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1. [5 points] Consider the DFA A whose transition function is graphically represented below (arcs with
double direction represent two arcs in opposite directions)

q0 q1 q2

q3 q4 q5
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1 00 0

1

01

1

0

(a) Provide the definition of equivalent pair of states for a DFA.

(b) Apply to A the tabular algorithm presented in the textbook for detecting pairs of equivalent
states, reporting all the intermediate steps.

(c) Specify the minimal DFA equivalent to A and provide a graphical representation of its transition
function.

Solution

(a) The required definition can be found in Section 4.4.1 of the textbook.

(b) The textbook describes an inductive algorithm for detecting distinguishable state pairs. On input
A, the algorithm constructs the table reported below.

q1

q2

q3

q4

q5

q0 q1 q2 q3 q4

Y X Y X

X X X

Y X

X X

Y



We have marked with X the entries in the table corresponding to distinguishable state pairs that
are detected in the base case of the algorithm, that is, state pairs that can be distinguished by the
string ε. We have then marked with Y distinguishable state pairs detected at the next iteration
by some string of length one. At the successive iterations, strings of length larger than one do
not provide any new distinguishable state pairs.

(c) From the above table we get the following state equivalences: q0 ≡ q3, q1 ≡ q5 and q2 ≡ q4. This
results in three equivalence classes, which becomes the states of the minimal DFA equivalent
to A: p0 = {q0, q3}, p1 = {q1, q5}, p2 = {q2, q4}. The minimal DFA has initial state p0, final state
p2, and the transition function can be graphically represented as

p0 p1 p2
Start 0

1

1

1 0
0

2. [9 points] Let Σ = {a, b, c}. For w ∈ Σ∗ and X ∈ Σ, we write #X(w) to denote the number of
occurrences of X in w. Consider the following languages

L1 = {cxcyc | x, y ∈ {a, b}∗, #a(x) = #a(y)}
L2 = {cxyc | x, y ∈ {a, b}∗, #a(x) = #a(y)}

State whether each of L1 and L2 belongs to REG, to CFL∖REG, or else whether it is outside of CFL.
Provide a mathematical proof for your answers.

Solution

(a) L1 belongs to the class CFL∖REG.

We first show that L1 is not a regular language, by applying the pumping lemma for this class.
Let N be the pumping lemma constant for L1. We choose the string w = caNcaNc ∈ L1 with
|w| ≥ N .

We now consider all possible factorizations of the form w = xyz satisfying the conditions |y| ≥ 1
and |xy| ≤ N of the pumping lemma. Note that, since |xy| ≤ N , string y can only span over the
substring of w placed to the left of the middle occurrence of c. We need to distinguish two cases
in our discussion.

Case 1: y spans the leftmost occurrence of c in w, and possibly more symbols from w. This means
that x = ϵ. We then choose k = 0 and obtain the string w0 = xy0z = z which has fewer than 3
occurrences of symbol c, and therefore w0 ̸∈ L1.

Case 2: y does not span the leftmost occurrence of c in w. As already observed, y cannot reach
the middle occurrence of c, and therefore can only contain occurrences of symbol a. Again, we
choose k = 0 and obtain a string w0 = xy0z which has the form caN−|y|caNc. Because of the
condition |y| ≥ 1, we have that N − |y| < N , and therefore w0 ̸∈ L1.



Since we have considered all possible factorizations for string w, and for each one of these we have
failed to satisfy the pumping lemma, we must conclude that L1 cannot be a regular language.

As a second part of the answer, we need to show that L1 belongs to the class CFL. To do this,
we need to provide a CFG or a PDA for L2. It turns out that the second case is much easier than
the first. The transitions of our PDA M can be summarized as follows.

• M starts in its initial state q0 and with special symbol Z0 in its stack. If it reads symbol c,
M moves to state q1; if it reads any other symbol from Σ, M moves to a trap state, that is,
a non-final state with no further possible transitions.

• In state q1, M can read any symbol from Σ. If it reads a, then M pushes the special symbol
X into the stack; if it reads b, M just moves forward without changing its stack; if it reads
c, M switches to state q2.

• In state q2, M can read any symbol from Σ. If it reads a with top-most stack symbol X,
then M pops X; if it reads a with top-most stack symbol Z0, then M halts in a trap state;
if it reads b, M just moves forward; and if it reads c, M switches to state q3.

• In state q3 and with Z0 at the top of its stack, M moves to final state qf ; in any other case,
M moves to the trap state.

It is not too difficult to see that L(M) = L2.

(b) L2 belongs to the class REG.

To see this, we observe that the definition of L2 requires that all its string have the form czc
with z ∈ {a, b}∗, and that z can be factorized as z = xy such that #a(x) = #a(y). This in turn
is equivalent to say that the number of occurrences of symbol a in z is an even number. More
formally, we can then write

L2 = {czc | z ∈ {a, b}∗, #a(z) = 2n, n ≥ 0} .

Then the regular expression R = c(b∗ab∗ab∗)∗c generates L2.

3. [6 points] With reference to the membership problem for context-free languages, answer the following
two questions.

(a) Specify the recursive relation underlying the dynamic programming algorithm reported in the
textbook for the solution of this problem.

(b) Consider the CFG G in Chomsky normal form defined by the following rules:

S → CD

C → AC | AD
D → AC | AD | BD | BB

A → a

B → b

Assuming as input the CFG G and the string w = aaabbbb, trace the application of the algorithm
in (a) and assess whether w ∈ L(G).



Solution

(a) The required dynamic programming algorithm is reported in Section 7.4.4 of the textbook.

(b) On input w and G, the algorithm constructs the table reported below.

a a a b b b b

{A} {A} {A} {B} {B} {B} {B}

{D} {D} {D}

{C,D} {D} {D}

{C,D} {C,D} {D}

{C,D} {C,D} {S,C,D}

{C,D} {S,C,D}

{S,C,D}

Since the start symbol S belongs to the topmost cell of the triangular table, we can conclude that
w ∈ L(G).

4. [9 points] Assess whether the following statements are true or false, providing motivations for all of
your answers.

(a) There exist languages L1 and L2 in CFL∖REG, with L1 ̸= L2, such that L1 ∖ L2 is in REG.

(b) There exist a language L1 in REG and some language L2 not in REG such that L1 ∖ L2 is in
CFL∖REG.

(c) There exist a language L1 in CFL and a string u ∈ L1 such that the language L2 = {w | w ∈
L1, w ̸= u} is outside of CFL.

(d) Let P be the class of languages that can be recognized in polynomial time by a TM. There exist
a language L ∈ P such that L is defined over Σ = {a, b} and L is not in CFL.

Solution

(a) True. Let L1 = {anbn | n ≥ 1} and let L2 = {anbn | n ≥ 2}. We know from the textbook that
both L1 and L2 are in CFL∖REG. We now have L1 ∖ L2 = {ab}, which is a finite language and
therefore a regular language.

(b) True. Let Σ = {a, b} and let L = {anbn | n ≥ 0}. We can choose L1 = Σ∗, which is in REG, and
L2 = L (the complement of L with respect to Σ∗). The fact that L2 is not in REG, as required
by the hypotheses, follows from the closure property of the class REG under complementation:
if L2 is in REG, then also L would be in REG, but we know from the textbook that is is not the
case. We then have

L1 ∖ L2 = Σ∗ ∖ L = L = L



and we know from the textbook that L is in CFL∖REG.

(c) False. Let L1 be an arbitrary language in CFL, and let u be an arbitrary string in L1. Consider
the language L3 = {u}. We can then rewrite L2 as

L2 = L1 ∖ L3 = L1 ∩ L3 .

Since L3 is a finite language, it is also in REG and its complement L3 is in REG as well. Since
L1 is in CFL and the class CFL is closed under intersection with REG, we can conclude that L2

is in CFL as well. Note that we have chosen L1 and u ∈ L1 arbitrarily. We can then conclude
that the statement is false.

(d) True. Consider the language L = {anbanban | n ≥ 0}, defined over Σ. We know from the
textbook that L is not in CFL, since its recognition requires to check that three sequences of
symbol a have the same length.

We now show that the language L is in P, by specifying a TM M that works in polynomial time
such that L(M) = L. M uses a tape with two tracks, and performs the following steps.

• M checks that w has the form a∗ba∗ba∗, and rejects if this is not the case.

• M uses the second track to mark occurrences of symbol a in w. More precisely, think of
w as containing three blocks of the form a∗, separated by the two occurrences of symbol
b. M marks the first occurrences of a in each of the three blocks, then it marks the second
occurrences of a in each of the three blocks, and so on. If all of the three blocks get completely
marked at the same step, then M accepts w; otherwise M rejects w.

It is not difficult to see that M works in polynomial time in the length of w.

5. [4 points] Prove the following statements, using the same proofs reported in the textbook.

(a) If language L is in REC, then also the language L is in REC.

(b) If both languages L and L are in RE, then then L is in REC.

Solution The required proofs are reported in Section 9.2.2 of the textbook.


