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Before starting

IPSE DIXIT:
‘Lecture and laboratories recordings 
will be made available shortly after 
the lecture.’ 

… from this lecture! As I forgot to 
record the first one…
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make predictions or decisions 
based on input data
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n
observations: 
the number 
of times the 

phenomenon 
we need to 
'describe' is 
available in 

our data 
through 

historical 
examples

Tabular Data (the ‘design matrix’) - x
Not always so easy 

to define!

For example, a 
system described 
by (multiple) time-
serie data: maybe 

we need to extract 
quantities from 

each time window

p attributes (variables, features) potentially 
related to the phenomenon under examination



At same point, this matrix (or part of this… 
more on this later) will be fed to a machine 
learning model!

To do so, data has:
- to be ‘consistent’;
- all variables should ‘be treated’ equally 

(unless we have a priori knowledge, all 
variables can contribute to 
understand/describe the phenomena);

- we should make life easy for a model 
and do not provide redundant/useless 
information

Tabular Data (the ‘design matrix’) - x



At same point, this matrix (or part of this… 
more on this later) will be fed to a machine 
learning model!

To do so, data has:
- to be ‘consistent’;
- all variables should ‘be treated’ equally 

(unless we have a priori knowledge, all 
variables can contribute to 
understand/describe the phenomena);

- we should make life easy for a model 
and do not provide redundant/useless 
information

Tabular Data (the ‘design matrix’) - x

Statistical 
moments/quantities 

can be of help!
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A Machine Learning pipeline 

We will have a 
dedicated lecture

Many approaches, but also 
statistical ones!

Not relevant only for pre-



Why use Statistics in Machine Learning?
Why Use Statistics in ML?
1. [Preprocessing] Data Understanding – Descriptive 

statistics (mean, variance, distributions) help 
explore and clean data, identifying patterns and 
outliers.

2. [Preprocessing] Feature Engineering – Techniques 
like correlation analysis, PCA, and scaling rely on 
statistical principles.

3. [Building] Probability & Uncertainty – ML often 
deals with probabilistic models (e.g., Naïve Bayes) 
and uncertainty estimation.

4. [Building] Generalization & Inference – Concepts 
like overfitting, hypothesis testing, and bias-
variance tradeoff come from statistics.

5. [Evaluation] Model Evaluation – Metrics like MSE, 
MAE, accuracy, precision, and recall are rooted in 
statistical concepts.
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other statistical quantities



Statistical moments in Machine Learning
Moments of a Random Variable X

1.First Moment (Mean) – Central Tendency
E[X] = μ
The expected value of X, representing the average 
outcome.

2.Second Moment (Variance) – Spread of Data
Var(X) = E[(X - μ)²] = σ²
Measures how far values of X deviate from the mean.

3.Third Moment (Skewness) – Asymmetry of Distribution
Skew(X) = E[(X - μ)³] / σ³
Indicates whether the distribution leans left (negative skew) 
or right (positive skew).

4.Fourth Moment (Kurtosis) – Tailedness of Distribution
Kurt(X) = E[(X - μ)⁴] / σ⁴
Measures how heavy or light the tails of the distribution are 
compared to a normal distribution.
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Normal Kurtosis (K = 3) - Mesokurtic
•The distribution has the same shape as the 
normal distribution.

High Kurtosis (K > 3) - Leptokurtic
•Heavier tails than the normal distribution, 
meaning more extreme values (outliers).
•The distribution is more "peaked" in the center
and has longer tails.

Low Kurtosis (K < 3, K_excess < 0) - Platykurtic
•Lighter tails than the normal distribution, 
meaning fewer extreme values.
•The distribution is "flatter" in the center with 
shorter tails.



Statistical moments in Machine Learning
Moments of a Random Variable X

1.First Moment (Mean) – Central Tendency
E[X] = μ
The expected value of X, representing the average 
outcome.

2.Second Moment (Variance) – Spread of Data
Var(X) = E[(X - μ)²] = σ²
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skew) or left (positive skew).

4.Fourth Moment (Kurtosis) – Tailedness of Distribution
Kurt(X) = E[(X - μ)⁴] / σ⁴
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Increasingly 
adding 
more 

information



A numerical example

A n = 10 dataset

X=[10,15,20,25,30,35,40,45,50,55]

Let’s compute the mean:
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A numerical example

Let’s compute the skewness:



A numerical example

Let’s compute the skewness:

We have a simmetric distribution!



A numerical example

Let’s compute the kurtosis:

The kurtosis is less than 3, so the distribution is platykurtic
(fewer "tails" compared to the normal distribution).



Quartiles 
Quartiles divide a dataset into four equal parts, 
helping to understand the distribution and spread 
of the data.

Quartile Definitions:
- Q1 (First Quartile, 25%) – The value below which 
25% of the data falls.
- Q2 (Second Quartile, 50%) – The median, the value 
that splits the data into two equal halves.
- Q3 (Third Quartile, 75%) – The value below which 
75% of the data falls.
- Interquartile Range (IQR) – The range between Q1 
and Q3, measuring the spread of the middle 50% of 
the data:
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helping to understand the distribution and spread 
of the data.

Quartile Definitions:
- Q1 (First Quartile, 25%) – The value below which 
25% of the data falls.
- Q2 (Second Quartile, 50%) – The median, the value 
that splits the data into two equal halves.
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75% of the data falls.
- Interquartile Range (IQR) – The range between Q1 
and Q3, measuring the spread of the middle 50% of 
the data:

The median is used many times instead of the mean, 
as it is a robust quantity w.r.t. ’outliers’ (strange 
data)



A numerical example (odd numbers)

Same dataset previously seen (n = 11).
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Same dataset previously seen (n = 10).
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Same dataset previously seen (n = 10).



Common convention (for the theoric
part of the exam): no interpolation!

Procedure:
- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT 

LEAST 25%/50%/75% for Q1/Q2/Q3 respectively
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Mode
The value that appears the most on a dataset. It is an important 
quantity when dealing with categhorical data.

Example:



Statistical moments (and quantities) in 
Machine Learning

Statistical moments and quartiles provide a structured way to summarize and 
understand data distributions, which is essential for building, evaluating, and 
interpreting machine learning models. 

Moments help in other pre-processing steps, such as feature engineering or 
missing data handling.

Not only that: they can be useful in easing the ‘training’ procedure*

*What ‘training’ means it will be clearer when we talk about modelling, but it 
means tuning/finding the ‘right’ parameters in a given model



‘Understand’ a dataset: Iris dataset

-‘Iris Classification’ dataset, Ronald Fisher (1936) 
- Available on UCI ML Repository/Kaggle/… everywhere! 
- L = 3 classes problem: classify Setosa, Versicolour and 

Virginica iris from data containing sepal and petal width 
and length – n = 150 samples, p = 4 variables

51

Wikipedia
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https://www.kaggle.com/datasets/uciml/irisIris dataset
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https://www.kaggle.com/datasets/uciml/irisIris dataset



‘Correct’ a dataset

- Missing data are common in 
practical problems! 
- Several models do not work 
with missing information
- Typically, we prefer not to 
throw away sample, instead 
we prefer to ‘impute’ data
-Mean and median of a 
variable are typical choices

54
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Enhance a dataset: feature engineering

- As said, data do not 
always present 
themselves in an easy 
tabular form
- We may use statistical 
moments/quantities (but 
also rule-based) for 
feature engineering
- Feature engineering is 
the process of creating, 
selecting and 
transforming ‘features’ 
(variables)

56



Reduce a dataset! 

- If not informative for the 
task, variables should be 
removed for efficiency and 
for better ‘engineering’ of a 
productive solutions

- This is typically not known a 
priori, and it should be done 
after/during modelling

- However, if a variable is 
constant (variance = 0), we 
should get rid of it!

57
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Optimize a dataset for modelling: data 
normalization
- A-priori, variables 

can be equally 
important in a ML 
task

- However, variable 
have different range 
values and one can 
‘dominate’ the 
others

- Normalization can be 
of great help and it 
can speed up 
processing get rid of 
it!
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Optimize a dataset for modelling: data 
normalization
- Z-score 

normalization 
(standardization) 
transforms each 
data (variables) to 
have a mean of 0 
and a standard 
deviation of 1 
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Optimize a dataset for modelling: data 
normalization
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Optimize a dataset for modelling: data 
normalization

Pay attention: data 
normalization is a task that 
can make you save a lot of 
time during building of a 
model, but it is typically a 
forgotten stepget rid of it!

62



Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


