

Università degli Studi di Padova

Lecture 01

Foundations of Signals and Systems: an introduction

Tomaso Erseghe

1.1 Signals

What do we mean by signal?

- Definition
- From functions to signals
- Signal examples
- The four classes of interest to us

Welcome!

to Foundations of Signals & Systems

- One lecturer, tomaso.erseghe@unipd.it
- 16 Lectures on the theoretical aspects
- 3 MatLab lectures for a more practical understanding
- Exercises with solution
- Homeworks (with solutions)

Signal

Definition www.merriam-webster.com

[...]

4

a : an object used to transmit or convey **information** beyond. the range of human voice

b: the **sound or image** conveyed in telegraphy, telephony, radio, radar, or television

c: a detectable physical quantity or impulse (as a voltage, current, or magnetic field strength) by which messages or **information** can be transmitted

Some examples

From physics

More examples

From medicine

More examples

From economy

Standard notation

From functions to signals

Periodic signals

With a repeating shape

Periodic signals

As a model on a finite time window

What we observed ... can be extended by arbitrary shapes ... but better to extend it by periodicity

Discrete-time signals

E.g., obtained by sampling

Complex-valued signals

A mathematical abstraction?

 $\underline{\mathbf{s}}(t) = [\mathcal{R}[\mathbf{s}(t)], \mathcal{I}[\mathbf{s}(t)]]$

Multidimensional signals

In multimedia processing

$\underline{s}(x,y) = [r(x,y), g(x,y), b(x,y)]$

Four classes of signals

What we deal with

Exercises

On complex values

Complex-valued signals are the key players in this course, and we expect you to already know complex values from previous mathematics courses.

Refresh your knowledge of **complex-values** with the set of introductory exercises provided.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 01

Foundations of Signals and Systems: an introduction

Tomaso Erseghe

1.3 Systems

What is a system?

- Definition
- Linear time-invariant systems
- Transforms
- An application example
- Course overview

Transformation (systems)

Definition www.merriam-webster.com

[...]

3

a (1): the **operation of changing** (as by rotation or mapping) one configuration or expression into another **in accordance with a mathematical rule**; [...]

a (2) : the **formula** that effects a transformation

b : a **mathematical correspondence** that assigns exactly one element of one set to each element of the same or another set

LTI systems

Linearity = Superposition principle Time-Invariance = Repeatability principle

Convolution systems

LTI property

The action of an LTI system is a convolution

A pharmacology example

On drugs absorption

Artificial pancreas system

glucose sensor (reads the insulin level in blood)

insulin pump

(injects insulin)

remote device: identifies the correct amount of insulin to be injected, knowing the body absorption characteristics (LTI system)

Transforms

Alternative signal representations

Main property

Course outline

time domain

Signals (4 lectures)

 Duration, area, mean value, energy, power, periodicity, complex exponentials, sinusoids, time-reversal, -shift, and -scale, periodic repetition, ideal impulses

Systems (3 lectures)

 Memory, stability, linearity, time invariance, convolution and its properties, filters, parallel and series connections

MatLab (2 lectures)

 Signal representation, convolution and filters

transform domain

Fourier transforms (6 lectures)

 Fourier series, DFT, Fourier transform, discrete-time Fourier transform, their properties and the sampling/periodic repetition relation among them

Sampling theorem (1 lecture)

- Reconstructing a signal from its samples

MatLab (1 lecture)

- Fourier representation and **filters**

Laplace + Z transforms (2 lectures)

Laplace + Z transforms and their properties, application to differential equations

Thanks to

Pierre-Simon Laplace Beaumont-en-Auge 23/3/1749 Paris 5/3/1827

Mathematician, physicist, astronomer and nobleman

Jean Baptiste Joseph Fourier Auxerre 21/3/1768 Paris 16/5/1830

Mathematician and physicist

Claude Elwood Shannon Petoskey (MI) 30/4/1916 Medford (MA) 24/2/2001

US engineer and mathematician

A worldwide reference

Signals and Systems, 2nd Edition **Oppenheim, Willsky**, Nawab published by Pearson

Exercises

On integrals and series

Complex-valued integrals and series are the key tools needed to understand systems. We expect you to already know how to handle them from previous mathematics courses, at least at a basic level.

Refresh your knowledge of **integrals and series** with particular care in fully understanding the **geometric series** and **primitives of complex exponentials**.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 02

Signals: area, mean value, energy, power for aperiodic signals

Tomaso Erseghe

2.1 Continuous-time signals

Aperiodic case

- Discontinuous signals
- Duration and extension
- Causality
- Area and mean value
- Energy and power

Four classes of signals

Continuity and discontinuity

if s(t) has a discontinuity at $t = t_i$ we assign to $s(t_i)$ the average value of the limits approached from right and left, respectively, $a(t_i) \stackrel{\Delta}{=} \frac{1}{2} [a(t_i + t_i) + a(t_i - t_i)]$

$$s(t_i) \stackrel{\Delta}{=} \frac{1}{2} \left[s(t_i +) + s(t_i -) \right]$$

Extension and duration

of a continuos-time aperiodic signal

extension e(s) = smaller interval $[t_s, T_s]$ in which the signal s(t) is active – also union of intervals, with $\{t|s(t)\neq 0\} \subseteq e(s)$

duration D(s) = measure $T_s - t_s$ of the extension

can be finite (as in the example) or infinite

Causal signals

Causality property

A signal is said to be **causal** if active only in the positive time axis

$$s(t) = 0$$
 for $t < 0$
 $e(s) \subset [0, +\infty)$

Area

Of a continuos-time aperiodic signal

Meaning: balance between positive and negative signal values, takes a complex value for complex valued signals

Mean value

AreaMean (average value) $area(s) = \int_{-\infty}^{+\infty} s(t) dt$ $m_s = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} s(t) dt$

They capture a similar information for different classes of signals (only one at a time is meaningful)

Main properties

of area and mean value

$$\begin{split} s(t) &= B \ x(t) + C \ y(t) \quad \Rightarrow \quad A_s = B \ A_x + C \ A_y \\ m_s &= B \ m_x + C \ m_y \end{split}$$

finite area \rightarrow zero mean value finite (non-zero) mean value \rightarrow infinite area $m_s = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} s(t) dt$ $m_s = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} s(t) dt$ $m_s = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} s(t) dt$

Energy and power

Energy Power

$$E_s = \lim_{T \to \infty} \int_{-T}^{T} |s(t)|^2 dt$$
 $P_s = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |s(t)|^2 dt$

They correspond to the area and the mean value of $|s(t)|^2$ hence take only **real positive values**

Meaning

Of energy and power

These definition are inspired by power and energy dissipated in a resistor

They measure the **level of activity** of a signal

Exercises

On continuos-time aperiodic signals

Calculating **area, mean value, energy, and power** is a matter of correctly solving integral expressions.

You need to get acquainted with the basic tricks and tips. Remember that the primitive of eat is eat/a, irrespective of the fact that a is real or complex valued.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 02

Signals: area, mean value, energy, power for aperiodic signals

Tomaso Erseghe

2.4 Discrete-time signals

Aperiodic case

- Extension
- Causality
- Area and mean value
- Energy and power

Discrete-time signals

Extension and causality

Extension

The smallest interval [n_s,N_s] containing the active signal samples

Causality

A signal is called causal if its extension is contained in [0,∞), or, equivalently, if s(n)=0 for n<0

Fundamental measures

Where a sum replaces the integral

Main properties

linearity

finite area \rightarrow zero mean value finite (non-zero) mean value \rightarrow infinite area the limit is A_s $m_s = \lim_{N \to \infty} \frac{1}{1+2N} \sum_{n=-N}^{N} s(n)$ the limit is ∞

Exercises

On discrete-time aperiodic signals

Calculating area, mean value, energy, and power is a matter of correctly solving series.

You need to get acquainted with the basic tricks and tips. The most important result to have in mind is the **geometric series** either in its full or truncated form.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 03

Signals: periodicity, area, mean value, energy, power for periodic signals

Tomaso Erseghe

3.1 Periodic signals

The continuous-time case

- The minimum period
- Complex exponentials and sinusoids
- Compositions of periodic signals
- Area, mean value, energy, and power

Periodic signals

Main property and minimum period

Complex exponentials

With linear phase $A \ e^{j\omega_0 t} = A \ e^{j2\pi f_0 t}$ real and positive tminimum period $T_p = 1/|f_0|$ $Ae^{j2\pi f_0 t} = A\cos(2\pi f_0 t) + jA\sin(2\pi f_0 t)$ $\cos(2\pi f_0(t+T_p))$ real part imaginary part $= \cos(2\pi f_0 t + 2\pi f_0 / |f_0|)$ $=\cos(2\pi f_0 t \pm 2\pi)$ $=\cos(2\pi f_0 t)$ $s(t) = s(t+T_p)$

Signal composition

Identifying a common period

General rule

The composition of periodic signals is periodic if and only if the periods are in a rational relation

The composition of sinusoids is periodic if and only if their frequencies/pulsations are in a rational relation

Area of a periodic signal

It does not make any sense! $A_s = \lim_{N \to \infty} \int_{-NT_p}^{NT_p} s(t) dt = \lim_{N \to \infty} 2NA_s(T_p) = \infty$

This is consistent!

$$m_s = \lim_{N \to \infty} \frac{1}{2NT_p} \int_{-NT_p}^{NT_p} s(t) dt$$
$$= \lim_{N \to \infty} \frac{2NA_s(T_p)}{2NT_p} = \frac{A_s(T_p)}{T_p}$$

.....

Meaningful expressions

For periodic signals

Area (in a period) and mean value

 $A_s(T_p) = \int_{t_0}^{t_0 + T_p} s(t)dt \qquad m_s = \underbrace{\frac{A_s(T_p)}{T_p}}_{T_p} = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} s(t)dt$

Energy (in a period) and power

$$E_s(T_p) = \int_{t_0}^{t_0+T_p} |s(t)|^2 dt \qquad P_s = \underbrace{\frac{E_s(T_p)}{T_p}}_{T_p} = \frac{1}{T_p} \int_{t_0}^{t_0+T_p} |s(t)|^2 dt$$

Mean and power carry the relevant information, they are correct even in case T_p is NOT the minimum period

Exercises

On continuous-time periodic signals

Calculating mean value and power is particularly important for compositions of complex exponentials and sinusoids.

The most important result to learn is that complex exponentials and sinusoids have **zero mean** while **powers** take the forms [A]² and ¹/₂ A², respectively, with A a multiplying constant. In their composition, powers simply sum.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 03

Signals: periodicity, area, mean value, energy, power for periodic signals

Tomaso Erseghe

3.4 Periodic signals

The discrete-time case

- Complex exponentials and sinusoids
- Periodicity issues
- Area, mean value, energy, and power

Periodic signals

Main property and minimum period

Sampled sinusoids $A_0 \cos(2\pi f_0 nT + \varphi_0)$ What is their period?

Sampled sinusoids

Identifying a period

 $s(n) = \cos(2\pi f_0 nT)$

We must have s(n) = s(n + N) $\cos(2\pi f_0 nT + 2\pi f_0 NT) = \cos(2\pi f_0 nT)$ $f_0 T = \frac{k}{N}$ A non-rational value f₀T implies that the sampled sinusoid is NOT periodic

Ambiguity of frequency

In sampled sinusoids

 $\cos(2\pi (f_0 + F_p)nT) = \cos(2\pi f_0 nT + 2\pi n) = \cos(2\pi f_0 nT)$

Mean and power

For periodic signals

Area (in a period) and mean value

$$m_{s} = \frac{A_{s}(N)}{N} = \sum_{n=n_{0}}^{n_{0}+N-1} s(n)$$

Energy (in a period) and power

Exercises

On discrete-time periodic signals

Calculating mean value and power is particularly important for compositions of complex exponentials and sinusoids.

The most important result to learn is that complex exponentials and sinusoids have **zero mean** while **powers** take the forms |A|² and ¹⁄₂ A², respectively, with A a multiplying constant. In their composition, powers simply sum.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 04

Signals: time-reversal, -shift, and -scale, symmetries

Tomaso Erseghe

4.1 Basic transformations

In continuous and discrete-time aperiodic domains

- Time reversal, time shift, time scaling
- Combining transformations
- Symmetries
- Periodic repetition

Time shift

Time scale

Time scale + time shift

Swapping shift and scale

Which is the one to prefer?

x(t) scale
$$y(t)=x(t/a)$$
 shift t_0 $s(t)=y(t-t_0)$

Scale + shift

The preferred one, where t_0 is the true shift

$$\xrightarrow{x(t)} \underset{t_1}{\text{shift}} \xrightarrow{z(t)=x(t-t_1)} \underset{a}{\text{scale}} \xrightarrow{v(t)=z(t/a)}$$

Shift + scale

$$v(t) = x\left(\frac{t}{a} - t_1\right) = x\left(\frac{t - at_1}{a}\right)$$

They correspond
when $at_1 = t_0$

Exercises

On basic transformations

Understanding **time reversal, shift, and scale** may seem too easy, but you need to familiarize with these transformations as they are the basis for expressing signals in a compact form.

Bear in mind the meaning of $s((t-t_0)/a)$ as this is fundamental in all that follows.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 04

Signals: time-reversal, -shift, and -scale, symmetries

Tomaso Erseghe

4.4 Symmetries in signals

Signal invariance to a transformation

- Even and odd symmetry
- Real and imaginary symmetry
- Hermitian and anti-Hermitian symmetry

The even symmetry

A signal is said to be even symmetric if it is invariant to time-reversal, that is, if s(t) = s(-t) or s(n) = s(-n)

The odd symmetry

A signal is said to be **odd symmetric** if s(t) = -s(-t) or s(n) = -s(-n)

Even and odd components

The same applies in discrete-time

Every signal can be (uniquely) decomposed into its even and odd parts $s(t) = s_e(t) + s_o(t)$

where $s_e(t) = \frac{1}{2} s(t) + \frac{1}{2} s(-t) = s_e(-t)$ $s_o(t) = \frac{1}{2} s(t) - \frac{1}{2} s(-t) = -s_o(-t)$

$$1(t) = \frac{1}{2} + \frac{1}{2} \operatorname{sgn}(t)$$

$$t$$
even part odd part

Other symmetries of interest

Real/imaginary

Hermitian/anti-Hermitian

real $s(t) = s^{*}(t)$ imaginary $s(t) = -s^{*}(t)$

components $s_{re}(t) = \frac{1}{2} s(t) + \frac{1}{2} s^{*}(t)$ $s_{im}(t) = \frac{1}{2} s(t) - \frac{1}{2} s^{*}(t)$ Hermitian $s(t) = s^{*}(-t)$ anti-Hermitian $s(t) = -s^{*}(-t)$

components $s_h(t) = \frac{1}{2} s(t) + \frac{1}{2} s^*(-t)$ $s_a(t) = \frac{1}{2} s(t) - \frac{1}{2} s^*(-t)$

On the Hermitian symmetry

Understanding its meaning

s(t) = a(t) + j b(t)

Hermitian $s(t) = s^*(-t)$ means a(t) + j b(t) = a(-t) - j b(-t)even real-part odd imaginary-part

anti-Hermitian s(t) = -s*(-t) means odd real-part even imaginary-part

Exercises

On symmetries

Understanding **symmetries** is fundamental for appreciating some important features of the Fourier transform.

They are straightforward, but need to be deeply understood.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 05

Signals: periodic repetition, ideal impulses, generalized derivatives

Tomaso Erseghe

5.1 Periodic repetition

In continuous and discrete-time

The periodic repetition

- Compactly expressing periodic signals
- The presence of aliasing

Periodic repetition

From aperiodic to periodic

Periodic repetition

Proof of periodicity

$$s(t) = \sum_{n=-\infty}^{+\infty} u(t - nT_p) \stackrel{\Delta}{=} \operatorname{rep}_{T_p} u(t)$$

proof

$$s(t+T_p) = \sum_{n=-\infty}^{+\infty} u(t+T_p - nT_p)$$

$$= \sum_{n=-\infty}^{+\infty} u(t - \underbrace{(n-1)}_{m} T_p)$$

$$= \sum_{m=-\infty}^{+\infty} u(t - mT_p) = s(t)$$

Square wave

In the form of a periodic repetition

duty cycle = fraction of the period T_p where the signal is active d = 2a/ T_p

Rectified sinusoid

In the form of a periodic repetition

The presence of aliasing

In a periodic repetition

Properties

Of the periodic repetition

linearity

$$\operatorname{rep}_{T_p} a(t) + b(t) = \operatorname{rep}_{T_p} a(t) + \operatorname{rep}_{T_p} b(t)$$

time-reversal

$$\operatorname{rep}_{T_p} u(-t) = s(-t) \qquad s(t) = \operatorname{rep}_{T_p} u(t)$$

time-shift

$$\operatorname{rep}_{T_p} u(t - t_0) = s(t - t_0)$$

time-scale

$$\operatorname{rep}_{aT_p} u(t/a) = s(t/a)$$

The discrete-time case

Periodic repetition

With the same properties of the continuous-time case

Exercises

On the periodic repetition

Calculating a periodic repetition is particularly important in the presence of aliasing as, in this case, a full understanding of the process might not be trivial.

We mainly concentrate on the **continuos-time** domain, as this is by far the most relevant for applications, but the same rationale readily applies to the discrete-time case as well.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 05

Signals: periodic repetition, ideal impulses, generalized derivatives

Tomaso Erseghe

5.4 Ideal impulses

Also known as delta functions

- The Kronecker delta
- The Dirac delta
- Sifting properties
- Generalized derivatives

Kronecker delta

Signal impulse in discrete-time

 $\delta(n)$ extension $e(\delta) = \{0\}$ area ∞ $A_{\delta} = \sum_{n=1}^{\infty} \delta(n) = 1$ n $n=-\infty$ even symmetry $\delta(n) = \delta(-n)$ unit-step connection $1_0(n) = \sum \delta(m)$ $m = -\infty$ cumulative sum

Sifting property #1

Of the Kronecker delta

 $s(n)\delta(n-n_0) = s(n_0)\delta(n-n_0)$ the Kronecker delta reveals the signal (where it is centred)

Sifting property #2

Of the Kronecker delta

~~

$$\sum_{n=-\infty}^{\infty} s(n)\delta(n-n_0) = s(n_0)$$

in a summation, the Kronecker delta reveals the signal value (the one where it is centred)

Dirac delta

Signal impulse in continuous time

Properties #1

Of the Dirac delta function

Properties #2

Of the Dirac delta function

unit-step connection

generalized derivative

$$\delta(t) = \frac{d1(t)}{dt}$$

Sifting property #1

Of the Dirac delta

$$\int_{-\infty}^{\infty} s(t)\delta(t)dt = \lim_{k \to \infty} \int_{-\infty}^{\infty} s(t)r_k(t)dt$$
$$= \lim_{k \to \infty} \underbrace{\frac{1}{\frac{1}{k}} \int_{-\frac{1}{2k}}^{\frac{1}{2k}} s(t)dt}_{s(t_0), t_0 \in [-\frac{1}{2k}, \frac{1}{2k}]}$$
mean-value $s(t_0), t_0 \in [-\frac{1}{2k}, \frac{1}{2k}]$ theorem

$$\int_{-\infty}^{\infty} s(t)\delta(t-t_0)dt = s(t_0)$$

in an integral, the Dirac delta reveals the signal value (the one where it is centred)

Sifting property #2

Of the Dirac delta

the Dirac delta reveals the signal value (where it is centred) $s(t)\delta(t-t_0) = s(t_0)\delta(t-t_0)$

Generalized derivatives

By the Dirac delta

the Dirac delta expresses the derivative in a point of discontinuity $s'(t) = [s(t_0+) - s(t_0-)]\delta(t-t_0)$

Periodic counterparts

In continuous and discrete time

the continuous and discrete time comb signals

Exercises

On the ideal impulses

Getting acquainted with the sifting property of ideal impulses and with generalized derivatives is fundamental for correctly understanding the rest of this course.

We mostly concentrate on the **continuos-time** domain, as this is by far the most relevant for exercises, but the discrete-time case is equivalently important especially in some theoretical results that will lead to convolution.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 06

Systems: invertibility, memory, BIBO stability, linearity, time-invariance, connection in series and parallel

Tomaso Erseghe

6.1 Systems properties #1

In continuous and discrete-time

- Invertibility
- Reality
- Memory
- BIBO stability

System model

In continuous or discrete-time

Signal space choice

non-invertible

absolute value
$$y(t) = |x(t)|$$

unless S_{in} is real-valued
and positive signals!!!

$$x(t) \in \mathbb{R}$$
 $y(t) \in \mathbb{R}$

Reality

A system is real if for every real-valued input, the output is real-valued

current sum
$$y(n) = \sum_{k=-\infty}^{n} x(k)$$

increment $x(n) = y(n) - y(n-1)$
running average $y(t) = \frac{1}{2T} \int_{t-T}^{t+T} x(u) du$

Memory of a system

static (or instantaneous) $y(t) = \Sigma[x(t)]$ absolute value y(t) = |x(t)|

Dynamic systems

causal
$$y(t) = \Sigma[x_{(-\infty,t)}, x(t)]$$

current sum $y(n) = \sum_{k=-\infty}^{n} x(k)$
increment $x(n) = y(n) - y(n-1)$
integrator $y(t) = \int_{-\infty}^{t} x(u) du$

anti-causal $y(t) = \Sigma[x(t), x_{(t,+\infty)}]$

finite-memory
$$y(t) = \Sigma[x_{[t1,t2]}]$$

running average $y(t) = \frac{1}{2T} \int_{t-T}^{t+T} x(u) du$

BIBO stability

Bounded input – bounded output

A system is **BIBO stable** if for every bounded input, $|x(t)| < L_x$, the output is bounded, $|y(t)| < L_y$

> or, equivalently, $|x(n)| < L_x \rightarrow |y(n)| < L_y$

BIBO stability

Proof by construction

is BIBO stable

$$|y(t)| = \left|\frac{1}{2T} \int_{t-T}^{t+T} x(u) du\right|$$
$$\leq \frac{1}{2T} \int_{t-T}^{t+T} |x(u)| du$$
$$\leq \frac{1}{2T} \int_{t-T}^{t+T} L_x du = L_x$$

BIBO stability

Proof by counterexample

is not BIBO stable

$$y(t) = \int_{-\infty}^{t} x(u) du$$
$$= \int_{-\infty}^{t} 1(u) du = t \cdot 1(t)$$

Exercises

On systems

Understanding the **memory aspects and BIBO stability** in a continuous or discrete-time system is a fundamental process, than needs to be trained.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 06

Systems: invertibility, memory, BIBO stability, linearity, time-invariance, connection in series and parallel

Tomaso Erseghe

6.4 Systems properties #2

In continuous and discrete-time

Linearity

- Time-invariance
- Eigenfunction and impulse response
- Series, parallel, and feedback systems

Linearity

Superposition principle

absolute value y(t) = |x(t)|non homogeneous $|\alpha x(t)| \neq \alpha |x(t)|$ non additive $|x_1(t) + x_1(t)| \neq |x_1(t)| + |x_2(t)|$

Linear systems

Examples

time-shift $x(t-t_0)$ product x(t) g(t) by any known waveform g(t) product A x(t) by a constant integration \int , summation Σ , derivative d of x(t)

non-linear

sum x(t) + A of a constant, or a waveform function g(x(t)) applied to x(t)

Time invariance

Repeatability principle

a commutativity property

Verifying time invariance

$$\xrightarrow{\mathbf{x}(t)} \underbrace{\mathbf{\sum}}_{t \to t} \underbrace{\mathbf{y}(t)}_{\text{shift}} \xrightarrow{\mathbf{t}} \frac{1}{2T} \int_{t-t_0-T}^{t-t_0+T} x(u) du$$

$$\xrightarrow{\mathbf{x}(t)} \underbrace{\underset{\text{shift}}{\text{time}}}_{\text{shift}} \xrightarrow{\mathbf{x}(t)} \underbrace{\sum}_{t=T} \frac{1}{2T} \int_{t-T}^{t+T} x(u-t_0) du$$

time-invariant: equal by a change of variable!

Eigenfunction

Impulse response

Series and parallel

Feedback system

Exercises

On systems

Understanding the linearity and time-invariant properties of a continuous or discrete-time system is a fundamental process.

Take particular care in understanding how to correctly identify the presence of time-invariance, as this is one of the key aspects of this course

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 07

Systems: LTI systems as convolution systems, properties of convolution

Tomaso Erseghe

7.1 LTI systems as convolution systems

In continuous and discrete-time

Convolution

Graphical interpretation of convolution

LTI discrete-time system

As a convolution

x(n) by sifting property $\sum \quad \underline{y(n)} = \Sigma \left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k) \right]$ x(n)by linearity LTI system $= \sum_{k=1}^{\infty} x(k) \Sigma \left[\delta(n-k) \right]$ $k = -\infty$ by time $= \sum_{k=-\infty}^{\infty} x(k) g(n-k)$ discrete-time convolution impulse response

LTI continuous-time system

As a convolution x(t) by sifting property $\sum \quad y(t) = \Sigma \left[\int_{-\infty}^{\infty} x(u) \delta(t-u) \, du \right]$ LTI system by linearity $= \int_{-\infty}^{\infty} x(u) \Sigma[\delta(t-u)] \, du$ $=\int_{-\infty}^{\infty} x(u)g(t-u)\,du$ continuous-time convolution impulse response

LTI is convolution

LTI systems are also called filters

$$x(n) \quad g(n) \quad y(n) = \sum_{k=-\infty}^{\infty} x(k)g(n-k)$$
LTI system/filter
$$x(t) \quad g(t) \quad y(t) = \int_{-\infty}^{\infty} x(u)g(t-u) \, du$$
LTI system/filter

an LTI system is uniquely identified by its impulse response

Convolution z = x * y

As a standalone operator

$$x(t)$$

$$y(t)$$

$$x$$

$$z(t) = x * y(t)$$

$$= \int_{-\infty}^{\infty} x(u)y(t-u)du$$
time-reversed
and time-shifted
$$y_{-}(u-t) \text{ or } y_{-}(k-n)$$

$$x(n)$$

Visualizing convolution

From www.wikipedia.org

Exercises

On convolution

Understanding the **convolution** operator is a fundamental requirement of this course. You need to fully appreciate the graphical interpretation (time-reversal and time-shift) in both continuous and discrete-time.

Another fundamental point is to **recognize** when an integral or series expression is a **convolution**, as this could be useful in managing equations more easily.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 07

Systems: LTI systems as convolution systems, properties of convolution

Tomaso Erseghe

7.4 Properties of convolution

In continuous and discrete-time

- Commutativity, associativity, linearity (distributivity)
- Identity element
- Extension
- Area
- Time-shifts

Properties of convolution

In both continuous and discrete-time

commutativity x * y = y * x**associativity** x * y * z = (y * x) * z= x * (y * z)x * y * z = z * x * y = y * z * x **linearity** (x + y) * z = x * z + y * z $X^{*}(Y + Z) = X^{*}Y + X^{*}Z$ identity $x * \delta = x$ area $A_{x^*y} = A_x A_y$

Commutativity $x * y(t) = \int_{-\infty}^{\infty} x(u)y(t-u) du$ $= \int_{-\infty}^{\infty} x(t-v)y(v) dv = y * x(t)$ m = n-k $x * y(n) = \sum_{k=0}^{\infty} x(k)y(n-k)$

$$x * y(n) = \sum_{k=-\infty}^{\infty} x(k)y(n - k)$$
$$= \sum_{m=-\infty}^{\infty} x(n - m)y(m) = y * x(n)$$

choose the order you want!

Identity

even symmetric

$$x * \delta(t) = \int_{-\infty}^{\infty} x(u)\delta(t-u) \, du$$
$$= \int_{-\infty}^{\infty} x(u)\delta(u-t) \, du = x(t)$$
even symmetric
$$x * \delta(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$
$$= \sum_{k=-\infty}^{\infty} x(k)\delta(k-n) = x(n)$$

Time shift property

$$\delta_{t_0}(t) = \delta(t - t_0)$$
$$s(t - t_0) = s * \delta_{t_0}(t) = \int_{-\infty}^{\infty} \delta(u - t_0) s(t - u) du$$

$$s(n - n_0) = s * \delta_{n_0}(n) = \sum_{k = -\infty}^{\infty} \delta(k - n_0) s(n - k)$$
$$\delta_{n_0}(t) = \delta(n - n_0)$$

 $\begin{array}{l} -\text{composition of time-shifts} \\ x_{t_0} \ast y_{t_1}(t) = x \ast \delta_{t_0} \ast y \ast \delta_{t_1}(t) \\ = x \ast y \ast \delta_{t_0} \ast \delta_{t_1}(t) \\ = x \ast y \ast \delta_{t_0+t_1}(t) \\ = x \ast y(t - (t_0 + t_1)) \end{array}$

Exercises

On systems

Understanding the linearity and time-shift properties of a continuous or discrete-time convolution is a fundamental process that will ease the calculation in many cases.

Use the extension and area properties for checking the correctness of your results.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 08

Systems: Circular convolution, Filters

Tomaso Erseghe

8.1 Circular convolution

In continuous and discrete-time

Definition

Properties

Interpretation through periodic repetition

One periodic signal

In the convolution

Two periodic signals

In the convolution

Circular convolution

$$x *_{\operatorname{cir}} y(t) = \int_{t_0}^{t_0 + T_p} x(u) y(t - u) \, du$$
periodic T_p

$$x = \frac{1}{2} N - \frac{1}{2}$$

$$x *_{\operatorname{cir}} y(n) = \sum_{k=n_0}^{n_0+N-1} x(k)y(n-k)$$
periodic N

Properties

In both continuous and discrete-time

commutativity x * y = y * xassociativity x * y * z = z * x * y = y * z * xlinearity (x + y) * z = x * z + y * z x * (y + z) = x * y + x * zarea $A_{x*y} = A_x A_y$ identity x * comb = xtime shift $x * \text{comb}_{t_0/n_0} = x_{t_0/n_0}$

Interpreting circular conv.

Proof – part 1

$$\begin{aligned} x * y(t) &= \int_{0}^{T_{p}} y(t-u) x(u) \ du \\ &= \int_{0}^{T_{p}} y(t-u) \sum_{k=-\infty}^{\infty} x_{0}(u-kT_{p}) \ du \\ &= \sum_{k=-\infty}^{\infty} \int_{0}^{T_{p}} x_{0}(u-kT_{p}) y(t-u) \ du \\ &= \sum_{\substack{k=-\infty}}^{\infty} \int_{-kT_{p}}^{-(k-1)T_{p}} x_{0}(v) \underbrace{y(t-v-kT_{p})}_{y(t-v)} \ dv \\ &= \underbrace{\sum_{\substack{k=-\infty}}^{\infty} \int_{-kT_{p}}^{-\infty} x_{0}(v) \underbrace{y(t-v-kT_{p})}_{y(t-v)} \ dv \\ &= \underbrace{\sum_{\substack{k=-\infty}}^{\infty} \int_{-2T_{p}}^{\infty} \frac{1}{T_{p}} \underbrace{z_{1}}_{y} \underbrace{z_{1}}_{$$

Proof – part 2

$$\begin{aligned} x * y(t) &= \int_{-\infty}^{\infty} x_0(v) y(t-v) \, dv \\ &= \int_{-\infty}^{\infty} x_0(v) \sum_{n=-\infty}^{\infty} y_0(t-v-nT_p) \, dv \\ &= \sum_{n=-\infty}^{\infty} \underbrace{\int_{-\infty}^{\infty} x_0(v) y_0(t-v-nT_p) \, dv}_{x_0 * y_0(t-nT_p)} \end{aligned}$$

with a perfectly equivalent proof also in discrete-time

Exercises

On the circular convolution

Understanding the **circular convolution** operator is a fundamental requirement of this course. You need to fully appreciate the interpretation through periodic repetition to be able to evaluate it correctly.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 08

Systems: Circular convolution, Filters

Tomaso Erseghe

8.4 Filters

In continuous and discrete-time

- Properties by the impulse response
- Eigenfunctions

Filters (LTI systems)

an LTI system is uniquely identified by its impulse response

Series and parallel

Properties

In both continuous and discrete-time

linearity

time invariance

realityreal-valued gcausalitycausal gBIBO stabilityabsolutely summable
or integrable g

$$L_g < \infty$$

$$L_g = \begin{cases} \int_{-\infty}^{\infty} |g(t)| \, dt &, \text{ continuous-time} \\ \sum_{n=-\infty}^{\infty} |g(n)| &, \text{ discrete-time} \end{cases}$$

BIBO stability – part 1 If $L_g < \infty$ then filter is BIBO stable

$$egin{aligned} y(t)| &= \left|\int_{-\infty}^{\infty} x(u)g(t-u)\,du
ight| \ &\leq \int_{-\infty}^{\infty} |x(u)|\cdot|g(t-u)|\,du \ &< \int_{-\infty}^{\infty} L_x\cdot|g(t-u)|\,du \ &= \int_{-\infty}^{\infty} L_x\cdot|g(v)|\,dv \ &= L_x\cdot L_g \end{aligned}$$

BIBO stability – part 2 If filter is BIBO stable then $L_q < \infty$

Iet L_q=∞ by absurd

2. choose a bounded input $|\mathbf{x}(t)|=1$ $x(t) = e^{-j\varphi(-t)}$, $g(t) = |g(t)| e^{j\varphi(t)}$

3. check that the output diverges at t=0 $y(0) = \int_{-\infty}^{\infty} x(u)g(0-u) \, du$ $= \int_{-\infty}^{\infty} e^{-j\varphi(-t)} \cdot |g(-u)| \, e^{j\varphi(-u)} \, du$ $= \int_{-\infty}^{\infty} |g(-u)| \, du = \int_{-\infty}^{\infty} |g(v)| \, dv = L_g$

Eigenfunctions

continuous-time

$$x(t) = e^{j\omega_0 t}$$

$$g(t)$$

$$y(t) = \lambda x(t)$$
eigenfunction
$$g(t)$$

$$y(t) = \int_{-\infty}^{\infty} g(u)x(t-u)du$$

$$= \int_{-\infty}^{\infty} g(u)e^{j\omega_0(t-u)}du$$
eigenvalue
$$= e^{j\omega_0 t}$$

$$\int_{-\infty}^{\infty} g(u)e^{-j\omega_0 u}du$$

$$\lambda = G(j\omega_0)$$

$$|G(j\omega_0)| \leq \int_{-\infty}^{\infty} |g(u)|du$$

discrete-time

$$x(n) = e^{j\varphi_0 n}$$
eigenfunction
$$g(n)$$

$$y(n) = \sum_{k=-\infty}^{\infty} g(k)x(n-k)$$

$$= \sum_{k=-\infty}^{\infty} g(k)e^{j\varphi_0(n-k)}$$
eigenvalue
$$= e^{j\varphi_0 n} \sum_{k=-\infty}^{\infty} g(k)e^{-j\varphi_0 k}$$

$$\lambda = G(e^{j\varphi_0})$$
Converge
for BIBO
stable filters
$$|G(e^{j\varphi_0})| \leq \sum_{k=-\infty}^{\infty} |g(k)|$$

Exercises

On filters

Identifying the **impulse response** and deriving the main properties from its expressions is a fundamental process that helps in investigating LTI systems.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 9

Introduction to MatLab

Tomaso Erseghe

9.1 MatLab

An introduction

- Install MatLab
- The four MatLab windows
- Variables and functions in MatLab
- Saving and loading data

MatLab

MATrix LABoratory by MathWorks

MATLAB "is a numerical computer environment which allows matrix manipulations, plotting of functions and data, implementation of algorithms" [wiki]

MatLab free unipd license

https://asit.unipd.it/servizi/contratti-software-licenze/matlab

Home > Servizi > Contratti Software e Licenze > MATLAB

Contratti Software e Licenze

Aule Informatiche	MATLAB Software Download - Students, Faculty, and Staff	
Account e Accessi		
App IO	Students, faculty, and staff may download an individual stand-alone copy of the software from the $MATLAB$	
Applicazioni via Terminal Server	Portal: https://www.mathworks.com/academia/tah-portal/universita-degl studi-di-padova-31194939.html	
Assistenza tecnica ASIT	Helpful links:	
Business analysis	How to Install and activate MATLAB on my personal computer?	
Consulenza	Need installation help? Contact MathWorks Installation Support	
Contratti Software Licenze	How I update the license after the Campus-Wide License has been renewed?	

Vectors and matrices

	Command Window
Row vector Separated by commas	>> v = [1, 2, 3] v =
	1 2 3
Column vector	>> w = [4; 5; 6]
semicolons	w =
301110010113	4 5 6
Matrix	>> M = [1,2,3;4,5,6;7,8,9]
Rows separated by semicolons,	M =
elements in a row separated by commas	1 2 3 4 5 6 7 8 9
	<i>fx</i> >>

Simple operations

Complex numbers

	Command Window
Imaginary	>> 1i
unit	ans =
	0.0000 + 1.0000i
Vector →	>> v = [1+1i*2, 3-1i*4]
valued	v =
	1.0000 + 2.0000i 3.0000 - 4.0000i
Hermitian →	>> v'
Applies complex conjugation and	ans =
transpose	1.0000 - 2.0000i 3.0000 + 4.0000i
Transpose →	>> v.'
uses .'	ans =
	1.0000 + 2.0000i 3.0000 - 4.0000i fx

Useful tips

operator	description
.*	elementwise multiplication
*	matrix multiplication
+	matrix sum
./	elementwise division
.^	elementwise power
٨	matrix (squared) power
ŕ	Hermitian transform
,	transpose
zeros(N)	N x N zero matrix
zeros(N,M)	N x M zero matrix
eye(N)	N x N identity matrix
rand(N,M)	N x M matrix with random entries

Exercises

On MatLab intro

We could spend an entire day introducing MatLab, but there is plenty of available resources out there!

If you are linked to your university's Campus-Wide License, you are automatically enrolled and can get started at https://matlabacademy.mathworks.com/

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 9

Introduction to MatLab

Tomaso Erseghe

9.2 Plots in MatLab

An introduction

- Drawing a figure
- Controlling the figure layout
- Multiple plots

Plotting a signal

A starting example

Plotting a signal

Multiple plots

Same window

Figure 1

File Edi Viev Inse Tool Deskte Windc He

Multiple plots

Same window – an alternative

Multiple plots

 /Users/tomasoerseghe/Work/Cor
n × +
close all
clear all
clc
t = 0:0.01:3:
c = cin(2yniyt)
$S = SII(2 + p \pm \tau)$
C = COS(2*p1*t);
figure
<pre>subplot(2,1,1)</pre>
plot(t,s)
grid on
<pre>xlabel('time [s]')</pre>
ylabel('signal')
<pre>title('Sine')</pre>
<pre>subplot(2,1,2)</pre>
plot(t.c)
arid on
vlabel('time [cl')
xlabel(laignel)
ytabet('signat')
<pre>title('Cosine')</pre>

Defining a function

entrywise division is needed here!

Choosing the sampling rate

Discrete-time signals

Exercises

On MatLab plots

Signal plots is a fundamental step that allows you to correctly represent your data.

Practice yourself with plots, multiple plots, and the representation of **complex signals** through their real and imaginary parts, or through absolute value and phase.

Pay particular attention in correctly defining the **sampling rate/spacing** when representing continuous-time signals

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 10

Fourier series: definition and properties

Tomaso Erseghe

10.1 The Fourier series

for continuous-time periodic signals

- Orthogonal projections in a signal space
- The Fourier series
- Convergence properties
- Useful Fourier pairs

Unveiling filters

A general idea in continuous-time

Complex exponentials

Periodic of period T_p

Main issue

Extracting the signals components

signal components

Can be extracted using standard rules on vectors, appropriately rewritten for the periodic signal space

Orthogonal base decomposition

The orthogonal basis

$$b_k(t) = e^{j\omega_0 kt}$$
 $\omega_0 = \frac{2\pi}{T_p}$

Orthogonality properties

$$\langle b_i(t), b_\ell(t) \rangle = \int_{t_0}^{t_0 + T_p} \underbrace{e^{j\omega_0 i t} e^{-j\omega_0 \ell t}}_{e^{j\omega_0 (i-\ell)t}} dt$$

$$= \begin{cases} T_p & i = \ell \\ 0 & i \neq \ell \end{cases} \text{ energy} \\ \text{orthogonality} \end{cases}$$

Invertibility conditions

From S_k to s(t) and viceversa

absolutely integrable + finite number of finite discontinuities + finite number of max and min (in a period)	Dirichlet
finite energy (in a period)	Riesz-Fisher
finite number of delta functions (in a period)	Dirac

plus any linear combinations of the above

Weak convergence

in norm - converges almost everywhere

Useful pairs	time domain	Fourier domain	ו
constant	1	$\delta(k)$	delta
delta dual pair	$\operatorname{rep}_{T_p} \delta(t)$	$rac{1}{T_p}$	constant
	$\operatorname{rep}_{T_p}\operatorname{rect}(rac{t}{dT_p})$	$d \operatorname{sinc}(kd)$	sinc
sinc dual pai	$N \operatorname{sinc}_N(rac{Nt}{T_p})$ r $N = 1 + 2M$	$\operatorname{rect}(\frac{k}{N})$	
exponential	$e^{jm\omega_0 t}$	$\delta(k-m)$	delta
delta dual pai	$\mathrm{rep}_{T_p}\delta(t-t_1)$ r	$rac{1}{T_p}e^{-jk\omega_0t_1}$	exponential
sinusoid	$\cos(n\omega_0 t + \varphi_0)$	$rac{1}{2}e^{jarphi_0}\delta(k-n)$	$+ rac{1}{2} e^{-j arphi_0} \delta(k+n)$

The periodic sinc

Exercises

On the Fourier series

Extracting the **coefficients of the Fourier series** or evaluating the signal shape through its **Fourier series** expression is a fundamental requirement of this course. You need to fully memorize the forward/backward rule and take particular care in evaluating integrals and/or series correctly.

You also need to memorize the fundamental Fourier pairs , as these are relevant in what follows.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 10

Fourier series: definition and properties

Tomaso Erseghe

10.4 Properties

Of the Fourier series

- Time-reversal, conjugation, and symmetries
- Linearity, time-shift, modulation, convolution, product, and derivative
- Mean value and power
- The minimum period issue (de-periodization)

Symmetries

time domain	Fourier domain
time-reversal $x(-t)$	X_{-k}
conjugation $x^*(t)$	X^*_{-k}
symmetries x(t) = x(-t)	$\begin{array}{c} \textbf{even} \\ X_k = X_{-k} \end{array}$
$\frac{\mathbf{odd}}{\mathbf{x}(t) = -\mathbf{x}(-t)}$	$\begin{array}{c} \textbf{odd} \\ X_k = -X_{-k} \end{array}$
$\begin{array}{l} \textbf{real} \\ \textbf{x}(t) = \textbf{x}^{*}(t) \end{array}$	$\begin{array}{l} \textbf{Hermitian} \\ X_k = X^*_{-k} \end{array}$
real + even x(t) = x*(t) = x(-t)	$\begin{array}{l} \text{real} + \text{even} \\ X_k = X^*_{-k} = X_{-k} \end{array}$
real + odd $x(t) = x^{*}(t) = -x(-t)$	imaginary + odd $X_k = X_{-k}^* = -X_{-k}$

Time-reversal + conjugation

$$\frac{1}{T_p} \int_{t_0}^{t_0+T_p} x(-t) e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T_p} \int_{-t_0-T_p}^{-t_0} x(u) e^{-j(-k)\omega_0 u} du \quad = X_{-k}$$

$$\bigcup_{u = -t} = -t$$

$$\overline{T_p} \int_{t_0} x^*(t) e^{-j\kappa\omega_0 t} dt$$
$$= \left(\frac{1}{T_p} \int_{t_0}^{t_0+T_p} x(t) e^{jk\omega_0 t} dt\right)^* = X^*_{-k}$$
$$k = -(-k)$$

Properties

	time domain	Fourier domain
linearity	$\alpha x(t) + \beta y(t)$	$\alpha X_k + \beta Y_k$
time-shift modulation dual pair	$egin{aligned} x(t-t_1)\ x(t)e^{jm\omega_0t} \end{aligned}$	$X_k e^{-jk\omega_0 t_1} \ X_{k-m}$
convolution	$x *_{\operatorname{cir}} y(t)$	$T_p X_k Y_k$
product dual pair	x(t)y(t)	$X_k * Y_k$
derivative	$\frac{dx(t)}{dt}$	$X_k\cdot jk\omega_0$
mean value	m_x =	$=X_0$
power Parseval'	s theorem P_x =	$= E_X$

Mean + Power

$$X_0 = \frac{1}{T_p} \int_{t_0}^{t_0 + T_p} x(t) dt = m_x$$

$$P_{x} = \operatorname{power} \left[\sum_{k=-\infty}^{\infty} X_{k} e^{jk\omega_{0}t} \right] = \sum_{k=-\infty}^{\infty} |X_{k}|^{2}$$

$$\stackrel{\uparrow}{\underset{\text{Lecture 2}}{\overset{\text{see exercises}}{\overset{\text{see exercises}}{\overset{\text{Lecture 2}}{\overset{\text{see exercises}}{\overset{\text{see exercises}}{\overset{\text{secture 2}}{\overset{\text{see exercises}}{\overset{\text{see exercise}}{\overset{\text{see exercise}}{\overset{see exercise}}{\overset{$$

Time-shift + modulation

Convolution + product

$$\frac{1}{T_p} \int_{t_0}^{t_0+T_p} \left(\int_{t_0}^{t_0+T_p} x(t-u)y(u)du \right) e^{-jk\omega_0 t} dt \\
= \int_{t_0}^{t_0+T_p} y(u) \left(\frac{1}{T_p} \int_{t_0}^{t_0+T_p} x(t-u)e^{-jk\omega_0 t} dt \right) du \\
= \int_{t_0}^{t_0+T_p} y(u)X_k e^{-jk\omega_0 u} du = T_p X_k Y_k$$

$$\frac{1}{T_p} \int_{t_0}^{t_0+T_p} x(t)y(t)e^{-jk\omega_0 t} dt \\
= \frac{1}{T_p} \int_{t_0}^{t_0+T_p} \left(\sum_{k=1}^{\infty} X_m e^{jm\omega_0 t} \right) y(t)e^{-jk\omega_0 t} dt$$

$$= \frac{1}{T_p} \int_{t_0}^{t_0+T_p} \left(\sum_{m=-\infty}^{\infty} X_m e^{jm\omega_0 t} \right) y(t) e^{-jk\omega_0 t} dt$$
$$= \sum_{m=-\infty}^{\infty} X_m \left(\frac{1}{T_p} \int_{t_0}^{t_0+T_p} e^{-j(k-m)\omega_0 t} y(t) dt \right)$$
$$Y_{k-m}$$

Derivative

Inversion rule

$$\begin{array}{c|c} x(t) \\ \hline X_k \end{array} \begin{array}{c} \text{derivati} \\ \text{ve} \end{array} \begin{array}{c} y(t) = x'(t) \\ \hline Y_k = jk\omega_0 X_k \end{array}$$

the value at k=0 is lost since $Y_0=0$, the others are multiplied by a known factor

$$X_{k} = \begin{cases} \frac{Y_{k}}{jk\omega_{0}} & , \ k \neq 0 \\ \hline m_{x} & , \ k = 0 \\ \hline \end{array}$$

Incorrect period case

De-periodization in the time domain

Exercises

On the properties of the Fourier series

By correctly exploiting the **properties of the Fourier series** we can ease the calculation for a large variety of signals, but we first need to properly familiarize with their use.

Remember to always give a graphical representation to your signals, as this might very often become useful in correctly interpreting them.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 11

Convolution and Fourier series in MatLab

Tomaso Erseghe

11.1 Convolution in MatLab

An overview

Approximate convolution in continuous-time

Discrete-time convolution

For limited-time signals

$$x(n) \underbrace{g(n)}_{\text{LTI system/filter}} \underbrace{y(n)}_{k=-\infty} = \sum_{k=-\infty}^{\infty} x(k)g(n-k)$$

$$\lim_{\substack{k=-\infty \\ \text{Limited only if limited signals \\ e(x^*g) = [n_x+n_g, N_x+N_g]}$$

$$x(k) \underbrace{f(k)}_{n_x} \underbrace{f(k)}_{N_x} \underbrace{g(k)}_{n_g} \underbrace{f(k)}_{n_g} \underbrace{f($$

MatLab conv function

MatLab conv function

cut the result in case nonzero outside

MatLab conv function

'valid' = keeps an even smaller part

times $\mathbf{n}_y = \mathbf{n}_x + \mathbf{N}_g : \mathbf{N}_x + \mathbf{n}_g$

Continuous-time convolution

An approximation

Exercises

On the convolution in MatLab

Get acquainted with MatLab convolution operator **conv** and remind that when approximating a continuous-time convolution you will need to multiply by the sampling spacing T, to have **T*conv(x,g)**

Remember that the output of the convolution is not always valuable everywhere, e.g., in case signals are not zero outside the interval where samples are given

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 11

Convolution and Fourier series in MatLab

Tomaso Erseghe

11.4 Fourier series in MatLab

Some insights

The Gibbs phenomenon

Approximating the coefficients via numerical integration

Square wave

And the Gibbs phenomenon

$$s_N(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$$
, $\omega_0 = \frac{2\pi}{T_p}$, $a_k = d \operatorname{sinc}(kd)$

Triangular wave

And the absence of Gibbs phenomenon

$$s_N(t) = \sum_{k=-N}^N a_k e^{jk\omega_0 t}$$
, $\omega_0 = \frac{2\pi}{T_p}$, $a_k = d \operatorname{sinc}^2(kd)$

truncated Fourier series

Square wave

Numerically evaluated coefficients

$$a_{k} = \frac{1}{T_{p}} \int_{0}^{T_{p}} s(t) e^{-jk\omega_{0}t} dt \simeq b_{k} = \frac{1}{T_{p}} \cdot T \sum_{n=0}^{M-1} s(nT) e^{-jk\omega_{0}nT}$$
$$T = T_{p}/M$$

approximated coefficients

Generic wave

Numerically evaluated coefficients

$$a_{k} = \frac{1}{T_{p}} \int_{0}^{T_{p}} s(t) e^{-jk\omega_{0}t} dt \simeq b_{k} = \frac{1}{T_{p}} \cdot T \sum_{n=0}^{M-1} s(nT) e^{-jk\omega_{0}nT}$$
$$T = T_{p}/M$$

approximated coefficients

Exercises

On Fourier series

Observe the outcome of truncated Fourier series, and appreciate the presence of the Gibbs' phenomenon at discontinuities.

Practice yourself with **numerically evaluated** Fourier coefficients, to be able to represent any periodic signal through its (truncated) Fourier series

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 12

Discrete Fourier transform: definition and properties

Tomaso Erseghe

12.1 The discrete Fourier transform

for discrete-time periodic signals

- Orthogonal projections in a signal space
- The discrete Fourier transform
- The fast Fourier transform
- Useful Fourier pairs and symmetry rule

Unveiling filters

A general idea in discrete-time

eigenfunction

$$x(n) = e^{j\varphi_0 n}$$
 $g(n)$
 $y(n) = \lambda x(n)$
eigenvalue
 $\lambda = G(e^{j\varphi_0}) = \sum_{k=-\infty}^{\infty} g(k)e^{-j\varphi_0 k}$

- By linearity we have

$$x(n) = \sum_{k} A_k \cdot e^{j\varphi_k n}$$
 sign composition that
$$y(n) = \sum_{k} [A_k G(e^{j\varphi_k})] \cdot e^{j\varphi_k n}$$

We focus on **periodic** signals and linear complex exponentials that are periodic N $\varphi_k = k 2\pi/N$

DFT as a matrix product

Invertibility between S_k and s(n)

The FFT

Fast Fourier transform

- The DFT matrix multiplication has complexity N²
- By exploiting the symmetries of F we can devise an algorithm of complexity N log₂N called FFT
- For N=1000 we have N²=10⁶
 and N log₂N=10⁴
 ... 100 times faster
- FFT is among the Top 10 Algorithms of the 20th century

https://en.wikipedia.org/wiki/Fast_Fourier_transform

Useful pairs	time domain	Fourier domain	
constant	1	$\mathrm{rep}_N \delta(k)$	delta
delta dual pair	$\mathrm{rep}_N \delta(n)$	$rac{1}{N}$	constant
	$\operatorname{rep}_N \operatorname{rect}(\frac{n}{M})$	$rac{M}{N}\operatorname{sinc}_M(rac{M}{N}k)$	sinc
dual pair	$M \operatorname{sinc}_M(rac{M}{N}n)$ $M = 1 + 2K$	$\operatorname{rep}_N\operatorname{rect}(rac{k}{M})$	
exponential	$e^{jmrac{2\pi}{N}n}$	$\mathrm{rep}_N \delta(k-m)$	delta
delta dual pair	$\mathrm{rep}_N \delta(n-m)$	$\frac{1}{N}e^{-k\frac{2\pi}{N}m}$	exponential
sinusoid	$\cos(mrac{2\pi}{N}n+arphi_0)$	$\frac{1}{2}e^{jarphi_0}\mathrm{comb}_N(k-m)$ ·	$+ \frac{1}{2}e^{-jarphi_0} \mathrm{comb}_N(k+m)$

DFT symmetry rule

One transform, two couples

An example

$$s(n) = 1$$

$$S_k = \operatorname{rep}_N \delta(k)$$

$$x(n) = S_n = \operatorname{rep}_N \delta(n)$$

$$X_k = \frac{1}{N} s(-k) = \frac{1}{N}$$

Exercises

On the DFT

Extracting the **coefficients of the DFT** or evaluating the signal shape through its **DFT series** expression is a fundamental requirement of this course. You need to fully memorize the forward/backward rule and take particular care in evaluating series correctly.

You also need to memorize the <mark>fundamental Fourier pairs , as these are relevant in what follows.</mark>

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 12

Discrete Fourier transform: definition and properties

Tomaso Erseghe

12.4 Properties

Of the DFT

- Time-reversal, conjugation, and symmetries
- Linearity, time-shift, modulation, convolution, product, and increment
- Mean value and power
- Minimum period issue

Symmetries

time domain	Fourier domain
time-reversal $x(-n)$	X_{-k}
conjugation $x^*(n)$	X^*_{-k}
symmetries x(n) = x(-n)	$even \\ X_k = X_{-k}$
odd x(n) = -x(-n)	$\begin{array}{c} \textbf{odd} \\ X_k = -X_{-k} \end{array}$
real x(n) = x*(n)	$\begin{array}{l} \textbf{Hermitian} \\ X_k = X^*_{-k} \end{array}$
real + even x(n) = x*(n) = x(-n)	$\begin{array}{l} \text{real} + \text{even} \\ X_k = X^*_{-k} = X_{-k} \end{array}$
real + odd $x(n) = x^*(n) = -x(-n)$	imaginary + odd $X_k = X_{-k}^* = -X_{-k}$

Time-reversal + conjugation

$$\frac{1}{N} \sum_{n=0}^{N-1} x(-n) e^{-jk \frac{2\pi}{N}n} = \frac{1}{N} \sum_{m=-N+1}^{0} x(m) e^{-j(-k) \frac{2\pi}{N}m} = X_{-k}$$

$$\frac{1}{N} \sum_{n=0}^{N-1} x^*(n) e^{-jk\frac{2\pi}{N}n} \\ = \left(\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j(-k)\frac{2\pi}{N}n}\right)^* = X_{-k}^*$$

Properties

	time domain	Fourier domain
linearity	$\alpha x(n) + \beta y(n)$	$\alpha X_k + \beta Y_k$
time-shift modulation dual pair	$x(n-n_1) \ x(n)e^{jmrac{2\pi}{N}n}$	$X_k e^{-jkrac{2\pi}{N}n_1} X_{k-m}$
convolution product dual pair	$egin{array}{l} x*_{ ext{cir}}y(n)\ x(n)y(n) \end{array}$	NX_kY_k $X *_{\rm circ} Y_k$
increment	x(n) - x(n-1)	$X_k \cdot (1 - e^{-jkrac{2\pi}{N}})$
mean value	m_x =	$= X_0$
power Parseval's theorem	$P_x =$	$= E_X(N)$

Mean + Power

$$X_0 = \frac{1}{N} \sum_{n=0}^{N-1} x(n) = m_x$$

$$P_{x} = \operatorname{power}\left\{\sum_{k=0}^{N-1} X_{k} e^{jk\frac{2\pi}{N}n}\right\} = \sum_{k=0}^{N-1} |X_{k}|^{2}$$

$$\stackrel{\uparrow}{\underset{\text{Lecture 3}}{}}$$

Increment

$$x(n)$$
increme nt
$$y(n) = x(n) - x(n-1)$$

$$Y_k = X_k \cdot (1 - e^{-jk\frac{2\pi}{N}})$$

the value at k=0 (mod N) is lost since $Y_0=0$, the others are multiplied by a known factor

Inversion rule

$$X_k = \begin{cases} \frac{Y_k}{1 - e^{-jk\frac{2\pi}{N}}} &, k \neq 0 \pmod{N} \\ m_x &, k = 0 \pmod{N} \end{cases}$$

Incorrect period case

De-periodization in the time domain

Exercises

On the properties of the DFT

By correctly exploiting the **properties of the DFT** we can ease the calculation for a large variety of signals, but we first need to properly familiarize with their use.

Please be aware that DFT pairs are in general more cumbersome to deal with, and that only **simple cases** will be considered at the exam.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 13

Fourier transform: definition and properties

Tomaso Erseghe

13.1 The Fourier transform

for continuous-time aperiodic signals

- The Fourier transform
- Convergence properties
- Useful Fourier pairs
- Symmetry rule and scale property

Defining a Fourier transform

From periodic to aperiodic $1/T_p$ $s(t) = \frac{\omega_0}{2\pi} \sum_{k=-\infty}^{\infty} \tilde{S}(jk\omega_0) e^{jk\omega_0 t} \quad \tilde{S}(jk\omega_0) = \int_{-\frac{1}{2}T_p}^{\frac{1}{2}T_p} s(t) e^{-jk\omega_0 t} dt$ $\omega_0 \rightarrow 0$ $T_p \rightarrow \infty$ $\begin{array}{c} T_{p} \rightarrow \infty \\ \omega_{0} \rightarrow 0 \end{array}$ $s(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\omega) e^{j\omega t} d\omega \qquad S(j\omega) = \int_{-\infty}^{\infty} s(t) e^{-j\omega t} dt$

Invertibility conditions

From $S(\omega)$ to s(t) and viceversa

plus any linear combinations of the above

Convergence in norm – converges almost everywhere

Useful pairs	time domain	Fourier domain	
constant	1	$2\pi\delta(\omega)$	delta
delta dual pair	$\delta(t)$	1	constant
	$\operatorname{rect}(t)$	$\operatorname{sinc}(\frac{\omega}{2\pi})$	sinc
dual pair	$\operatorname{sinc}(t)$	$\operatorname{rect}(\frac{\omega}{2\pi})$	
exponential	$e^{j\omega_1 t}$	$2\pi\delta(\omega-\omega_1$) delta
delta dual pair	$\delta(t-t_1)$	$e^{-j\omega t_1}$	exponential
sinusoid	$\cos(\omega_1 t + \varphi_1)$	$\pi e^{j\varphi_1} \delta(\omega - \omega_1)$	$(1+\pi e^{-j\varphi_1} \delta(\omega+\omega_1))$

More pairs	time domain	Fourier domain	
triangle squared sinc dual pair	$\frac{\text{triang}(t)}{\text{sinc}^2(t)}$	$\operatorname{sinc}^2(\frac{\omega}{2\pi})$ triang $(\frac{\omega}{2\pi})$	squared sinc triangle
sign hyperbola dual pair	$rac{\mathrm{sgn}(t)}{rac{j}{\pi t}}$	$rac{-2j}{\omega} \ \mathrm{sgn}(\omega)$	hyperbola sign
unit step dual pair	$\frac{1(t)}{\frac{j}{2\pi t} + \frac{1}{2}\delta(t)}$	$\frac{-j}{\omega} + \pi \delta(\omega)$ $1(\omega)$	unit step

Symmetry rule

One transform, two couples

An example $s(t) = \operatorname{rect}(t)$ $x(t) = S(jt) = \operatorname{sinc}(\frac{t}{2\pi})$ $S(j\omega) = \operatorname{sinc}(\frac{\omega}{2\pi})$ $X(j\omega) = 2\pi s(-\omega)$ $= 2\pi \operatorname{rect}(\omega)$

Scale property

inverse scale in the pulsation domain

Proof

$$\int_{-\infty}^{\infty} x(t/a) e^{-j\omega t} dt = a \int_{-\infty}^{\infty} x(u) e^{-j\omega a u} du$$

An example

$$x(t) = \operatorname{sinc}(\frac{t}{2\pi})$$

$$x(t) = 2\pi \operatorname{rect}(\omega)$$

$$a = \frac{1}{2\pi}$$

$$y(t) = x(t/a) = \operatorname{sinc}(t)$$

$$Y(j\omega) = a X(j\omega)$$

$$= \operatorname{rect}(\frac{\omega}{2\pi})$$

Exercises

On the Fourier transform

Deriving the **Fourier transform** or evaluating the signal shape through the **inverse Fourier transform** is a fundamental requirement of this course. You need to fully memorize the forward/backward rule and take particular care in evaluating integrals correctly.

You also need to memorize the fundamental Fourier pairs , as these are relevant in what follows.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 13

Fourier transform: definition and properties

Tomaso Erseghe

13.4 Properties

Of the Fourier transform

- Time-reversal, conjugation, and symmetries
- Linearity, time-shift, modulation, convolution, product, derivative, product by t, integration
- Mean value and power

Symmetries

	time domain	Fourier domain
time-reversal	x(-t)	$X(-j\omega)$
conjugation	$x^*(t)$	$X^*(-j\omega)$
symmetries	even x(t) = x(-t)	<mark>even</mark> X(jω) = X(-jω)
	$\frac{\text{odd}}{x(t) = -x(-t)}$	<mark>odd</mark> X(jω) = -X(-jω)
	$\begin{array}{l} \textbf{real} \\ \textbf{x}(t) = \textbf{x}^{*}(t) \end{array}$	Hermitian $X(j\omega) = X^*(-j\omega)$
×(t)	real + even = x*(t) = x(-t)	real + even X(j ω) = X*(-j ω) = X(-j ω)
x(t) :	real + odd = x*(t) = -x(-t)	imaginary + odd X(j ω) = X*(-j ω) = -X(-j ω)

Time-reversal + conjugation

$$\int_{-\infty}^{\infty} x(-t)e^{-j\omega t} dt = \int_{-\infty}^{\infty} x(u)e^{j\omega u} du$$
$$u = -t$$
$$= X(-j\omega)$$

$$\int_{-\infty}^{\infty} x^*(t) e^{-j\omega t} dt = \left(\int_{-\infty}^{\infty} x(t) e^{j\omega t} dt \right)^*$$
$$= X^*(-j\omega)$$

Properties

	time domain	Fourier domain
linearity	$\alpha x(t) + \beta y(t)$	$lpha X(j\omega) + eta Y(j\omega)$
time-shift	$x(t-t_0)$	$X(j\omega)e^{-j\omega t_0}$
modulation dual pair	$x(t)e^{j\omega_0 t}$	$X(j\omega - j\omega_0)$
convolution product	$egin{array}{l} x*y(t)\ x(t)y(t) \end{array}$	$\frac{X(j\omega)Y(j\omega)}{1}$
dual pair		$\sqrt{2\pi}$ $X + I (J\omega)$
derivation product by t dual pair	$x'(t) \ tx(t)$	$egin{array}{l} j\omega \cdot X(j\omega) \ jX'(j\omega) \end{array}$
integration	$\int_{-\infty}^t x(u) du$	$\left rac{X(j\omega)}{j\omega}+\piA_x\delta(\omega) ight $
area energy Parseval's theorem	A_x = E_x =	$= S(j0)$ $= \frac{1}{2\pi} E_X$

Convolution + product

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x(u)y(t-u)du \right) e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} x(u) \left(\int_{-\infty}^{\infty} y(t-u)e^{-j\omega t}dt \right) du$$
$$\uparrow \text{ swap } \uparrow$$
$$= \int_{-\infty}^{\infty} x(u)Y(j\omega)e^{-j\omega u} du = X(j\omega)Y(j\omega)$$

$$\int_{-\infty}^{\infty} x(t)y(t)e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} x(t) \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} Y(jv)e^{jvt} dv\right) e^{-j\omega t} dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(jv) \left(\int_{-\infty}^{\infty} x(t)e^{-j(\omega-v)t} dt\right) dv$$

$$\uparrow \text{ swap} \qquad \uparrow \qquad X(j(\omega-v))$$

Area + Energy

$$S(j0) = \int_{-\infty}^{\infty} s(t) \underbrace{e^{-j0t}}_{1} dt = A_s$$

$$z(t) = x(t)y^{*}(t) \qquad Z(j\omega) = \frac{1}{2\pi}X * Y_{-}^{*}(j\omega)$$

$$A_{z} = \int_{-\infty}^{\infty} x(t)y^{*}(t) dt = Z(j0)$$

$$= \frac{1}{2\pi}\int_{-\infty}^{\infty}X(jv)\underbrace{Y_{-}^{*}(-jv)}_{Y^{*}(jv)} dv$$

$$E_{s} = \int_{-\infty}^{\infty} |s(t)|^{2}dt = \frac{1}{2\pi}E_{S} = \frac{1}{2\pi}\int_{-\infty}^{\infty} |S(j\omega)|^{2}d\omega$$

Derivative

$$\mathbf{x}'(t) = \frac{d}{dt} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \right)$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \frac{d}{dt} \left(e^{j\omega t} \right) d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \underbrace{X(j\omega)j\omega}_{\mathbf{f}} \cdot e^{j\omega t} d\omega$$
Fourier transform

Inversion rule

$$\begin{array}{c|c} x(t) \\ \hline x(j\omega) \end{array} \quad \begin{array}{c} \text{derivati} \\ \text{ve} \end{array} \quad \begin{array}{c} y(t) = x'(t) \\ \hline y(j\omega) = j\omega \cdot X(j\omega) \end{array}$$

the value at ω =0 is lost since Y(j0)=0, the others are multiplied by a known factor

$$X(j\omega) = \frac{Y(j\omega)}{j\omega} + \underbrace{m_x}_{j\omega} 2\pi \,\delta(\omega)$$

No need to correct for
a finite value at $\omega=0$

Integration

$$\begin{array}{c} x(t) \\ \hline \\ x(t) \\ \hline \\ y(j\omega) \end{array} \xrightarrow{integration} y(t) = \int_{-\infty}^{t} x(u) \, du \\ = x * 1(t) \\ \hline \\ y(j\omega) = X(j\omega) \left[\frac{1}{j\omega} + \pi \delta(\omega) \right] \\ = \frac{X(j\omega)}{j\omega} + \pi X(j\omega) \delta(\omega) \\ = \frac{X(j\omega)}{j\omega} + \pi X(j\omega) \delta(\omega) \\ = \frac{X(j\omega)}{j\omega} + \pi X(0) \delta(\omega) \\ \hline \\ area \end{array}$$

Exercises

On the properties of the Fourier transform

Through the **properties of the Fourier transform** we can ease the calculation for a large variety of signals, but we first need to properly familiarize with their use.

The Fourier transform is by far the case where we can deal with the most complex waveforms, also thanks to the fact that managing integrals is easier than managing series.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 14

Relations among the transforms and filters in continuous-time

Tomaso Erseghe

14.1 Relations among Fourier transforms

Link between Fourier transform, Fourier series, and DFT

De-periodization property

Periodic repetition and sampling properties

De-periodisation

From the Fourier series to the transform

Periodic repetition

From the Fourier transform to the series

A proof

From the Fourier transform to the series

$$Y_{k} = \frac{1}{T_{p}} \int_{0}^{T_{p}} \left(\sum_{m=-\infty}^{\infty} x(t - mT_{p}) \right) e^{-jk\omega_{0}t} dt$$
$$= \frac{1}{T_{p}} \sum_{m=-\infty}^{\infty} \left(\int_{0}^{T_{p}} x(t - mT_{p}) e^{-jk\omega_{0}t} dt \right)$$
swap
$$= \frac{1}{T_{p}} \sum_{m=-\infty}^{\infty} \int_{-mT_{p}}^{(1-m)T_{p}} x(u) \underbrace{e^{-jk\omega_{0}(u+mT_{p})}}_{e^{-jk\omega_{0}u}} du$$
$$\underbrace{u = t - mT_{p}}_{k\omega_{0} \cdot mT_{p}} = 2\pi km$$
$$= \frac{1}{T_{p}} \int_{-\infty}^{\infty} x(u) e^{-jk\omega_{0}u} du$$
$$= \frac{1}{T_{p}} X(jk\omega_{0})$$

Sampling

From the Fourier series to the DFT

A proof

From the Fourier series to the DFT

$$y(n) = \sum_{k=-\infty}^{\infty} X_k e^{jk\frac{2\pi}{T_p}t} \bigg|_{t=n\frac{T_p}{N}} = \sum_{k=-\infty}^{\infty} X_k e^{jk\frac{2\pi}{N}t}$$
$$= \sum_{\ell=0}^{N-1} \sum_{\substack{m=-\infty\\m=-\infty\\m=0}}^{\infty} X_{\ell-mN} \underbrace{e^{j(\ell-mN)\frac{2\pi}{N}n}}_{e^{j\ell\frac{2\pi}{N}n}}$$
$$\downarrow \int rep_N X_{\ell}$$
$$k = \ell - mN$$

Combining the two

From the Fourier transform to the DFT

Exercises

On the relations among Fourier transforms

Evaluating the Fourier series or the DFT coefficients from a Fourier transform pair can be a much easier way of calculating the transforms.

You need to get acquainted with this powerful rule, as it might turn out very useful.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 14

Relations among the transforms and filters in continuous-time

Tomaso Erseghe

14.4 Filters in continuous-time

A Fourier transform perspective

- Selective filters
- Response to sinusoids and exponentials

Filters in the Fourier domain

Continuous-time aperiodic

$$x(t) \longrightarrow h(t) \qquad y(t) = x * h(t)$$

Filters in the Fourier domain

Continuous-time periodic

$$x(t) = x(t + T_p) \qquad \qquad y(t) = x * h(t)$$

Parallel

Complex exponentials

Sinusoids through a real filter

Selective (ideal) filters

Polishing action of a filter

With a band-pass filter

Real filters

With BIBO stability properties

low-pass $H(j\omega) = \operatorname{rcos}(\frac{\omega}{2\omega_c})$ $h(t) = 2f_c \operatorname{ircos}(2f_c t)$

Exercises

On continuous-time filters

Through the **Fourier transform approach** we can ease the understanding and calculation of a filtering operation.

Carry in mind the rule on complex exponentials and sinusoids, as it might turn out to be very useful in many practical cases.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 15

The discrete-time Fourier transform: definition, properties, relation with other transforms

Tomaso Erseghe

15.1 The discrete-time Fourier transform

for discrete-time aperiodic signals

- The discrete-time Fourier transform
- Useful Fourier pairs
- Time-reversal, conjugation, and symmetries
- Linearity, time-shift, modulation, convolution, product, increment, product by n, and current sum
- Mean value and power

Swapping the domains

From periodic to discrete-time

Useful pairs	time domain	Fourier domain	
constant delta dual pair	$egin{array}{c} 1 \ \delta(n) \end{array}$	$\frac{2\pi \operatorname{comb}_{2\pi}(\theta)}{1}$	delta constant
	$\operatorname{rect}(rac{n}{N})$ N = 1 + 2M	$N\operatorname{sinc}_N(rac{\theta N}{2\pi})$	sinc
sinc dual pair	$d \operatorname{sinc}(nd)$	$\operatorname{rep}_{2\pi}\operatorname{rect}(\frac{\theta}{2\pi d})$	rect
exponential	$e^{j heta_0 n}$	$2\pi \operatorname{comb}_{2\pi}(heta- heta_0)$	delta
delta dual pair	$\delta(n-m)$	$e^{-j heta m}$	exponential
sinusoid	$\cos(n heta_0+artheta_0)$	$\pi e^{jartheta_0} ext{comb}_{2\pi} (heta - \pi e^{-jartheta} + \pi e^{-jartheta})$	$(heta_0)^{- heta_0} { m comb}_{2\pi}(heta+ heta_0)$

Symmetries

time domain	Fourier domain
time-reversal $x(-n)$	$X(e^{-j\theta})$
conjugation $x^*(n)$	$X^*(e^{-j\theta})$
symmetries x(n) = x(-n)	$\frac{\text{even}}{X(e^{j\theta})} = X(e^{-j\theta})$
odd x(n) = -x(-n)	$\begin{array}{c} \textbf{odd} \\ X(e^{j\theta}) = -X(e^{-j\theta}) \end{array}$
real x(n) = x*(n)	Hermitian $X(e^{j\theta}) = X^*(e^{-j\theta})$
real + even $x(n) = x^*(n) = x(-n)$	real + even X($e^{j\theta}$) = X*($e^{-j\theta}$) = X($e^{-j\theta}$)
real + odd $x(n) = x^*(n) = -x(-n)$	imaginary + odd $X(e^{j\theta}) = X^*(e^{-j\theta}) = -X(e^{-j\theta})$

Properties

		time domain	Fourier domain
	linearity	$\alpha x(n) + \beta y(n)$	$\alpha X(j\omega) + \beta Y(j\omega)$
	time-shift	$x(n-n_0)$	$X(e^{j heta})e^{-j heta n_0}$
	modulation dual pair	$x(n)e^{j heta_0 n}$	$X(e^{j(heta- heta_0)})$
	convolution	x * y(n)	$X(e^{j heta})Y(e^{j heta})$
	product dual pair	x(n)y(n)	$\frac{1}{2\pi}X *_{\operatorname{cir}} Y(e^{j\theta})$
	increment product by n dual pair	$egin{array}{l} x(n)-x(n-1)\ nx(n) \end{array}$	$\begin{array}{c} X(e^{j\theta}) \left(1 - e^{-j\theta}\right) \\ j X'(e^{j\theta}) \end{array}$
	current sum	$\sum_{k=-\infty}^{n} x(k)$	$rac{X(e^{j heta})}{1-e^{-j heta}} + \pi A_x ext{comb}_{2\pi}(heta)$
Pa	area energy rseval's theorem	A_s = E_s =	$= S(e^{j0})$ = P_S

Area + Energy

$$X(e^{j0}) = \sum_{n=-\infty}^{\infty} x(n) \underbrace{e^{-jn0}}_{1} = A_x$$

$$P_X = \text{power} \left[\sum_{n = -\infty}^{\infty} x(n) e^{-jn\theta} \right] = \sum_{n = -\infty}^{\infty} |x(n)|^2$$

see exercises
Lecture 3

Increment

$$\begin{array}{c} x(n) \\ \xrightarrow{X(e^{j\theta})} \end{array} \xrightarrow{\text{increme}} y(n) = x(n) - x(n-1) \\ \xrightarrow{Y(e^{j\theta})} X(e^{j\theta}) = X(e^{j\theta}) \left(1 - e^{-j\theta}\right) \end{array}$$

the value at θ =0 (mod 2 π) is lost since Y(e^{j0})=0, the others are multiplied by a known factor

Inversion rule

$$X(e^{j\theta}) = \frac{Y(e^{j\theta})}{1 - e^{-j\theta}} + 2\pi m_x \text{comb}_{2\pi}(\theta)$$

No need to correct for a finite value at $\theta=0 \pmod{2\pi}$

Current sum

$$\begin{array}{c} x(n) \\ & \longrightarrow \end{array} \underbrace{ \begin{array}{c} \text{Current} \\ \text{sum} \end{array}}_{\text{sum}} \underbrace{ y(n) = \sum_{k=-\infty}^{n} x(k) \\ = x * 1_{0}(n) \\ & \uparrow \end{array} \\ Y(e^{j\theta}) = X(e^{j\theta}) \left[\frac{1}{1 - e^{-j\theta}} + \pi \text{comb}_{2\pi}(\theta) \right] \\ & = \frac{X(e^{j\theta})}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{X(e^{j\theta})}{1 - e^{-j\theta}} + \pi X(e^{j0}) \text{comb}_{2\pi}(\theta) \\ & = \frac{X(e^{j\theta})}{1 - e^{-j\theta}} + \pi X(e^{j0}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j0}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & = \frac{1}{1 - e^{-j\theta}} + \pi X(e^{j\theta}) \text{comb}_{2\pi}(\theta) \\ & =$$

Exercises

On the discrete-time Fourier transform

The **discrete-time Fourier transform** is evidently closely linked to the Fourier series, with similar properties and signal pairs. However, these slightly differ in their expression, and, moreover, **new properties** are available for the DTFT. Memorize the forward/backward rule and take particular care in evaluating integrals and/or series correctly.

You also need to memorize the **fundamental Fourier** pairs, as these are relevant in what follows.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 15

The discrete-time Fourier transform: definition, properties, relation with other transforms

Tomaso Erseghe

15.4 Relations among Fourier transforms

Link between Fourier transform, DTFT, and DFT

Periodic repetition and sampling properties

De-periodisation

From the DFT to the DTFT $s(n) = s(n+N) = \sum_{k=0}^{N-1} S_k e^{jk\frac{2\pi}{N}n}$ $S_k = S_{k+N}$ The DTFT of a Ň k periodic signal $\tilde{S}(e^{j\theta}) = \sum_{k=1}^{N-1} 2\pi S_k \operatorname{comb}_{2\pi}(\theta - k\frac{2\pi}{N})$ $2\pi S_{k'}$ $\frac{2\pi}{N}$ 2π

Sampling

From the Fourier transform to the DTFT

Sampling for T=1

From the Fourier transform to the DTFT

A proof

From the Fourier transform to the DTFT

$$\begin{split} Y(e^{j\theta}) &= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega nT} d\omega \right) e^{-j\theta n} \\ &= \int_{-\infty}^{\infty} X(j\omega) \left(\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{j(\omega T)n} e^{-j\theta n} \right) d\omega \\ &\text{swap} \\ &= \int_{-\infty}^{\infty} X(j\omega) \operatorname{comb}_{2\pi} (\theta - \omega T) d\omega \\ &= \int_{-\infty}^{\infty} X(j\omega) \sum_{k=-\infty}^{\infty} \delta(\theta - \omega T - 2\pi k) d\omega \\ &= \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} X(j\omega) \frac{1}{T} \delta(\frac{\theta - 2\pi k}{T} - \omega) d\omega \\ &\text{swap} \end{split}$$

Periodic repetition

From the DTFT to the DFT

A proof

From the DTFT to the DFT

$$Y_{k} = \sum_{n=0}^{N-1} \left(\sum_{m=-\infty}^{\infty} x(n-mN) \right) e^{-jk\frac{2\pi}{N}n}$$
$$= \sum_{n=0}^{N-1} \sum_{m=-\infty}^{\infty} x(n-mN) e^{-jk\frac{2\pi}{N}(n-mN)}$$
$$= \sum_{\ell=-\infty}^{\infty} x(\ell) e^{-jk\frac{2\pi}{N}\ell} \quad \ell = n - mN$$
$$= X(e^{jk\frac{2\pi}{N}})$$

Exercises

On the relations among Fourier transforms

Evaluating the discrete-time Fourier transform from a Fourier transform pair can be a much easier way of calculating the transforms.

You need to get acquainted with this powerful rule, as it might turn out very useful.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 16

Filters in discrete-time and wrap-up un Fourier transforms

Tomaso Erseghe

16.1 Filters in discrete-time

A Fourier transform perspective

- Selective filters
- Response to sinusoids and exponentials

Filters in the Fourier domain

Discrete-time aperiodic

$$x(n) \longrightarrow h(n) \longrightarrow y(n) = x * h(n)$$

Filters in the Fourier domain

Discrete-time periodic

$$x(n) = x(n + N)$$
 $h(n)$ $y(n) = x * h(n)$

Series

Complex exponentials

$$H(e^{j\theta})$$

$$X(e^{j\theta})$$

$$Y(e^{j\theta}) = H(e^{j\theta}) X(e^{j\theta})$$

$$(e^{j\theta})$$

$$(e^{j\theta})$$

$$X(e^{j\theta})$$

$$(e^{j\theta})$$

$$(e^{j$$

Sinusoids through a real filter

Selective (ideal) filters

BIBO stable low-pass

$$H(e^{j\theta}) = \operatorname{rep}_{2\pi} \operatorname{rcos}(\frac{\theta}{2\theta_c}) \qquad h(n) = \frac{\theta_c}{\pi} \operatorname{ircos}(\frac{\theta_c}{\pi}n)$$

Exercises

On discrete-time filters

Through the **Fourier transform approach** we can ease the understanding and calculation of a filtering operation.

Carry in mind the rule on sampled complex exponentials and sinusoids, as it might turn out to be very useful in many practical cases. Be aware of the fact that now the Fourier transform is periodic, and that a sampled complex exponential with phase θ_0 is equivalent to one with phase $\theta_0 + 2\pi k$

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 16

Filters in discrete-time and wrap-up un Fourier transforms

Tomaso Erseghe

16.4 Wrap-up on Fourier transforms

On their similarity

Four versions of each property or Fourier pair

Four classes of signals

Four transforms

Four modulation properties

Four convolution properties

Four derivative properties

	continuous-time	discrete-time
$x'(t) \ tx(t)$	$j\omega \cdot X(j\omega) \ jX'(j\omega)$	x(n) - x(n-1) $X(e^{j\theta}) (1 - e^{-j\theta})$ for approximately $nx(n) jX'(e^{j\theta})$
I	Fourier transform	DTFT ਰੋ
$\omega_0 = rac{2\pi}{T_p}$	Fourier series	DFT time
x'(t)	$X_k\cdot jk\omega_0$	$x(n)-x(n-1)$ $X_k\cdot(1-e^{-jkrac{2\pi}{N}})$ of the second

Four area/energy properties

Four delta transforms

Four rect transforms

Four sinc transforms

Four links: 1) sampling

Four links: 2) periodic rep

Exercises

On all the Fourier transforms

Try memorizing the similarities among Fourier transforms at your best, since this can ease your understanding.

Solve some review exercises to check your comprehension level.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 17

Interpolation and Shannon's Sampling Theorem

Tomaso Erseghe

17.1 Interpolation

A time-domain perspective

- The need for interpolation
- Interpolation in the time-domain
- Correct interpolation property

The need for interpolation

How to reconstruct a signal?

Pre-filtering

Real-world samplers avoid aliasing

Interpolation filter

To connect samples

Correct interpolation

To really connect samples

$$y(t)$$

$$y(nT) = x(n)$$

$$y(nT) = \sum_{k} x(k)h(nT - kT)$$

$$= x(n) * h(nT) = x(n)$$

$$h(nT) = \delta(n)$$

Filter examples

Satisfying the correct interpolation

Correct interpolation

In the Fourier domain

$$\delta(n) = h(nT) \implies 1 = \frac{1}{T} \operatorname{rep}_{2\pi} H(j\frac{\theta}{T})$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} H(j\frac{\theta-2\pi k}{T})$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} H(j(\frac{\theta}{T} - \frac{2\pi}{T}k))$$

$$= \frac{1}{T} \operatorname{rep}_{2\pi/T} H(j\omega) \Big|_{\omega = \frac{\theta}{T}}$$

$$\operatorname{rep}_{2\pi/T} H(j\omega) = T$$

Filter examples

Satisfying the correct interpolation

No exercises 🙂

On interpolation in the time-domain

We need to introduce further concepts in the Fourier domain before being able to fully manage interpolation

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 17

Interpolation and Shannon's Sampling Theorem

Tomaso Erseghe

17.2 Shannon's Sampling Theorem

An application of interpolation

- Interpolation in the Fourier domain
- Series of sampling and interpolation
- Shannon's Sampling Theorem

Interpolation

In the Fourier domain

A proof

$$Y(j\omega) = \int_{-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x(k)h(t-kT) \right) e^{-j\omega t} dt$$
$$= \sum_{k=-\infty}^{\infty} x(k) \left(\int_{-\infty}^{\infty} h(t-kT)e^{-j\omega t} dt \right)$$
swap $\sum_{k=-\infty}^{\infty} x(k)H(j\omega)e^{-j\omega kT}$

$$= X(e^{j\omega T})H(j\omega)$$

Sampling + interpolation

In the Fourier domain

$$Y(j\omega) = X(e^{j\omega T}) H(j\omega)$$
$$= \frac{1}{T} H(j\omega) \sum_{k=-\infty}^{\infty} S(j(\omega - \frac{2\pi}{T}k))$$

Sampling Theorem

Shannon's base-band version

A continuous-time signal s(t) can be **perfectly recovered** from its samples x(n) = s(nT), with **sampling spacing T**, under the condition that its Fourier transform $S(j\omega)$ has an **extension e(S) contained in the interval [-\pi/T, \pi/T]**

Generalisation

To pass-band signals

Sampling Theorem

Its pass-band version

A continuous-time signal s(t) can be **perfectly recovered** from its samples x(n) = s(nT), with **sampling spacing T**, under the condition that its Fourier transform $S(j\omega)$ has an **extension e(S) contained in the interval [\omega_0-\pi/T, \omega_0+\pi/T]**

Exercises

On sampling and interpolation

Shannon's Sampling Theorem and the general concept of sampling and interpolation are key tools in signal processing that must be well understood.

Test your comprehension level with the exercises proposed.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 18

Fourier transforms in MatLab

Tomaso Erseghe

18.1 The Fourier transform in MatLab

An overview

Sampled signals and DFT

The fft and fftshift functions

The Fourier transform

MatLab fft function

From time to Fourier samples

- x % signal samples
- T % sampling spacing
- N = length(x); % samples length
- $\mathbf{t} = (0:N-1)^*T; \%$ time samples
- **X** = **ifftshift**(T***fft**(**x**)); % Fourier samples

Corrections for time-samples

Using the time-shift dual

- x % signal samples
- T % sampling spacing
- N = length(x); % samples length
- $\mathbf{t} = (0:N-1)^{*}T + \mathbf{t}_{0}$; % time samples starting at t_{0}
- **X** = **ifftshift**(T***fft**(**x**)); % Fourier samples

 $\omega = (-round((N-1)/2):round(N/2)-1) *2*pi/(N*T);$ % pulsations (in a period)

 $X = X \cdot exp(-1j*\omega*t(1));$ % Modulation effect

Exercises

On the Fourier transform in MatLab

Get acquainted with MatLab Fourier operators fft and fftshift and learn how to correctly calculate Fourier transforms.

Check that you get the analytical expression of the Fourier transform for known signal couples.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Università degli Studi di Padova

Lecture 18

Fourier transforms in MatLab

Tomaso Erseghe

18.4 Periodic signals in MatLab

Some insights on their Fourier transform

- Estimating the period from the Fourier domain
- Filtering sinusoidal noises

Periodic signals

Windowed signal

$$s(t) \operatorname{rect}(\frac{t}{T_w}) \implies S(j\omega) = \sum_k T_w S_k \operatorname{sinc}(\frac{\omega - k\omega_0}{2\pi/T_w})$$

Increasing precision

In the Fourier domain

Filtering

In the Fourier domain

Exercises On ECG signal processing

Observe the outcome of **quasi-periodic signals** like the ECG signal displaying spectral lines! Try estimating its period from the Fourier domain.

Practice yourself with **filters in the Fourier domain** by removing a sinusoidal distortion applied to an ECG signal

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 19

Laplace transform: definition and properties

Tomaso Erseghe

19.1 The Laplace transform

for continuous-time aperiodic signals

- The Laplace transform
- Region of convergence
- Useful Laplace pairs
- Properties of the Laplace transform

The Laplace transform

Interpretation

For a causal signal

ROC shapes

General ROC shape

Useful pairs	time domain	Laplace domain	ROC
constant unit step	$\begin{array}{c} 1 \\ 1(t) \end{array}$	does not exist! 1 -	$\Re[s] > 0$
ramp	$rac{t^\kappa}{k!}1(t)$	$s \; rac{1}{s^{k+1}}$	
delta	$\delta(t)$	1_{k}	any s
delta derivatives	$\delta^{(\kappa)}(t)$	s^{κ}	
exponential	$e^{j\omega_1 t}$	does not exist!	
one-sided exp	$t^{k} e^{p_{1}t} 1(t)$	$\frac{1}{s-n_1}$ 1	$\Re[s] > \Re[p_1]$
exponential ramp	$\frac{e^{k}}{k!} e^{p_1 t} 1(t)$	$(s - p_1) \frac{1}{(s - p_1)^{k+1}}$	
sinusoids	$\cos(\omega_0 1) 1(t) \ \sin(\omega_0 1) 1(t)$	$\frac{s}{s^2 + \omega_0^2} \ \frac{\omega_0}{s^2 + \omega_0^2}$	$\Re[s] > 0$
			l

Properties

	time domain	Laplace domain
linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(s) + \beta Y(s)$
time-reversal	x(-t)	X(-s)
conjugation	$x^*(t)$	$X^*(s^*)$
scale	x(t/a)	aX(as)
time-shift	$x(t-t_0)$	$X(s)e^{-st_0}$
modulation dual pair	$x(t) e^{s_0 t}$	$X(s-s_0)$
convolution	x * y(t)	X(s)Y(s)
derivation	x'(t)	sX(s)
product by t dual pair	tx(t)	-X'(s)
integration	x * 1(t)	$\frac{X(s)}{s}$

Time-shift + modulation

$$\int_{-\infty}^{\infty} x(t-t_0)e^{-st}dt$$
$$= \int_{-\infty}^{\infty} x(u)e^{-s(u+t_0)}du$$
$$= X(s)e^{-st_0} \qquad \qquad \mathbf{u}=\mathbf{t}-\mathbf{t}_0$$

$$\int_{-\infty}^{\infty} x(t)e^{s_0 t}e^{-st}dt$$
$$= \int_{-\infty}^{\infty} x(t)e^{-(s-s_0)t}dt$$
$$= X(s-s_0)$$

Convolution + product-by-t

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} x(u)y(t-u)du \right) e^{-st}dt$$

$$= \int_{-\infty}^{\infty} x(u) \left(\int_{-\infty}^{\infty} y(t-u)e^{-st}dt \right) du$$
swap
$$= \int_{-\infty}^{\infty} x(u)Y(s)e^{-su}du$$
time-shift

$$X'(s) = \frac{d}{ds} \left(\int_{-\infty}^{\infty} x(t)e^{-st} dt \right)$$
$$= \int_{-\infty}^{\infty} x(t) \frac{de^{-st}}{ds} dt$$
swap $\int_{-\infty}^{\infty} -tx(t) e^{-st} dt$

Derivation + integration

$$\begin{aligned} x'(t) &= \frac{d}{dt} \left(\frac{1}{j2\pi} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s) e^{st} ds \right) \\ &= \frac{1}{j2\pi} \int_{\sigma-j\infty}^{\sigma+j\infty} \underbrace{sX(s)}_{\sigma-j\infty} e^{st} ds \\ &\text{swap} \checkmark \end{aligned}$$

Exercises

On the Laplace transform

Deriving the Laplace transform through its forward rule is a fundamental requirement of this course.

You need to fully memorize the forward rule and the **Laplace properties**, and take particular care in evaluating integrals correctly.

You also need to memorize the **fundamental Laplace** pairs, as these are relevant in what follows.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

Lecture 19

Laplace transform: definition and properties

Tomaso Erseghe

19.4 The unilateral Laplace transform

For causal signals

Definition

Properties

Inverting fractional Laplace expressions

Properties

	time domain	Laplace domain
linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(s) + \beta Y(s)$
conjugation	$x^*(t)$	$X^*(s^*)$
scale	x(t/a)	aX(as)
modulation	$x(t) e^{s_0 t}$	$X(s-s_0)$
convolution	x * y(t)	X(s)Y(s)
derivation	x'(t)	$s X(s) - x(0_{-})$
product by t	tx(t)	-X'(s) <
integration	x * 1(t)	$rac{X(s)}{s}$
		1

all time-domain signals are causal!!!

Derivation

Derivation of order k

First derivative $sX(s) - x(0^-)$

Second derivative

$$s(sX(s) - x(0^{-})) - x'(0^{-})$$

Third derivative

$$s^{3}X(s) - s^{2}x(0^{-}) - sx'(0^{-}) - x''(0^{-})$$

kth derivative -

$$s^k X(s) - \sum_{\ell=0}^{k-1} x^{(\ell)}(0^-) s^{k-1-\ell}$$

Rational functions

Inverting a rational Laplace transform

Improper version (m≥n) $H(s) = \frac{b(s)}{a(s)} = \frac{b_0 + b_1 s + b_2 s^2 + \ldots + b_m s^m}{a_0 + a_1 s + a_2 s^2 + \ldots + a_n s^n}$

Proper counterpart (m≥n)

Proper rational functions

The case of distinct poles m<n $H(s) = \frac{b(s)}{a(s)} = \frac{b_0 + b_1 s + b_2 s^2 + \ldots + b_m s^m}{a_0 + a_1 s + a_2 s^2 + \ldots + a_m s^n}$ $= K \frac{(s - z_1)(s - z_2) \dots (s - z_m)}{(s - p_1)(s - p_2) \dots (s - p_n)} \operatorname{zeros}_{\substack{ \texttt{f} \\ \texttt{finct poles}}} partial$ $= \frac{R_1}{(s-p_1)} + \frac{R_2}{(s-p_2)} + \ldots + \frac{R_n}{(s-p_n)}$ $R_i = \lim_{s \to p_i} H(s)(s - p_i)$

Proper rational functions

The general case

An example

$$H(s) = 2s + 1 + \frac{4s - 1}{s^2(s - 1)}$$

multiplicity 2
$$= 2s + 1 + \frac{1}{s^2} - \frac{3}{s} + \frac{3}{s - 1}$$

Inversion by known
transforms
$$h(t) = 2\delta'(t) + \delta(t) + t 1(t) - 1(t) + 3e^t 1(t)$$

causal signal

Exercises

On inverting rational Laplace transforms

Through the **properties of the Laplace transform** we can easily calculate the causal counterpart to any rational expression of the unilateral Laplace transform.

You must get acquainted with this inversion as it will be the basis for solving systems of linear differential equations in the next lecture.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Lecture 20

Laplace transform: application to differential equations

Tomaso Erseghe

20.1 Differential equations

Solved through the Laplace transform

- Examples of differential equations
- Solution via the transfer function and initial conditions

Differential equations

A linear (constant) model

$$x(t)$$
 differential $y(t)$ system

differential equation $a_0y(t) + a_1y'(t) + a_2y''(t) + \ldots + a^ny^{(n)}(t)$ $= b_0x(t) + b_1x'(t) + b_2x''(t) + \ldots + b^mx^{(m)}(t)$

input signal (known) $x(t), t > 0^$ initial conditions (known) $y(0^-), y'(0^-), \dots, y^{(n-1)}(0^-)$

RC filter

An example from electric circuits

differential equation

$$\begin{aligned} x(t) &= Ri(t) + y(t) \\ y'(t) &= \frac{i(t)}{C} \end{aligned}$$

$$y(t) + RC y'(t) = x(t)$$

Spring-mass system

An example from physics

differential equation

$$F(t) = x(t) - ky(t)$$

$$F(t) = m y''(t)$$

$$m y''(t) + ky(t) = x(t)$$

Laplace counterpart

Of a differential equation

Reinterpreting the result

Of a differential equation

BIBO stability conditions

Of a differential system

1. Filter h(t) BIBO stable

- m≤n, otherwise delta derivatives
- Re[pi]<0, otherwise h(t) not absolutely integrable

2. Natural response y_n(t) limited

- m≤n, otherwise deltas appear
- Re[pi]<0, guarantees a limit

More on **BIBO** stability

Of a proper rational transfer function

Filter h(t) BIBO stable \rightarrow Re[p_i]<0

$Re[p_i] < 0 \rightarrow Filter h(t) BIBO stable$

$$\int_{-\infty}^{\infty} |h(t)| dt \leq \sum_{i} \sum_{i=1}^{\mu_{j}} |R_{i,j}| \int_{-\infty}^{\infty} \frac{t^{i-1} |e^{p_{j}t}| 1(t)}{(i-1)!} dt$$
$$= \sum_{j} \sum_{i=1}^{\mu_{j}} \frac{|R_{i,j}|}{(0-\Re[p_{j}])^{i}} < \infty$$

BIBO stability properties

At steady state t \gg 0

Exercises

On differential equations

Solving differential equations by use of the Laplace transform is a fundamental requirement of this course.

You need to fully memorize the method, and take particular care in applying it correctly.

You also need to memorize the **fundamental Laplace pairs**, as these are relevant in what follows.

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Lecture 20

Laplace transform: application to differential equations

Tomaso Erseghe

20.4 The unilateral Z transform

For causal discrete-time signals

Solution to difference equations

Difference equations

Or discrete differential equations

 $\xrightarrow{x(k)} \underbrace{ \begin{array}{c} \text{difference} \\ \text{system} \end{array}}_{k \geq 0} y(k) \\ k \geq 0$

differential equation

$$a_0 y(k) + a_1 y(k-1) + \ldots + a_n y(k-n)$$

= $b_0 x(k) + b_1 x(k-1) + \ldots + b_m x(k-m)$

input signal (known) x(k), $k \ge -m$ initial conditions (known)

 $y(-n),\ldots,y(-2),y(-1)$

The ARMA model

Auto-regressive moving-average

The unilateral Z transform

Properties

time domain	Z domain
$x(n) + \beta y(n)$	$\alpha X(z) + \beta Y(z)$
$p_0^n x(n)$	$X(z/p_0)$
x * y(n)	X(z)Y(z)
nx(n)	-zX'(z)
$x(n-n_0) + \sum_{m=-1}^{-1}$	$\sum_{n_0}^{-n_0} x(m) z^{-(m+n_0)}$
	$\frac{\text{time domain}}{x(n) + \beta y(n)}$ $\frac{p_0^n x(n)}{x * y(n)}$ $\frac{x * y(n)}{nx(n)}$ $\frac{x(n - n_0)}{x(n - n_0)}$

all time-domain signals are causal!!!

Modulation + time-shift

$$\sum_{n=0}^{\infty} x(n) p_0^n z^{-n} = \sum_{n=0}^{\infty} x(n) (z/p_0)^{-n} = X(z/p_0)$$

$$\sum_{n=0}^{\infty} x(n-n_0) z^{-n} = \sum_{m=-n_0}^{\infty} x(m) z^{-(m+n_0)}$$
$$= X(z) z^{-n_0} + \left[\sum_{m=-n_0}^{-1} x(m) z^{-(m+n_0)}\right]$$

Convolution + product-by-n

$$\sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x_{+}(k) y_{+}(n-k) \right) z^{-n}$$
$$= \sum_{k=-\infty}^{\infty} x_{+}(k) \left(\sum_{n=-\infty}^{\infty} y_{+}(n-k) z^{-n} \right)$$
$$= \sum_{k=-\infty}^{\infty} x_{+}(k) Y(z) z^{-k}$$

$$X'(z) = \sum_{n=0}^{\infty} x(n) \frac{dz^{-n}}{dz} - n z^{-n-1}$$
$$= -z^{-1} \sum_{n=0}^{\infty} nx(n) z^{-n}$$

Useful pairs	time domain	Z domain	ROC
unit step ramp $\frac{1}{k!}(n+k)\dots(n+k)$	$1_0(n)$ 2)(n+1)1 ₀ (n)	$\frac{\frac{1}{1-z^{-1}}}{\frac{1}{(1-z^{-1})^{k+1}}}$	z > 1
delta shifted delta	$\delta(n) \ \delta(n-n_0)$	$\frac{1}{z^{-n_0}}$	z > 0
one-sided exp exponential ramp $\frac{1}{k!}(n+k)(n+2)(n+k)$	$p_0^{n+1} 1_0(n)$ 1) $p_0^{n+k+1} 1_0(n)$	$\frac{1}{p_0^{-1} - z^{-1}} \\ \frac{1}{(p_0^{-1} - z^{-1})^{k+1}}$	$ z > p_0 $

Z counterpart

Of a difference equation

Reinterpreting the result

BIBO stability conditions

Of a difference system

- 1. Filter h(k) BIBO stable
 - p_i<1, otherwise h(k) not absolutely integrable
- 2. Natural response y_n(k) limited
 - $|p_i| < 1$, guarantees a limit

here deltas are not a problem

Exercises

On difference equations

Solving difference equations by use of the Z transform is a fundamental requirement of this course.

You need to fully memorize the method, and take particular care in applying it correctly.

You also need to memorize the **fundamental Z pairs** as these are relevant in what follows. Beware of the fact that now **fractional expressions are in z**⁻¹, and that particular care is needed to correctly identify the poles

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova