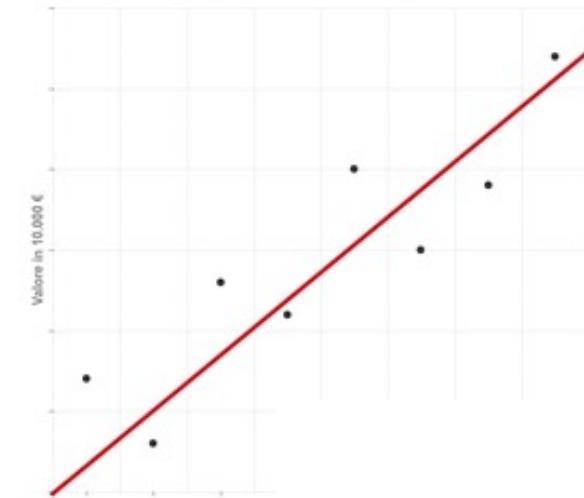
Data: x (no labels)

Task: learn patterns in input data

Many technologies, let's put some order

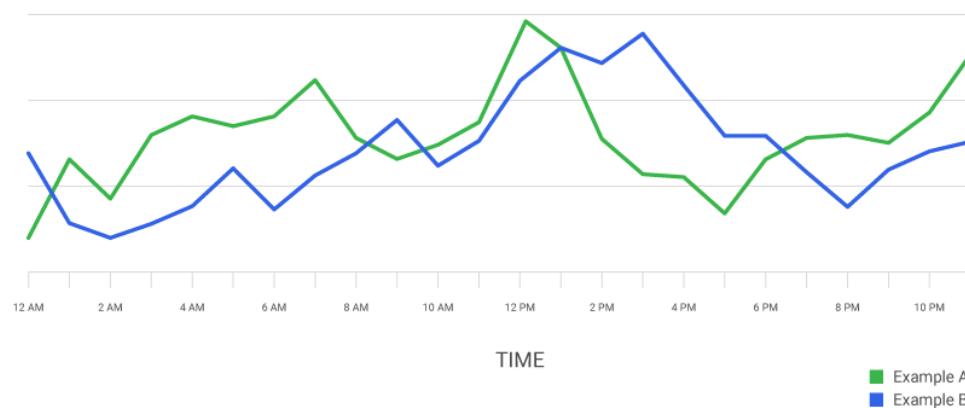
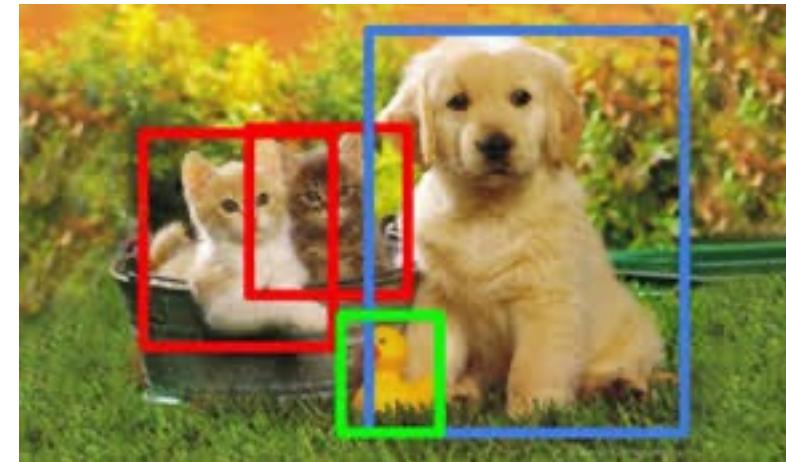
Different tasks (objectives), different **models**, different data type... and different stages of development!

A model is a mathematical representation of patterns and relationships within data. It is trained using an algorithm to make predictions or decisions based on input data



Many technologies, let's put some order

Different tasks
(objectives), different
models, different **data
type**... and different
stages of development!



39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-vc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

Tabular Data (the 'design matrix') - X

n
observations:
the number
of times the
phenomenon
we need to
'describe' is
available in
our data
through
historical
examples

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

Tabular Data (the 'design matrix') - X

What will be better? High values of p and/or n ?

p attributes (variables, features) potentially related to the phenomenon under examination

n observations: the number of times the phenomenon we need to 'describe' is available in our data through historical examples

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

Tabular Data (the 'design matrix') - X

Not always so easy to define!

p attributes (variables, features) potentially related to the phenomenon under examination

n observations: the number of times the phenomenon we need to 'describe' is available in our data through historical examples

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

Tabular Data (the 'design matrix') - X

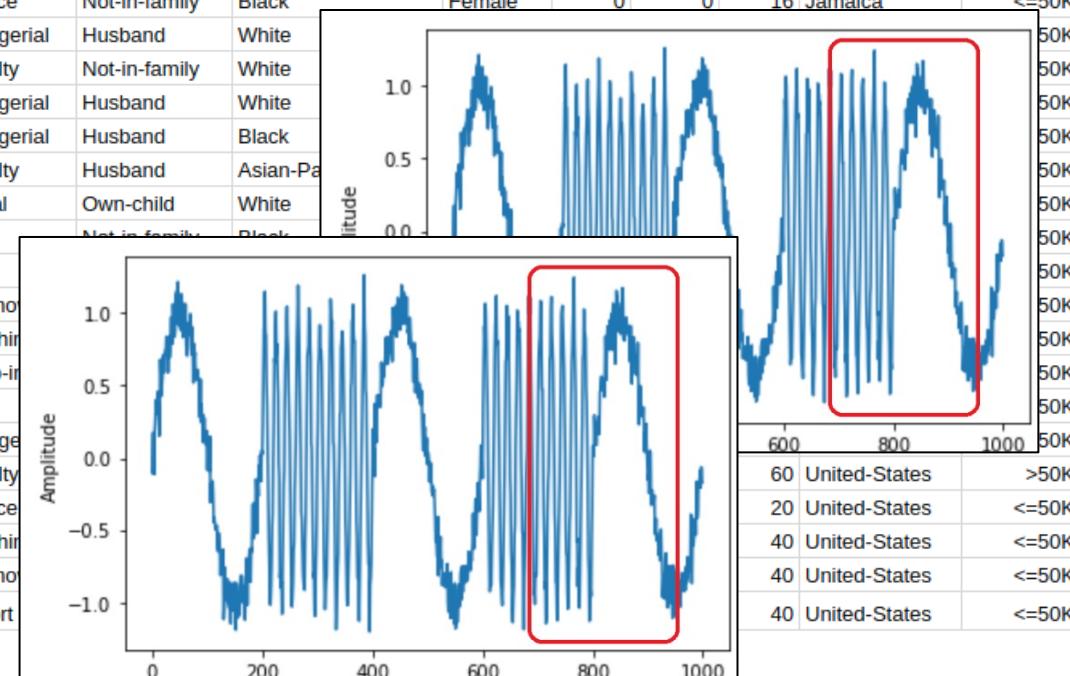
Not always so easy to define!

p attributes (variables, features) potentially related to the phenomenon under examination

n observations: the number of times the phenomenon we need to 'describe' is available in our data through historical examples

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White						50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White						50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White						50K
37	Private					Exec-managerial	Husband	Black						50K
30	State-gov					Prof-specialty	Husband	Asian-Pa						50K
23	Private					Adm-clerical	Own-child	White						50K
32	Private					Sales								50K
40	Private					Craft-repair								50K
34	Private					Transport-mo								50K
25	Self-emp-not-inc					Farming-fishir								50K
32	Private					Machine-op-in								50K
38	Private					Sales								50K
43	Self-emp-not-inc					Exec-manage								50K
40	Private					Prof-specialty								50K
54	Private					Other-service								50K
35	Federal-gov					Farming-fishir								50K
43	Private					Transport-mo								50K
59	Private	109015	HS-grad	9	Divorced	Tech-support								50K

For example, a system described by (multiple) time-series data: maybe we need to extract quantities from each time window



Tabular Data (the ‘design matrix’) - X

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

At same point, this matrix (or part of this... more on this later) will be fed to a machine learning model!

To do so, data has:

- to be ‘consistent’;
- all variables should ‘be treated’ equally (unless we have a priori knowledge, all variables can contribute to understand/describe the phenomena);
- we should make life easy for a model and do not provide redundant/useless information

Tabular Data (the ‘design matrix’) - X

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

Statistical
moments/quantities
can be of help!

At same point, this matrix (or part of this... more on this later) will be fed to a machine learning model!

To do so, data has:

- to be ‘consistent’;
- all variables should ‘be treated’ equally (unless we have a priori knowledge, all variables can contribute to understand/describe the phenomena);
- we should make life easy for a model and do not provide redundant/useless information

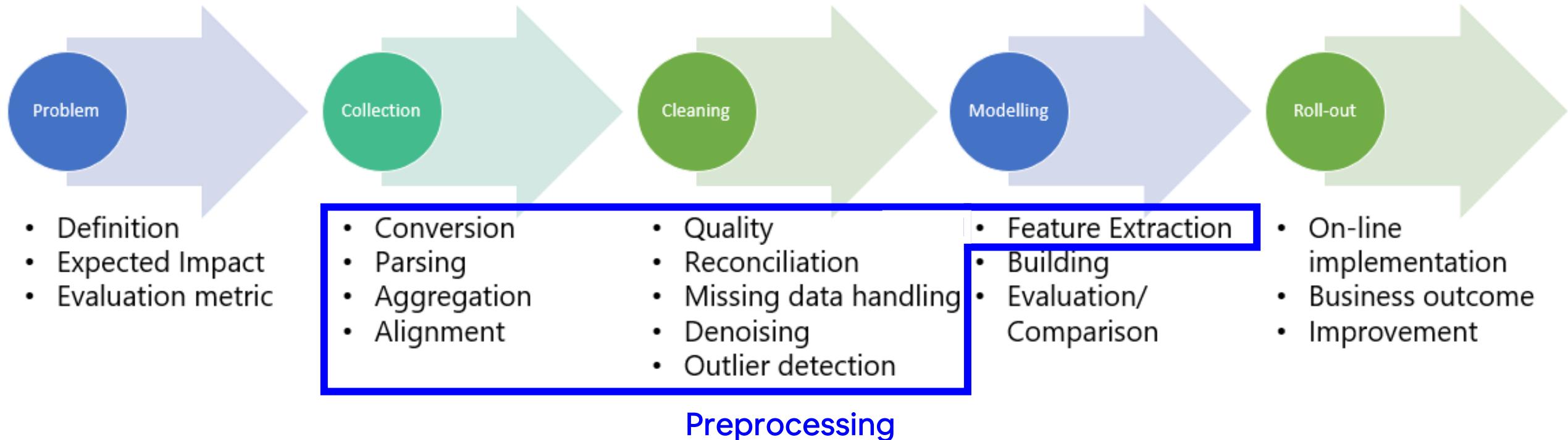
Many technologies, let's put some order

Different tasks
(objectives), different
models, different data
type... and **different
stages of development!**

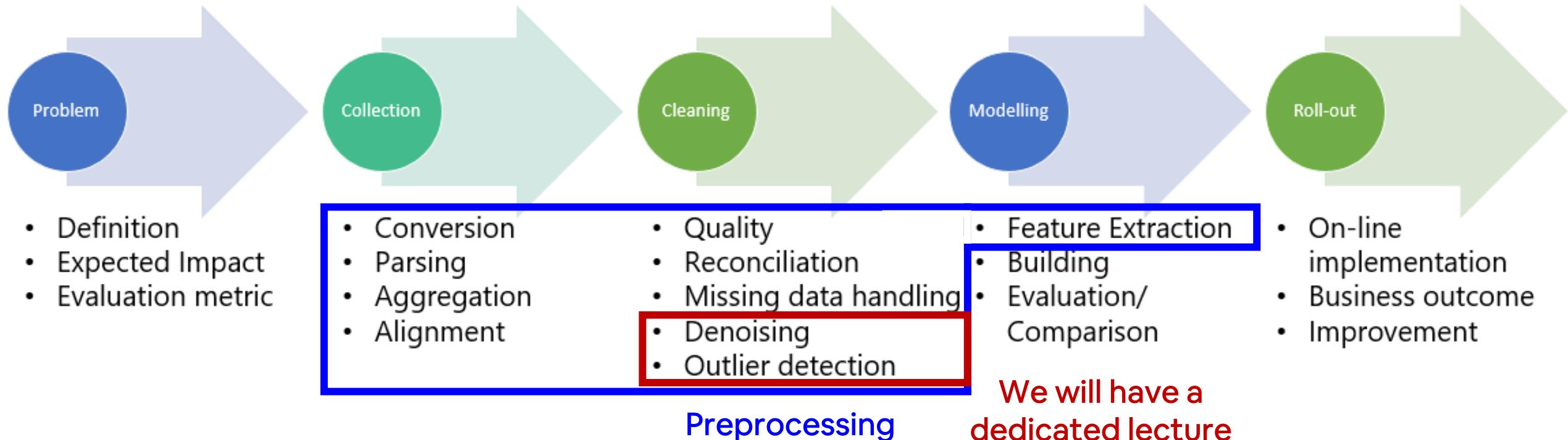
A Machine Learning pipeline

Main focus of
the course
(from week 3)

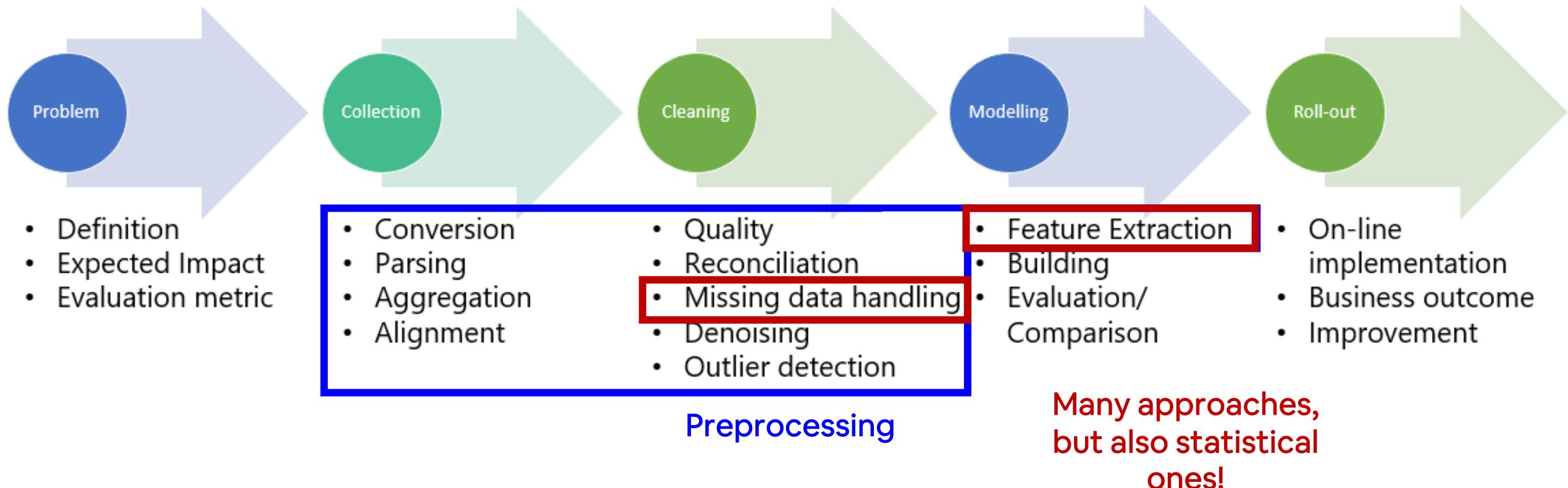
A Machine Learning pipeline



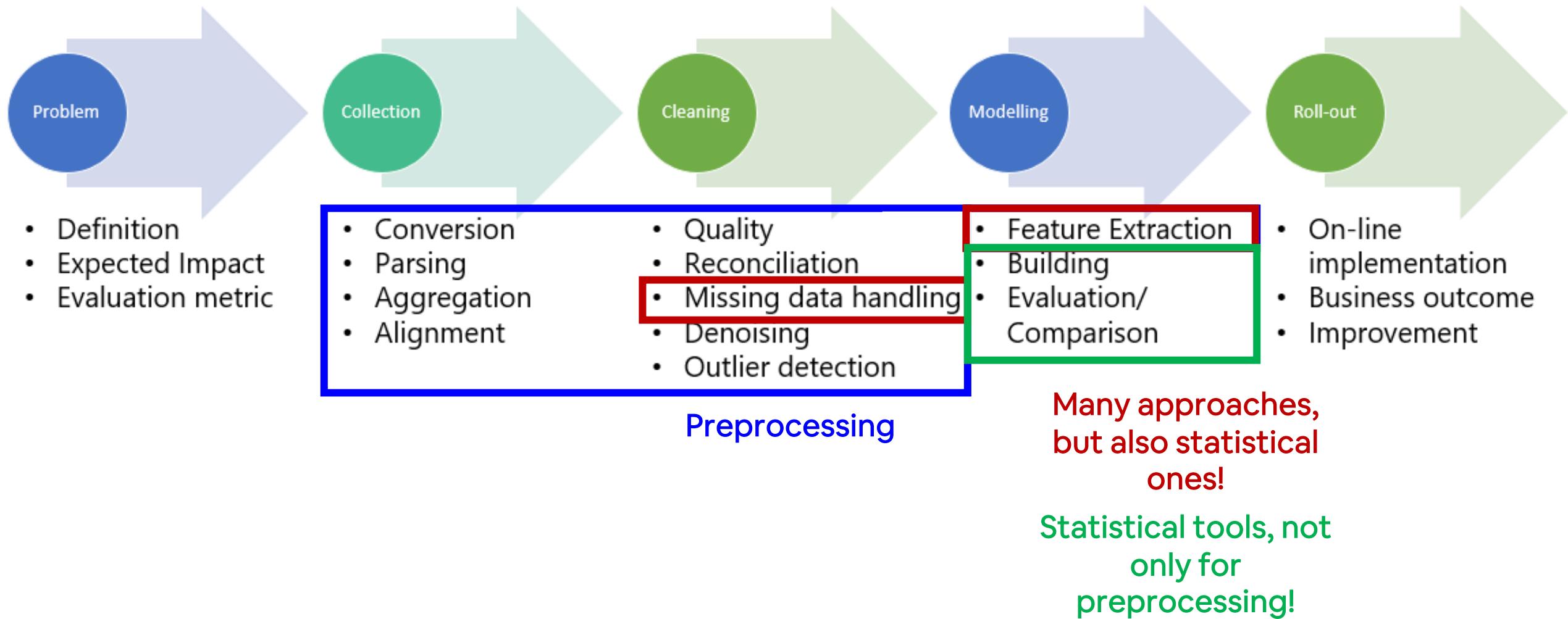
A Machine Learning pipeline



A Machine Learning pipeline



A Machine Learning pipeline

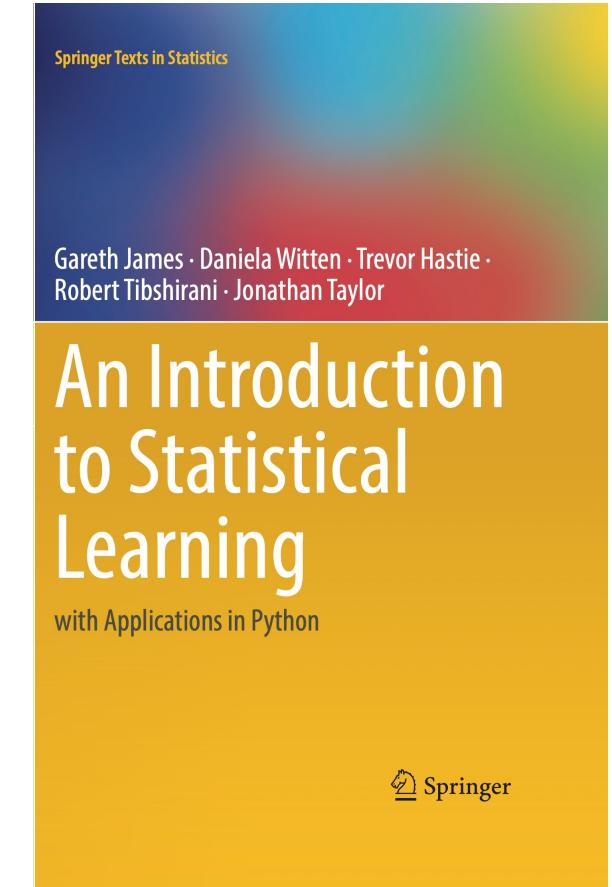


A Machine Learning pipeline

Why use Statistics in Machine Learning?

Why Use Statistics in ML?

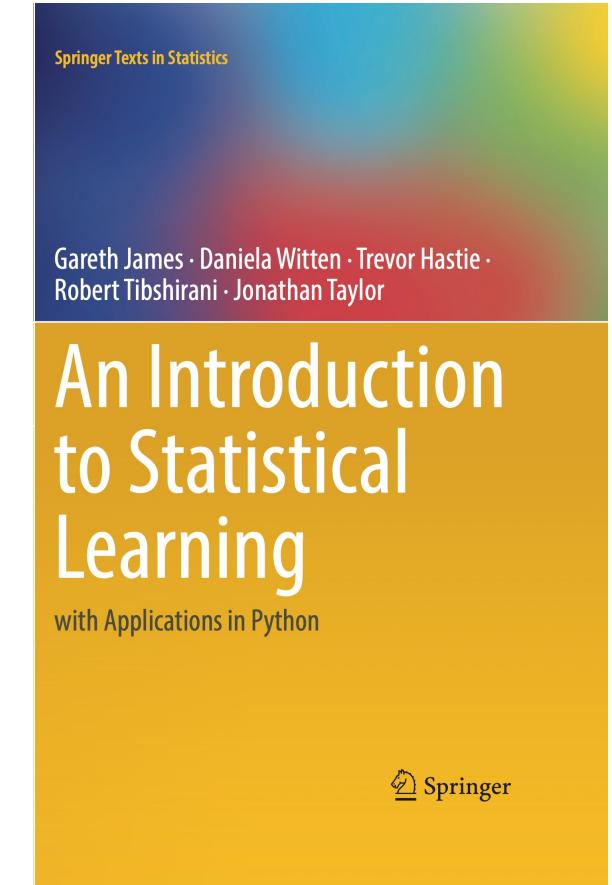
1. [Preprocessing] Data Understanding – Descriptive statistics (mean, variance, distributions) help explore and clean data, identifying patterns and outliers.
2. [Preprocessing] Feature Engineering – Techniques like correlation analysis, PCA, and scaling rely on statistical principles.
3. [Building] Probability & Uncertainty – ML often deals with probabilistic models (e.g., Naïve Bayes) and uncertainty estimation.
4. [Building] Generalization & Inference – Concepts like overfitting, hypothesis testing, and bias-variance tradeoff come from statistics.
5. [Evaluation] Model Evaluation – Metrics like MSE, MAE, accuracy, precision, and recall are rooted in statistical concepts.



Why use Statistics in Machine Learning?

Why Use Statistics in ML?

1. [Preprocessing] Data Understanding – **Descriptive statistics (mean, variance, distributions)** help explore and clean data, identifying patterns and outliers.
2. [Preprocessing] **Feature Engineering** – Techniques like **correlation analysis**, PCA, and **scaling** rely on statistical principles.
3. [Building] Probability & Uncertainty – ML often deals with probabilistic models (e.g., Naïve Bayes) and uncertainty estimation.
4. [Building] Generalization & Inference – Concepts like overfitting, hypothesis testing, and bias-variance tradeoff come from statistics.
5. [Evaluation] Model Evaluation – Metrics like MSE, MAE, accuracy, precision, and recall are rooted in statistical concepts.



Statistical moments and other statistical quantities

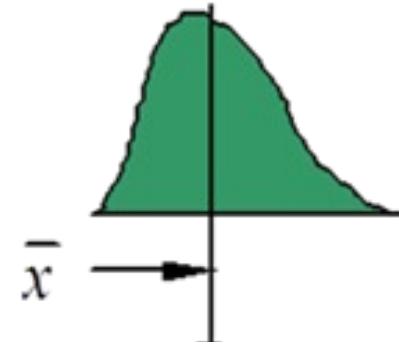
Statistical moments in Machine Learning

Moments of a Random Variable X

1. First Moment (Mean) – Central Tendency

$$E[X] = \mu$$

The expected value of X, representing the average outcome.



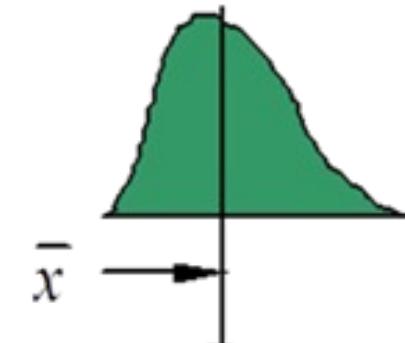
Statistical moments in Machine Learning

Moments of a Random Variable X

1. First Moment (Mean) – Central Tendency

$$E[X] = \mu$$

The expected value of X, representing the average outcome.



Difference
between Statistical
Moments
(theoretical) and
Statistical
Moments

Computed with
Sampling (with
available data)

$$\mu_k = E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx \quad (\text{for continuous distributions})$$

$$\mu_k = \sum_x x^k P(X = x) \quad (\text{for discrete distributions})$$

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Statistical moments in Machine Learning

Moments of a Random Variable X

1. First Moment (Mean) – Central Tendency

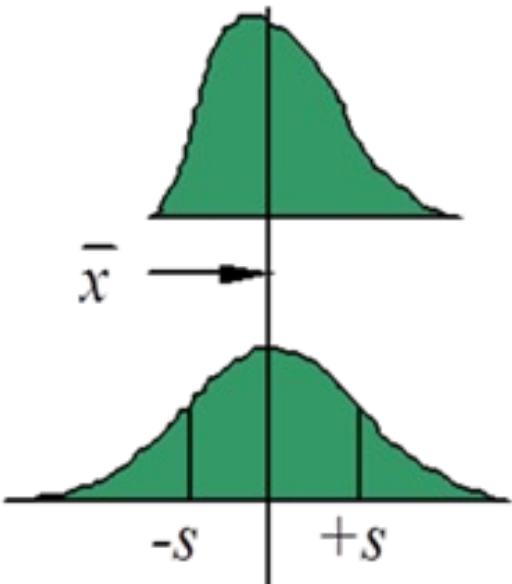
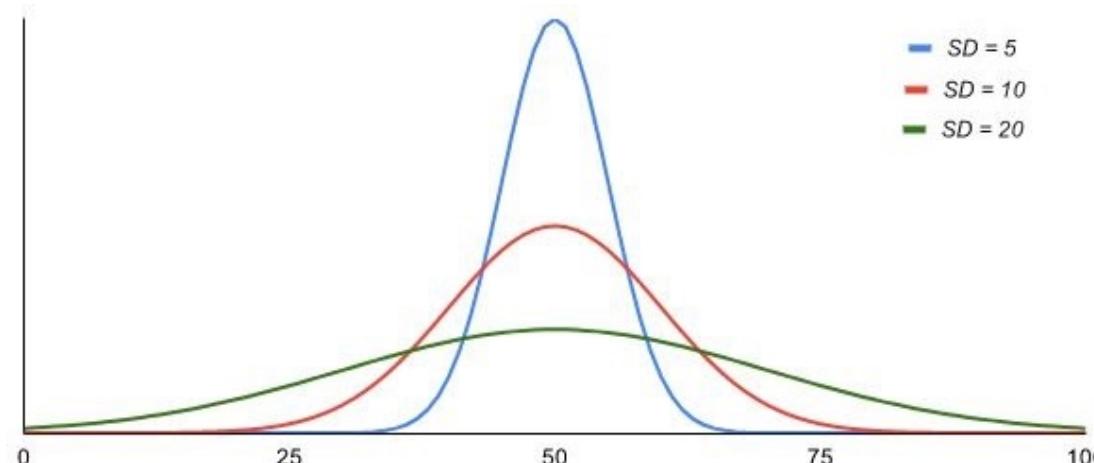
$$E[X] = \mu$$

The expected value of X, representing the average outcome.

2. Second Moment (Variance) – Spread of Data

$$Var(X) = E[(X - \mu)^2] = \sigma^2$$

Measures how far values of X deviate from the mean.



Distributions with the same mean, but different variance

Statistical moments in Machine Learning

Moments of a Random Variable X

1. First Moment (Mean) – Central Tendency

$$E[X] = \mu$$

The expected value of X, representing the average outcome.

2. Second Moment (Variance) – Spread of Data

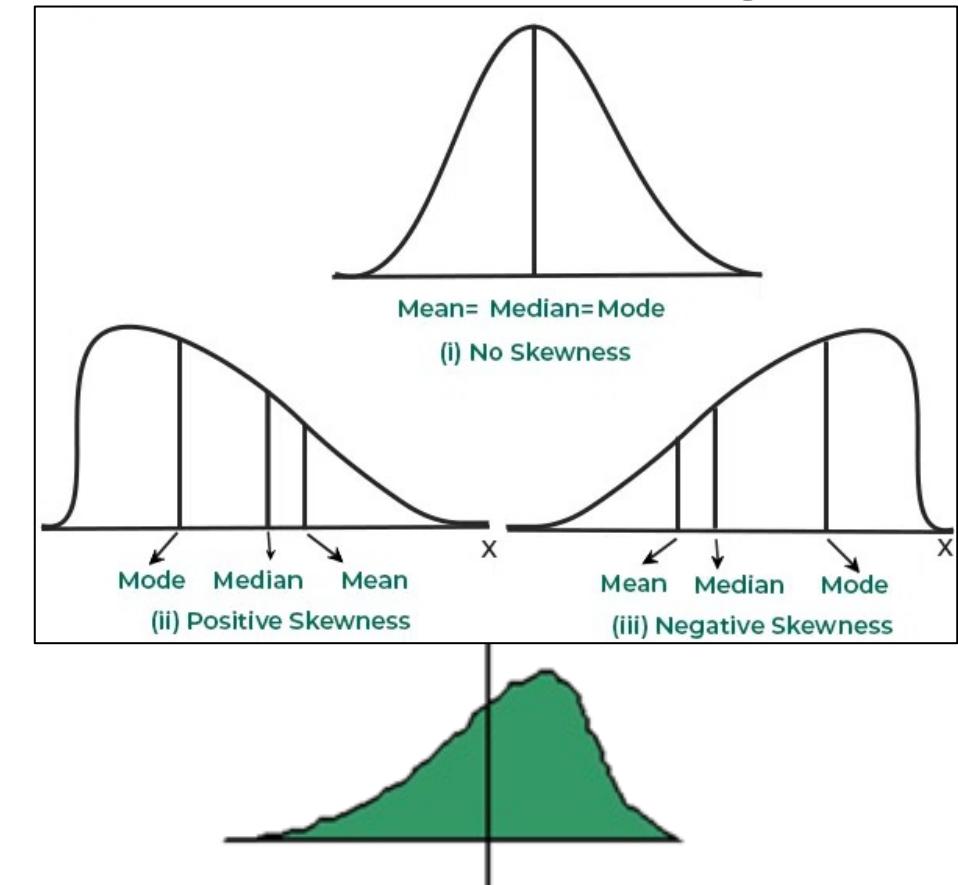
$$Var(X) = E[(X - \mu)^2] = \sigma^2$$

Measures how far values of X deviate from the mean.

3. Third Moment (Skewness) – Asymmetry of Distribution

$$Skew(X) = E[(X - \mu)^3] / \sigma^3$$

Indicates whether the distribution leans right (negative skew) or left (positive skew).



Statistical moments in Machine Learning

Normal Kurtosis ($K = 3$) - Mesokurtic

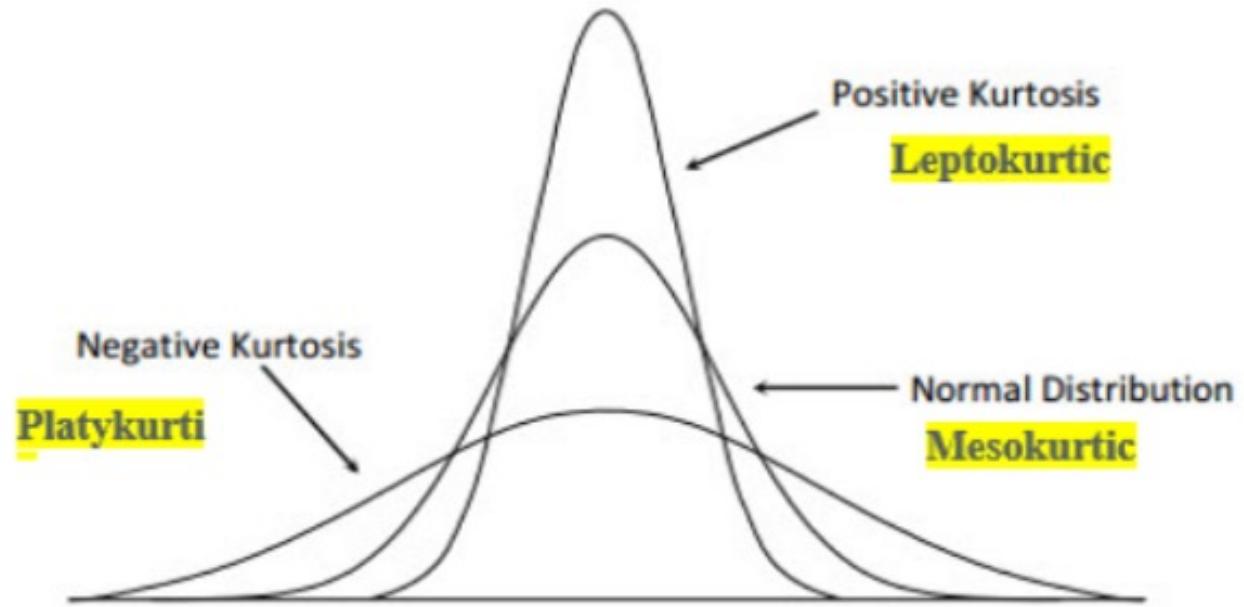
- The distribution has the same shape as the normal distribution.

High Kurtosis ($K > 3$) - Leptokurtic

- Heavier tails than the normal distribution, meaning more extreme values (outliers).
- The distribution is more "peaked" in the center and has longer tails.

Low Kurtosis ($K < 3, K_{\text{excess}} < 0$) - Platykurtic

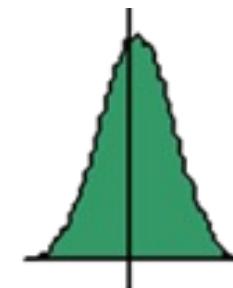
- Lighter tails than the normal distribution, meaning fewer extreme values.
- The distribution is "flatter" in the center with shorter tails.



4. Fourth Moment (Kurtosis) – Tailedness of Distribution

$$Kurt(X) = E[(X - \mu)^4] / \sigma^4$$

Measures how heavy or light the tails of the distribution are compared to a normal distribution.



Statistical moments in Machine Learning

Moments of a Random Variable X

1. First Moment (Mean) – Central Tendency

$$E[X] = \mu$$

The expected value of X, representing the average outcome.

2. Second Moment (Variance) – Spread of Data

$$Var(X) = E[(X - \mu)^2] = \sigma^2$$

Measures how far values of X deviate from the mean.

3. Third Moment (Skewness) – Asymmetry of Distribution

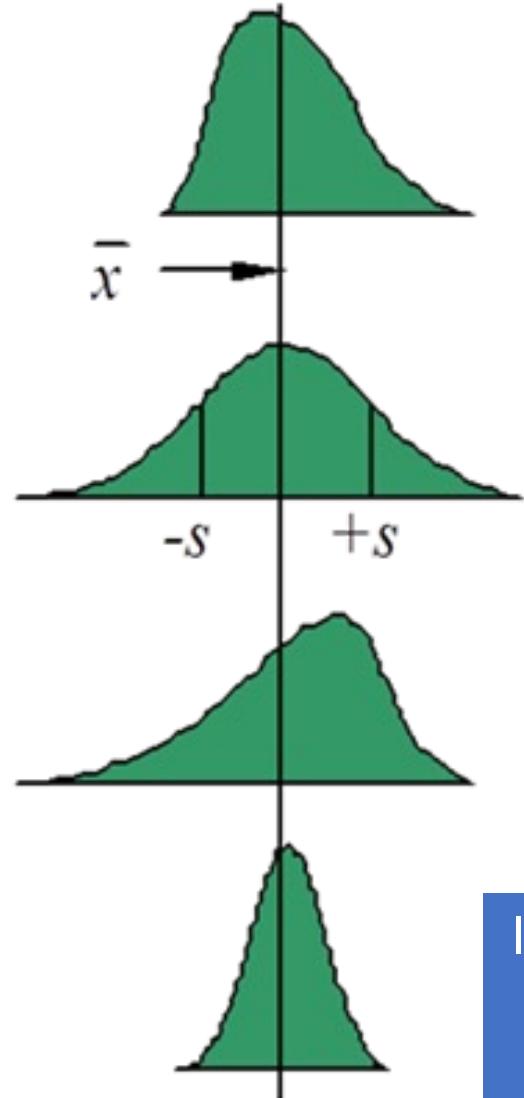
$$Skew(X) = E[(X - \mu)^3] / \sigma^3$$

Indicates whether the distribution leans right (negative skew) or left (positive skew).

4. Fourth Moment (Kurtosis) – Tailedness of Distribution

$$Kurt(X) = E[(X - \mu)^4] / \sigma^4$$

Measures how heavy or light the tails of the distribution are compared to a normal distribution.



Increasingly
adding
more
information

A numerical example

A $n = 10$ dataset

$$X = [10, 15, 20, 25, 30, 35, 40, 45, 50, 55]$$

Let's compute the mean:

$$\mu = \frac{\sum X_i}{n} = \frac{10 + 15 + 20 + 25 + 30 + 35 + 40 + 45 + 50 + 55}{10} = \frac{325}{10} = 32.5$$

A numerical example

Let's compute the variance:

$$\sigma^2 = \frac{\sum(X_i - \mu)^2}{n}$$

A numerical example

Let's compute the variance:

$$\sigma^2 = \frac{\sum(X_i - \mu)^2}{n}$$

$$(10 - 32.5)^2 = 552.25$$

$$(15 - 32.5)^2 = 306.25$$

$$(20 - 32.5)^2 = 156.25$$

$$(25 - 32.5)^2 = 56.25$$

$$(30 - 32.5)^2 = 6.25$$

$$(35 - 32.5)^2 = 6.25$$

$$(40 - 32.5)^2 = 56.25$$

$$(45 - 32.5)^2 = 156.25$$

$$(50 - 32.5)^2 = 306.25$$

$$(55 - 32.5)^2 = 552.25$$

A numerical example

Let's compute the variance:

$$\sigma^2 = \frac{\sum(X_i - \mu)^2}{n}$$

$$(10 - 32.5)^2 = 552.25$$

$$(15 - 32.5)^2 = 306.25$$

$$(20 - 32.5)^2 = 156.25$$

$$(25 - 32.5)^2 = 56.25$$

$$(30 - 32.5)^2 = 6.25$$

$$(35 - 32.5)^2 = 6.25$$

$$(40 - 32.5)^2 = 56.25$$

$$(45 - 32.5)^2 = 156.25$$

$$(50 - 32.5)^2 = 306.25$$

$$(55 - 32.5)^2 = 552.25$$

$$552.25 + 306.25 + 156.25 + 56.25 + 6.25 + 6.25 + 56.25 + 156.25 + 306.25 + 552.25 = 2062.5$$

$$\sigma^2 = \frac{2062.5}{10} = 206.25$$

A numerical example

Let's compute the skewness:

$$\text{Skew}(X) = \frac{\sum(X_i - \mu)^3}{n \cdot \sigma^3}$$

$$(10 - 32.5)^3 = -12903.125$$

$$(15 - 32.5)^3 = -5359.375$$

$$(20 - 32.5)^3 = -1953.125$$

$$(25 - 32.5)^3 = -421.875$$

$$(30 - 32.5)^3 = -15.625$$

$$(35 - 32.5)^3 = 15.625$$

$$(40 - 32.5)^3 = 421.875$$

$$(45 - 32.5)^3 = 1953.125$$

$$(50 - 32.5)^3 = 5359.375$$

$$(55 - 32.5)^3 = 12903.125$$

$$-12903.125 + (-5359.375) + (-1953.125) + (-421.875) + (-15.625) + 15.625 + 421.875 + 1953.125 + 5359.375 + 12903.125 = 0$$

$$\text{Skew}(X) = \frac{0}{10 \cdot (206.25)^{3/2}} = 0$$

A numerical example

Let's compute the skewness:

$$\text{Skew}(X) = \frac{\sum(X_i - \mu)^3}{n \cdot \sigma^3}$$

We have a symmetric distribution!

$$(10 - 32.5)^3 = -12903.125$$

$$(15 - 32.5)^3 = -5359.375$$

$$(20 - 32.5)^3 = -1953.125$$

$$(25 - 32.5)^3 = -421.875$$

$$(30 - 32.5)^3 = -15.625$$

$$(35 - 32.5)^3 = 15.625$$

$$(40 - 32.5)^3 = 421.875$$

$$(45 - 32.5)^3 = 1953.125$$

$$(50 - 32.5)^3 = 5359.375$$

$$(55 - 32.5)^3 = 12903.125$$

$$-12903.125 + (-5359.375) + (-1953.125) + (-421.875) + (-15.625) + 15.625 + 421.875 + 1953.125 + 5359.375 + 12903.125 = 0$$

$$\text{Skew}(X) = \frac{0}{10 \cdot (206.25)^{3/2}} = 0$$

A numerical example

Let's compute the kurtosis:

$$\text{Kurt}(X) = \frac{\sum(X_i - \mu)^4}{n \cdot \sigma^4}$$

The kurtosis is less than 3, so the distribution is **platykurtic** (fewer "tails" compared to the normal distribution).

$$(10 - 32.5)^4 = 3013025.5625$$

$$(15 - 32.5)^4 = 938906.25$$

$$(20 - 32.5)^4 = 244140.625$$

$$(25 - 32.5)^4 = 31640.625$$

$$(30 - 32.5)^4 = 39.0625$$

$$(35 - 32.5)^4 = 39.0625$$

$$(40 - 32.5)^4 = 31640.625$$

$$(45 - 32.5)^4 = 244140.625$$

$$(50 - 32.5)^4 = 938906.25$$

$$(55 - 32.5)^4 = 3013025.5625$$

$$3013025.56 + 938906.25 + 244140.62 + 31640.62 + 39.06 + 39.06 + 31640.62 + 244140.62 + 938906.25 + 3013025.56 = 8282825$$

$$\text{Kurt}(X) = \frac{8282825}{10 \cdot (206.25)^2} = \frac{8282825}{42514.0625} = 1.8$$

Quartiles

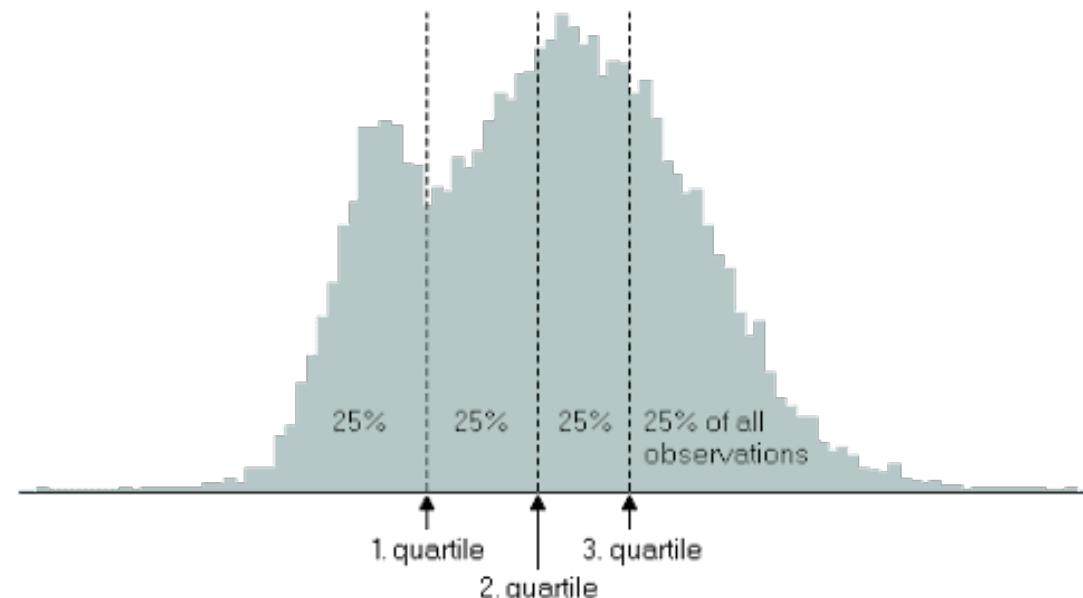
Quartiles divide a dataset into **four equal parts**, helping to understand the distribution and spread of the data.

Quartile Definitions:

- Q_1 (First Quartile, 25%) – The value below which 25% of the data falls.
- Q_2 (Second Quartile, 50%) – The **median**, the value that splits the data into two equal halves.
- Q_3 (Third Quartile, 75%) – The value below which 75% of the data falls.
- Interquartile Range (IQR) – The range between Q_1 and Q_3 , measuring the spread of the middle 50% of the data:

$$IQR = Q_3 - Q_1$$

First Quarter	First Quartile	Median	Second Quartile	Third Quartile	Third Quartile	Fourth Quarter
24, 25, 26,	26½	36	27, 30, 32,	40, 44, 50,	52, 55, 57	
	Q_1	Q_2		Q_3		



Quartiles

Quartiles divide a dataset into **four equal parts**, helping to understand the distribution and spread of the data.

Quartile Definitions:

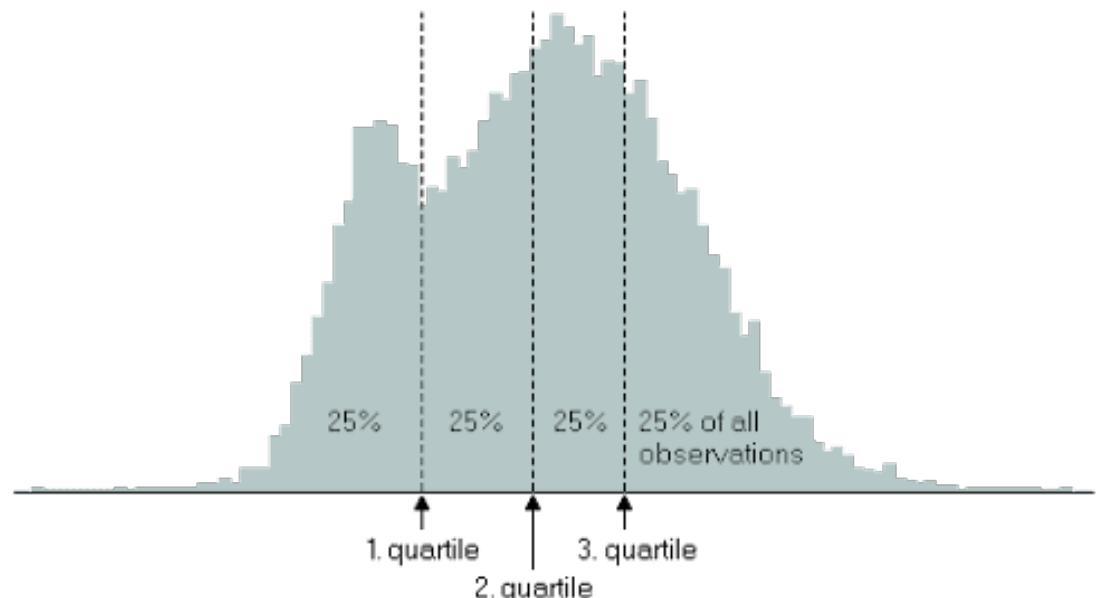
- Q_1 (First Quartile, 25%) – The value below which 25% of the data falls.
- Q_2 (Second Quartile, 50%) – The **median**, the value that splits the data into two equal halves.
- Q_3 (Third Quartile, 75%) – The value below which 75% of the data falls.
- Interquartile Range (IQR) – The range between Q_1 and Q_3 , measuring the spread of the middle 50% of the data:

$$IQR = Q_3 - Q_1$$

The median is used many times instead of the mean, as it is a **robust quantity w.r.t. 'outliers'** (strange data)

First Quarter	First Quartile	Median	Second Quartile	Third Quartile	Fourth Quarter
24, 25, 26,	26½	36	27, 30, 32,	40, 44, 50,	52, 55, 57
	Q_1	Q_2	Q_3		

MathBits.com



A numerical example (odd numbers)

Same dataset previously seen ($n = 11$).

$$X = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]$$

$$Q2 =$$

$$Q3 =$$

$$Q1 =$$

$$IQR =$$

A numerical example (odd numbers)

Same dataset previously seen ($n = 11$).

$$X = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]$$

$$Q2 = 30$$

$$Q3 =$$

$$Q1 =$$

$$IQR =$$

A numerical example (odd numbers)

Same dataset previously seen ($n = 11$).

$$X = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]$$

$$Q2 = 30$$

$$Q3 = 45$$

$$Q1 = 15$$

$$IQR = Q3 - Q1 = 45 - 15 = 30$$

A numerical example (even numbers)

Same dataset previously seen ($n = 10$).

$$X = [10, 15, 20, 25, 30, 35, 40, 45, 50, 55]$$

$$Q1 =$$

$$Q2 =$$

$$Q3 =$$

$$IQR =$$

A numerical example (even numbers)

Same dataset previously seen ($n = 10$).

$$X = [10, 15, 20, 25, 30, 35, 40, 45, 50, 55]$$

$$Q1 = \frac{20 + 25}{2} = 22.5$$

$$Q2 = \frac{30 + 35}{2} = 32.5$$

$$Q3 = \frac{45 + 50}{2} = 47.5$$

$$IQR = Q3 - Q1 = 47.5 - 22.5 = 25$$

Common convention (for the theoretic part of the exam): no interpolation!

Procedure:

- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT LEAST 25%/50%/75% for Q1/Q2/Q3 respectively

Common convention (for the theoretic part of the exam): no interpolation!

Procedure:

- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT LEAST 25%/50%/75% for Q1/Q2/Q3 respectively

[10, 15, 20, 25, 30, 35, 40, 45, 50, 55]

[10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%]

Common convention (for the theoretic part of the exam): no interpolation!

Procedure:

- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT LEAST 25%/50%/75% for Q_1 / Q_2 / Q_3 respectively

[10, 15, 20, 25, 30, 35, 40, 45, 50, 55]
[10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%]

Common convention (for the theoretic part of the exam): no interpolation!

Procedure:

- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT LEAST 25%/50%/75% for Q1/Q2/Q3 respectively

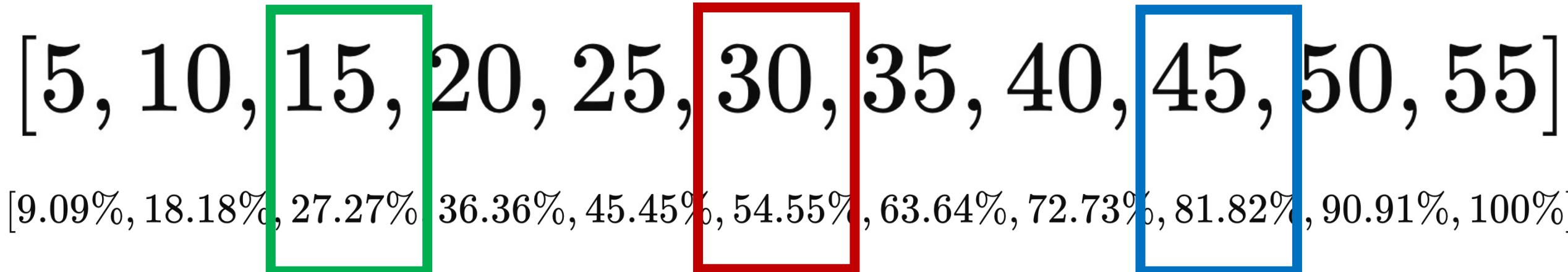
[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]

[9.09%, 18.18%, 27.27%, 36.36%, 45.45%, 54.55%, 63.64%, 72.73%, 81.82%, 90.91%, 100%]

Common convention (for the theoretic part of the exam): no interpolation!

Procedure:

- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT LEAST 25%/50%/75% for Q1/Q2/Q3 respectively



Mode

The value that appears the most on a dataset. It is an important quantity when dealing with categorical data.

Example:

$$X = [1, 2, 2, 3, 4, 7, 9, 10, 10, 10, 12]$$

$$\text{Mean} = \frac{\sum X_i}{n} = \frac{1 + 2 + 2 + 3 + 4 + 7 + 9 + 10 + 10 + 10 + 12}{11} = \frac{70}{11} \approx 6.36$$

$$\text{Median} = 7$$

$$\text{Mode} = 10$$

Statistical moments (and quantities) in Machine Learning

Statistical moments and quartiles provide a structured way to summarize and **understand data** distributions, which is essential for building, evaluating, and interpreting machine learning models.

Moments help in other pre-processing steps, such as feature engineering or missing data handling.

Not only that: they can be useful in easing the ‘training’ procedure*

**What ‘training’ means it will be clearer when we talk about modelling, but it means tuning/finding the ‘right’ parameters in a given model*

‘Understand’ a dataset: Iris dataset

- ‘Iris Classification’ dataset, Ronald Fisher (1936)
- Available on UCI ML Repository/Kaggle/... everywhere!
- L = 3 classes problem: classify **Setosa**, **Versicolour** and **Virginica** iris from data containing sepal and petal width and length – n = 150 samples, p = 4 variables

Iris dataset

<https://www.kaggle.com/datasets/uciml/iris>

	# SepalLengthCm Length of the sepal (in cm)	# SepalWidthCm Width of the sepal (in cm)	# PetalLengthCm Length of the petal (in cm)	# PetalWidthCm Width of the petal (in cm)	Species Species name
	 4.3 7.9	 2 4.4	 1 6.9	 0.1 2.5	3 unique values
	5.1	3.5	1.4	0.2	Iris-setosa
	4.9	3.0	1.4	0.2	Iris-setosa
	4.7	3.2	1.3	0.2	Iris-setosa
	4.6	3.1	1.5	0.2	Iris-setosa
	5.0	3.6	1.4	0.2	Iris-setosa
	5.4	3.9	1.7	0.4	Iris-setosa
	4.6	3.4	1.4	0.3	Iris-setosa
	5.0	3.4	1.5	0.2	Iris-setosa
	4.4	2.9	1.4	0.2	Iris-setosa
	4.9	3.1	1.5	0.1	Iris-setosa
	-	-	-	-	-

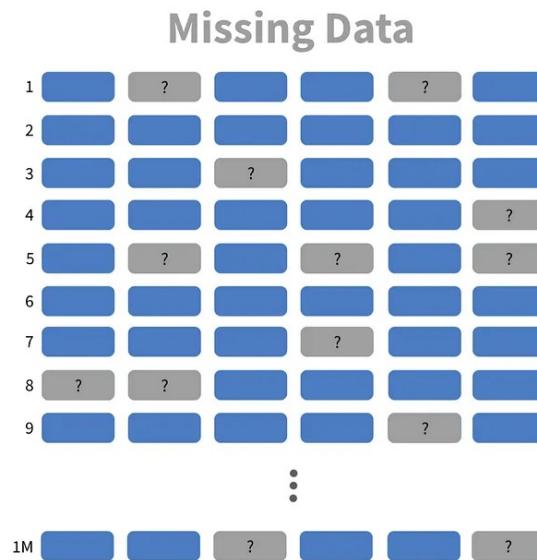
Iris dataset

<https://www.kaggle.com/datasets/uciml/iris>

	# SepalLengthCm	# SepalWidthCm	# PetalLengthCm	# PetalWidthCm	Species
	Length of the sepal (in cm)	Width of the sepal (in cm)	Length of the petal (in cm)	Width of the petal (in cm)	Species name
	Statistic	Value			
0	Mean (First Moment)	3.758000			
1	Variance (Second Moment)	3.095503			
2	Skewness (Third Moment)	-0.274884			
3	Kurtosis (Fourth Moment)	-1.402103			
4	Q1 (First Quartile, 25%)	1.600000			
	4.7	3.2			
	4.6	3.1			
	5.0	3.6			
	5.4	3.9			
	4.6	3.4			
	5.0	3.4			
	4.4	2.9			
	4.9	3.1			
	-	-			

‘Correct’ a dataset

- Missing data are common in practical problems!
- Several models do not work with missing information
- Typically, we prefer not to throw away sample, instead we prefer to ‘impute’ data



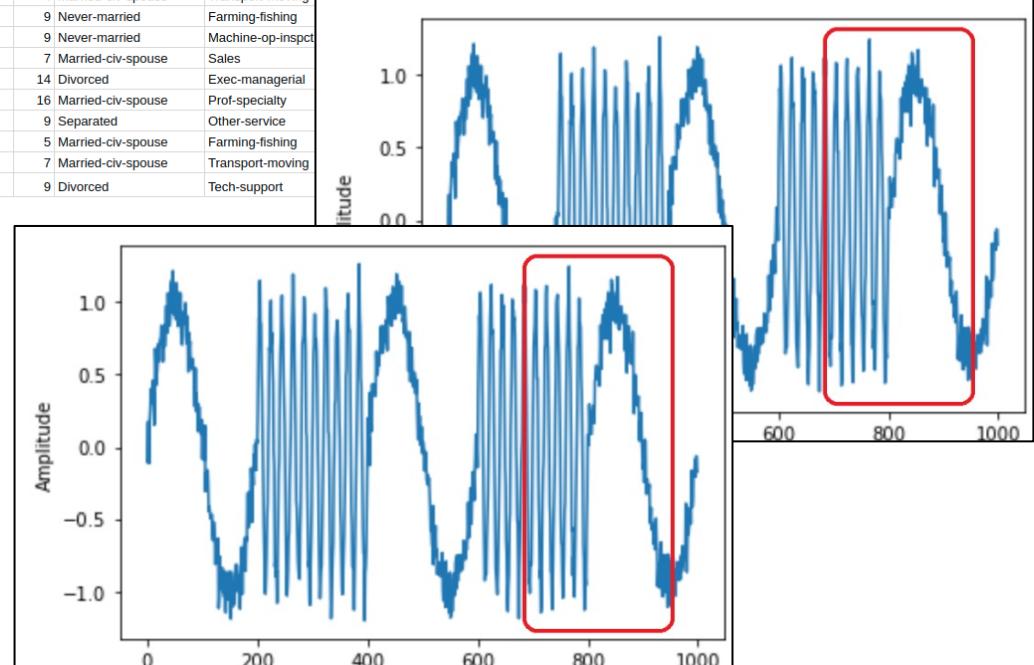
‘Correct’ a dataset

- Missing data are common in practical problems!
- Several models do not work with missing information
- Typically, we prefer not to throw away sample, instead we prefer to ‘impute’ data
- Mean and median of a variable are typical choices

Enhance a dataset: feature engineering

- As said, data do not always present themselves in an easy tabular form
- We may use statistical moments/quantities (but also rule-based) for **feature engineering**
- Feature engineering is the process of creating, selecting and transforming ‘features’ (variables)

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing								
32	Private	186824	HS-grad	9	Never-married	Machine-op-insct								
38	Private	28887	11th	7	Married-civ-spouse	Sales								
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial								
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty								
54	Private	302146	HS-grad	9	Separated	Other-service								
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing								
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving								
59	Private	109015	HS-grad	9	Divorced	Tech-support								



Reduce a dataset!

- If not informative for the task, variables should be removed for efficiency and for better ‘engineering’ of a productive solutions
- This is typically not known a priori, and it should be done after/during modelling

	Feature_1	Feature_2	Constant_Var
1	54.9671415301123 3	23.636499344142 013	100
2	48.617356988288 15	23.668090197068 675	100
3	56.476885381006 92	26.084844859190 753	100
4	65.230298564080 26	30.495128632644 757	100
5	47.658466252766 644	28.638900372842 315	100
6	47.658630430508 2	25.824582803960 837	100
7	65.7921281550739 1	32.237057894447 59	100
8	57.6743472915290 9	22.789877213040 835	100
9	45.305256140650 48	25.842892970704 362	100
10	55.425600435859 65	27.327236865873 836	100

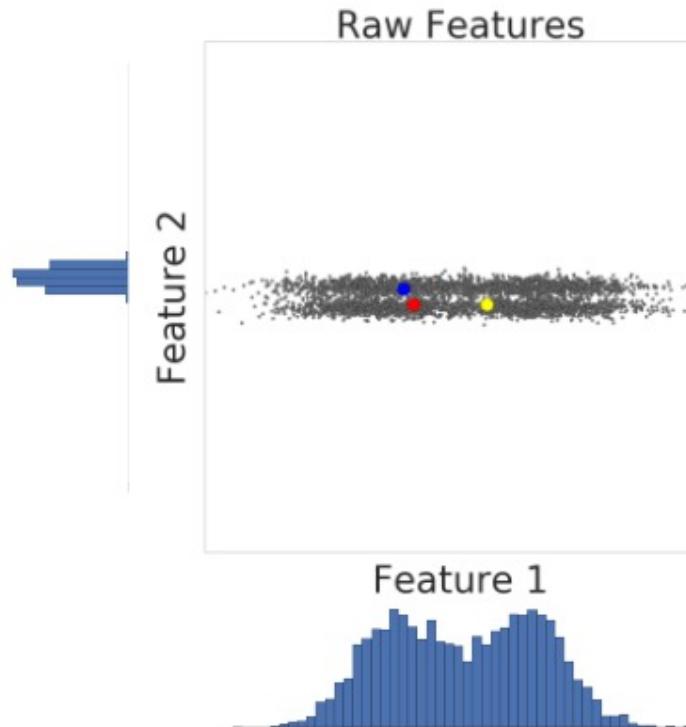
Reduce a dataset!

- If not informative for the task, variables should be removed for efficiency and for better ‘engineering’ of a productive solutions
- This is typically not known a priori, and it should be done after/during modelling
- However, if a variable is constant (variance = 0), we should get rid of it!

	Feature_1	Feature_2	Constant_Var
1	54.9671415301123 3	23.636499344142 013	100
2	48.617356988288 15	23.668090197068 675	100
3	56.476885381006 92	26.084844859190 753	100
4	65.230298564080 26	30.495128632644 757	100
5	47.658466252766 644	28.638900372842 315	100
6	47.658630430508 2	25.824582803960 837	100
7	65.7921281550739 1	32.237057894447 59	100
8	57.6743472915290 9	22.789877213040 835	100
9	45.305256140650 48	25.842892970704 362	100
10	55.425600435859 65	27.327236865873 836	100

Optimize a dataset for modelling: data normalization

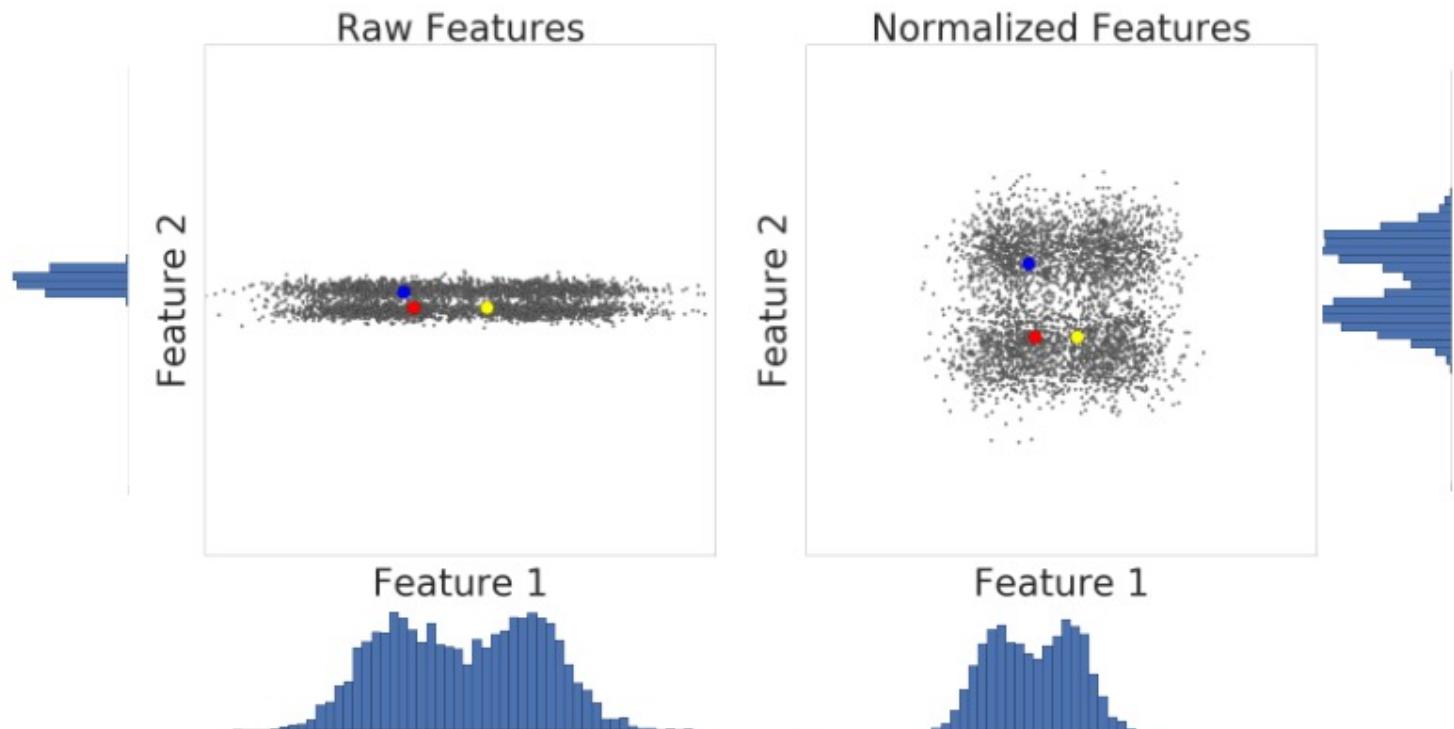
- A-priori, variables can be equally important in a ML task
- However, variable have different range values and one can 'dominate' the others
- Normalization can be of great help and it can speed up processing



Optimize a dataset for modelling: data normalization

- Z-score normalization (standardization) transforms each data (variables) to have a mean of 0 and a standard deviation of 1

$$Z = \frac{X - \mu}{\sigma}$$



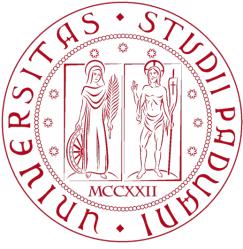
Optimize a dataset for modelling: data normalization

X	Y
10	200
12	220
14	250
16	260
18	280

	X	Y
0	-1.264911	-1.315071
1	-0.632456	-0.688847
2	0.000000	0.250490
3	0.632456	0.563602
4	1.264911	1.189826

Optimize a dataset for modelling: data normalization

Pay attention: data normalization is a task that can make you save a lot of time during building of a model, but it is typically a forgotten step



UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Machine Learning

2024/2025

AMCO
ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

Thank you!

Gian Antonio Susto

