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Foundations of Signals and Systems: an introduction
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✦ Definition

✦ From functions to signals

✦ Signal examples

✦ The four classes of interest to us

1.1 Signals
What do we mean by signal?



Welcome!
to Foundations of Signals & Systems

• One lecturer, 
tomaso.erseghe@unipd.it

• 16 Lectures on the 
theoretical aspects

• 3 MatLab lectures for a more 
practical understanding

• Exercises with solution

• Homeworks (with solutions)



Signal
Definition www.merriam-webster.com

[…]

4
a :  an object used to transmit      
or convey information beyond.   
the range of human voice

b :  the sound or image  
conveyed in telegraphy, 
telephony, radio, radar, or 
television

c :  a detectable physical quantity 
or impulse (as a voltage, current, 
or magnetic field strength) by 
which messages or information
can be transmitted



Some examples
From physics

audio wave (acoustic pressure)

tide level in Venice



More examples
From medicine

electrocardiogram (ECG)

insuline levels in blood



More examples
From economy

daily change rate: Euro to US$

yearly inflation rate



Standard notation
From functions to signals

t

s(t)

signal                
(can be real or 

complex-valued)  

time           
(but can be 

other things)  



Periodic signals
With a repeating shape

s(t)

t

period Tp

With the fundamental property 
s(t+Tp) = s(t)



Periodic signals
As a model on a finite time window

What we observed

... but better to extend it by periodicity 

… can be extended by arbitrary shapes



Discrete-time signals
E.g., obtained by sampling

T 2T 5T
4T3T

s(T)
s(0)

s(t)

sampling step  

samples 
s(n) = s(nT) 
or s[n], sn



Complex-valued signals
A mathematical abstraction?

s(t) = [ ℛ[s(t)], ℐ[s(t)] ]



Multidimensional signals
In multimedia processing

video

color 
image

s(x,y) = [ r(x,y), g(x,y), b(x,y) ]

s(x,y,t) = [ r(x,y,t), g(x,y,t), b(x,y,t) ]



Signals on graphs
What we use today



Four classes of signals

discretecontinuous

aperiodic
periodic

t

s(t)

sampling

periodic
repetition

What we deal with



Complex-valued signals are the key players in this 
course, and we expect you to already know 
complex values from previous mathematics courses. 

Refresh your knowledge of complex-values with 
the set of introductory exercises provided.

Exercises
On complex values
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1.3 Systems
What is a system?

✦ Definition

✦ Linear time-invariant systems

✦ Transforms

✦ An application example

✦ Course overview



Transformation (systems)
Definition www.merriam-webster.com

[…]

3
a (1) : the operation of changing       
(as by rotation or mapping) one 
configuration or expression into       
another in accordance with a 
mathematical rule; […]

a (2) : the formula that effects a 
transformation

b : a mathematical 
correspondence that assigns 
exactly one element of one set to 
each element of the same or another 
set



LTI systems

x(t) y(t)ℒ

Linearity = Superposition principle
Time-Invariance = Repeatability 

principle

input outputsystem



Convolution systems
LTI property

The action of an LTI system is a 
convolution

impulse response                
(it characterises 

the system)  



A pharmacology example
On drugs absorption

h(t)
x(t) y(t)

body 
absorption

concentration
of the drug in 
the blood

quantity of 
administered

drug

y(t)

t



Artificial pancreas system

insulin pump
(injects insulin)

glucose sensor
(reads the insulin

level in blood)

remote device: 
identifies the correct amount of 

insulin to be injected, knowing the 
body absorption characteristics

(LTI system) 



Transforms
Alternative signal representations

Fourier
transforms

Laplace
transform

integrals

series
complex 

exponentials



Main property

x*h(t) X(s) H(s)

transform 
representation

time-domain 
representation

trans
formconvolution product

difficult to deeply 
understand its 

action, especially in 
complex systems

easy interpretable 
effect, can deal 
with complex 
systems



Course outline

Signals (4 lectures)
– Duration, area, mean value, 

energy, power, periodicity, 
complex exponentials, sinusoids, 
time-reversal, -shift, and -scale, 
periodic repetition, ideal impulses

Systems (3 lectures)
– Memory, stability, linearity, time 

invariance, convolution and its 
properties, filters, parallel and 
series connections

MatLab (2 lectures)
– Signal representation, 

convolution and filters

transform domaintime domain
Fourier transforms (6 lectures)

– Fourier series, DFT, Fourier transform, 
discrete-time Fourier transform, their 
properties and the sampling/periodic 
repetition relation among them

Sampling theorem (1 lecture)
– Reconstructing a signal from its samples

MatLab (1 lecture)
– Fourier representation and filters

Laplace + Z transforms (2 lectures)
– Laplace + Z transforms and their 

properties, application to differential 
equations



Thanks to
Pierre-Simon Laplace
Beaumont-en-Auge 23/3/1749 
Paris 5/3/1827 

Mathematician, physicist, 
astronomer and nobleman

Jean Baptiste Joseph Fourier
Auxerre 21/3/1768

Paris 16/5/1830

Mathematician and physicist

Claude Elwood Shannon
Petoskey (MI) 30/4/1916 
Medford (MA) 24/2/2001

US engineer and mathematician



A worldwide reference

Signals and Systems, 2nd Edition
Oppenheim, Willsky, Nawab
published by Pearson



Exercises
On integrals and series

Complex-valued integrals and series are the key 
tools needed to understand systems. We expect you 
to already know how to handle them from previous 
mathematics courses, at least at a basic level. 

Refresh your knowledge of integrals and series
with particular care in fully understanding the 
geometric series and primitives of complex 
exponentials.





Lecture 02
Signals: area, mean value, energy, power for aperiodic signals

Tomaso Erseghe 



✦ Discontinuous signals

✦ Duration and extension

✦ Causality

✦ Area and mean value

✦ Energy and power

2.1 Continuous-time signals
Aperiodic case



Four classes of signals

discretecontinuous

aperiodic
periodic

t

s(t)

sampling

periodic
repetition



Continuity and discontinuity
The “semi-value” rule

if s(t) has a discontinuity at t = ti we assign to s(ti) the 
average value of the limits approached from right and left, 
respectively,



Extension and duration
of a continuos-time aperiodic signal

extension e(s) = smaller interval  [ts,Ts]  in which the signal 
s(t) is active – also union of intervals, with {t|s(t)≠0} ⊆ e(s)

duration D(s) = measure Ts – ts of the extension

can be finite (as in the example) or infinite



Examples

unit step

signume(s) = [-½,½],  D(s) = 1
rectangle

e(s) = [0,∞),  D(s) = ∞

e(s) = (-∞,∞),  D(s) = ∞



sinc pulse

e(s) = [-1,1],  D(s) = 2
triangular pulse

e(s) = (-∞,∞),  D(s) = ∞

unilateral exponential
e(s) = [0,∞),  D(s) = ∞

More examples



Causal signals
Causality property

A signal is said to be causal if 
active only in the positive time axis



Area
Of a continuos-time aperiodic signal

area between the signal 
and the time axis

negative values account 
for negative contributions 

Meaning: balance between positive and 
negative signal values, takes a complex 

value for complex valued signals



Mean value

They capture a similar information for different classes of 
signals (only one at a time is meaningful)

Area Mean (average value)

As = 1, ms = 0 As = ∞, ms = ½ 



Main properties
of area and mean value

linearity s(t) = B x(t) + C y(t)   à As = B Ax + C Ay

ms = B mx + C my

finite area à zero mean value

finite (non-zero) mean value à infinite area

the limit is As

the limit is ∞



Energy and power

They correspond to the area and the mean value of |s(t)|2 

hence take only real positive values

Energy Power

Es = 1, Ps = 0 Es = ∞, Ps = ½ 



Meaning
Of energy and power

These definition are inspired by power 
and energy dissipated in a resistor 

They measure the level of 
activity of a signal



Calculating area, mean value, energy, and power 
is a matter of correctly solving integral expressions.

You need to get acquainted with the basic tricks and 
tips. Remember that the primitive of eat is eat/a , 
irrespective of the fact that a is real or complex 
valued.

Exercises
On continuos-time aperiodic signals
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2.4 Discrete-time signals
Aperiodic case

✦ Extension

✦ Causality

✦ Area and mean value

✦ Energy and power



Discrete-time signals

signum
(discrete counterpart)

exponential 
eb nT = an

unit step
(discrete counterpart)



Extension and causality

The smallest interval [ns,Ns] 
containing the active signal 

samples

Extension Causality

A signal is called causal if 
its extension is contained 
in [0,∞), or, equivalently, if 

s(n)=0 for n<0



Fundamental measures
Where a sum replaces the integral

Energy and power

Area and mean value

the number of 
samples is 1+ 2N



Main properties
linearity
s(n) = B x(n) + C y(n)  à As = B Ax + C Ay

ms = B mx + C my

finite area  à zero mean value

finite (non-zero) mean value à infinite                     
area

the limit is As

the limit is ∞



Exercises
On discrete-time aperiodic signals

Calculating area, mean value, energy, and power 
is a matter of correctly solving series.

You need to get acquainted with the basic tricks and 
tips. The most important result to have in mind is the  
geometric series either in its full or truncated form.
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3.1 Periodic signals
The continuous-time case

✦ The minimum period

✦ Complex exponentials and sinusoids

✦ Compositions of periodic signals

✦ Area, mean value, energy, and power



Periodic signals
Main property and minimum period

Tp
2Tp 3Tp

but the signal is 
also periodic 2Tp, 

that is, 
s(t+2Tp)=s(t)

and also 
3Tp, 4Tp , …

s(t) = s(t+Tp)

Minimum period: 
smallest value Tp

ensuring s(t+Tp) = s(t)



Complex exponentials

minimum period Tp = 1/|f0|

real and positive

With linear phase

real part  imaginary part  

s(t) = s(t+Tp)



Signal composition
Identifying a common period 

periodic of 
period mT1

We look for the mcm Tp = mT1 = kT2

periodic of 
period kT2

Tp = m T1 = 3/9 = 1/3  

we simplify the 
rational expression

Not necessarily the minimum period!



General rule
The composition of periodic signals 
is periodic if and only if the periods 

are in a rational relation

The composition of sinusoids is periodic if and 
only if their frequencies/pulsations are in a 

rational relation

Therefore cos(t) + 2 sin(!t) is NOT periodic



Area of a periodic signal

Tp
2Tp 3Tp

s(t) = s(t+Tp)

area in a period

It does not make any sense!



Mean of a periodic signal

2Tp 3Tp

s(t) = s(t+Tp)

area in a period

Tp

This is consistent!



Meaningful expressions
For periodic signals

Energy (in a period) and power

Area (in a period) and mean value

Mean and power carry the relevant information, they are 
correct even in case Tp is NOT the minimum period



Exercises
On continuous-time periodic signals

Calculating mean value and power is particularly 
important for compositions of complex exponentials 
and sinusoids. 

The most important result to learn is that complex 
exponentials and sinusoids have zero mean while 
powers take the forms |A|2 and ½ A2 , respectively, with 
A a multiplying constant. In their composition, powers 
simply sum.
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3.4 Periodic signals
The discrete-time case

✦ Complex exponentials and sinusoids

✦ Periodicity issues

✦ Area, mean value, energy, and power



Periodic signals
Main property and minimum period

N

Minimum period: 
smallest value N 

ensuring s(n+N) = s(n) 
but the signal is also 
periodic 2N, 3N, …

the signal is uniquely 
defined by the N 

samples in the period 
(vector)



Sampled sinusoids
What is their period?

! = !0
10

!0 =
1
%0

! = 2!0
15

( = 10

( = 15

%0! =
1
10

%0! =
2
15



Sampled sinusoids
Identifying a period 

We must have

A non-rational value f0T 
implies that the sampled 
sinusoid is NOT periodic



Ambiguity of frequency
In sampled sinusoids



Mean and power

Energy (in a period) and power

Area (in a period) and mean value

For periodic signals



Exercises
On discrete-time periodic signals

Calculating mean value and power is particularly 
important for compositions of complex exponentials 
and sinusoids. 

The most important result to learn is that complex 
exponentials and sinusoids have zero mean while 
powers take the forms |A|2 and ½ A2 , respectively, with 
A a multiplying constant. In their composition, powers 
simply sum.
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✦ Time reversal, time shift, time scaling

✦ Combining transformations

✦ Symmetries

✦ Periodic repetition

4.1 Basic transformations
In continuous and discrete-time aperiodic domains



Time reversal



Time shift



Time scale

expansion

co
mp

res
sio
n



Time scale + time shift
scale 

a
shift   

t0
x(t) y(t)=x(t/a) s(t)=y(t-t0)

The natural way 
to write a scaled 
and shifted 
signal, where t0
is the true signal 
position



Swapping shift and scale
Which is the one to prefer?

scale 
a

shift   
t0

x(t) y(t)=x(t/a) s(t)=y(t-t0)

shift   
t1

scale   
a

x(t) z(t)=x(t-t1) v(t)=z(t/a)

! " = $ " − "0
'

( " = $ "
' − "1 = $ " − '"1

'

Scale + shift

Shift + scale

They correspond 
when at1=t0

The preferred one, 
where t0 is the true shift



Discrete-time signals
s(n)

n
s(-n)

n

s(n-n0)

n

time shift

time reversal

n0

time scale



Understanding time reversal, shift, and scale may 
seem too easy, but you need to familiarize with 
these transformations as they are the basis for 
expressing signals in a compact form.

Bear in mind the meaning of  s((t-t0)/a) as this is 
fundamental in all that follows.

Exercises
On basic transformations
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4.4 Symmetries in signals
Signal invariance to a transformation

✦ Even and odd symmetry

✦ Real and imaginary symmetry

✦ Hermitian and anti-Hermitian symmetry



The even symmetry

triang 1

1-1

rect

sinc

rect

cos

A signal is said to be even symmetric if 
it is invariant to time-reversal, that is, if 

s(t) = s(-t) or s(n) = s(-n)



The odd symmetry
A signal is said to be odd symmetric if 

s(t) = -s(-t) or s(n) = -s(-n)

sin
sgn

sgn

Odd signals 
satisfy, by 

default, s(0)=0
As = ms = 0



Even and odd components

Every signal can be (uniquely) 
decomposed into its even and odd 

parts s(t) = se(t) + so(t)

where
se(t) = ½ s(t) + ½ s(-t) = se(-t)
so(t) = ½ s(t) - ½ s(-t) = -so(-t)

1(t) = ½ + ½ sgn(t)

odd parteven part

The same applies in discrete-time



Other symmetries of interest

Real/imaginary Hermitian/anti-Hermitian

real s(t) = s*(t)
imaginary s(t) = -s*(t)

components
sre(t) = ½ s(t) + ½ s*(t)
sim(t) = ½ s(t) - ½ s*(t)

Hermitian s(t) = s*(-t)
anti-Hermitian s(t) = -s*(-t)

components
sh(t) = ½ s(t) + ½ s*(-t)
sa(t) = ½ s(t) - ½ s*(-t)



On the Hermitian symmetry

s(t) = a(t) + j b(t)

Understanding its meaning

Hermitian s(t) = s*(-t)
means

a(t) + j b(t) = a(-t) - j b(-t)
even real-part

odd imaginary-part

anti-Hermitian s(t) = -s*(-t)
means

odd real-part
even imaginary-part



Exercises
On symmetries

Understanding symmetries is fundamental for 
appreciating some important features of the Fourier 
transform.

They are straightforward, but need to be deeply 
understood.
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5.1 Periodic repetition
In continuous and discrete-time

✦ The periodic repetition

✦ Compactly expressing periodic signals

✦ The presence of aliasing



Periodic repetition
From aperiodic to periodic

aperiodic

periodic Tp

Tp 2Tp 3Tp



proof

Periodic repetition
Proof of periodicity

proof



Square wave
In the form of a periodic repetition

duty cycle = fraction of the period Tp
where the signal is active d = 2a/Tp



Rectified sinusoid
In the form of a periodic repetition

cosinus
period

rectified 
cosinus
period



The presence of aliasing
In a periodic repetition



Properties
Of the periodic repetition

linearity

time-reversal

time-shift

time-scale



The discrete-time case
Periodic repetition

aperiodic

periodic N

With the same properties of the 
continuous-time case



Exercises
On the periodic repetition

Calculating a periodic repetition is particularly 
important in the presence of aliasing as, in this case, a 
full understanding of the process might not be trivial. 

We mainly concentrate on the continuos-time domain, 
as this is by far the most relevant for applications, but 
the same rationale readily applies to the discrete-time 
case as well.
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5.4 Ideal impulses
Also known as delta functions

✦ The Kronecker delta

✦ The Dirac delta

✦ Sifting properties

✦ Generalized derivatives



Kronecker delta
Signal impulse in discrete-time

extension

n

1

area

even symmetry

unit-step connection

cumulative sum



Sifting property #1
Of the Kronecker delta

the Kronecker delta reveals the 
signal (where it is centred)

n

d(n-n0)

s(n)

s(n)d(n-n0) s(n0)

n0

n

1

n0

nn0



Sifting property #2
Of the Kronecker delta

in a summation, the Kronecker 
delta reveals the signal value 
(the one where it is centred)

n

s(n)d(n-n0) s(n0)

n0



Dirac delta
Signal impulse in continuous time

t

k

1/2k

rectangle 
height k 
area 1 t

t
This is a generalized function, 

defined through a limit!



Properties #1
Of the Dirac delta function

extension
t

1

area

even symmetry



Properties #2
Of the Dirac delta function

unit-step connection

rk(u) 1

1/2k-1/2k 1/2k-1/2k

generalized derivative



Sifting property #1
Of the Dirac delta

in an integral, the Dirac delta 
reveals the signal value    

(the one where it is centred)

mean-value 
theorem

=



Sifting property #2
Of the Dirac delta

the Dirac delta reveals the 
signal value (where it is centred)

t
d(t-t0)

s(t) s(t0)

ts(t)d(t-t0)

tt0

s(t0)
t0

t0
1



Generalized derivatives
By the Dirac delta

the Dirac delta expresses the 
derivative in a point of discontinuity

D = s(t0+) - s(t0-)

s(t)

t0

s(t0-)

s(t0+)

t

D



Periodic counterparts
In continuous and discrete time

N

Tp

the continuous and discrete time 
comb signals



Exercises
On the ideal impulses

Getting acquainted with the sifting property of          
ideal impulses and with generalized derivatives is 
fundamental for correctly understanding the rest of this 
course. 

We mostly concentrate on the continuos-time domain, 
as this is by far the most relevant for exercises, but the 
discrete-time case is equivalently important especially 
in some theoretical results that will lead to convolution.
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✦ Invertibility

✦ Reality

✦ Memory

✦ BIBO stability

6.1 Systems properties #1
In continuous and discrete-time



System model
In continuous or discrete-time

Σ : Sin à Sout

Σx(t) y(t)= Σ[x(t)]

input output
system

input 
signal 
space

output 
signal 
space



Signal space choice

∫
integrator

continuous

Σ
current sum

discrete

↓
sampler

hybrid



v

Invertibility

current sum

invertible

non-invertible

Σ
x(t) y(t) Σ-1

x(t)

inverse system

increment

absolute value
unless Sin is real-valued 
and positive signals!!!



Reality

Σ
x(t) ∈ℝ y(t) ∈ℝ

current sum

increment

running average

A system is real if for every 
real-valued input, the output 

is real-valued



Memory of a system

Σx(t) y(t) = Σ[x(-∞,t), x(t), x(t,+∞)] 

u

x(u)

t

x(t)

pres
en

t

fut
ur

e

past

static (or instantaneous) y(t) = Σ[x(t)] 
absolute value



v

Dynamic systems

current sum

causal

anti-causal

increment

integrator

y(t) = Σ[x(-∞,t), x(t)] 

y(t) = Σ[x(t), x(t,+∞)] 

finite-memory y(t) = Σ[ x[t1,t2] ] 

running average



BIBO stability
Bounded input – bounded output

A system is BIBO stable if           
for every bounded input, |x(t)|<Lx, 

the output is bounded, |y(t)|<Ly

or, equivalently,                       
|x(n)|<Lx à |y(n)|<Ly



BIBO stability
Proof by construction

Σ
moving average

is BIBO stable



BIBO stability
Proof by counterexample

Σ
integration

is not BIBO stable



Understanding the memory aspects and BIBO stability 
in a continuous or discrete-time system is a fundamental 
process, than needs to be trained.

Exercises
On systems
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✦ Linearity

✦ Time-invariance

✦ Eigenfunction and impulse response

✦ Series, parallel, and feedback systems

6.4 Systems properties #2
In continuous and discrete-time



Linearity

Σ

x1(t)

ay1(t)+by2(t)
x2(t)

ax1(t)+bx2(t)

y1(t)
y2(t)

linearity = additivity + homogeneity

absolute value
non homogeneous

non additive

Superposition principle



Linear systems

non-linear

Examples

time-shift x(t-t0)
product x(t) g(t) by any known waveform g(t)
product A x(t) by a constant
integration ∫, summation Σ, derivative d of x(t)

sum x(t) + A of a constant, or a waveform
function g(x(t)) applied to x(t)



Time invariance

Σ
x(t)

y(t-t0)x(t-t0)
y(t)

a commutativity property

Repeatability principle

Σx(t) y(t) time 
shift

y(t-t0)

time 
shift

x(t-t0) Σ y(t-t0)



Verifying time invariance

Σx(t) y(t) time 
shift

Σ
moving average

x(t) x(t-t 0)
time 
shift Σ

replace t à t-t0

replace x(t) à x(t-t0)

time-invariant: equal by a change of variable!



Eigenfunction

Σ λ x(t)x(t)

eigenfunction eigenvalue

Σ λ x(n)x(n)



Impulse response

Σ g(t)δ(t)

ideal impulse impulse response

Σ g(n)δ(n)



\+

Series and parallel

Σ1
x(t) y(t) Σ2

z(t)

Σ1

Σ2

x(t)

y1(t)

y2(t)

+
z(t)

series

parallel



\+

Feedback system

Σ1
x(t) u(t) Σ3

y(t)

Σ2

-

z(t)



Understanding the linearity and time-invariant 
properties of a continuous or discrete-time system is a 
fundamental process.

Take particular care in understanding how to correctly 
identify the presence of time-invariance, as this is one of 
the key aspects of this course

Exercises
On systems
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✦ Convolution

✦ Graphical interpretation of convolution

7.1 LTI systems as convolution systems
In continuous and discrete-time



LTI discrete-time system

LTI system

Σ
by linearity

by time 
invariancediscrete-time 

convolution

impulse response

x(n) by sifting property
As a convolution



LTI continuous-time system
As a convolution

continuous-time 
convolution

LTI system

Σ
by linearity

by time 
invariance

impulse response

x(t) by sifting property



v

LTI is convolution
LTI systems are also called filters

LTI system/filter

g(n)

LTI system/filter

g(t)

an LTI system is uniquely identified 
by its impulse response



v

Convolution z = x * y

*

*

time-reversed 
and time-shifted 
y-(u-t) or y-(k-n)

As a standalone operator



Graphical interpretation
In continuous-time

1. keep x 2. time-reverse 
+ time-shift on y

3. multiply

4. integrate

q
q



v

Visualizing convolution
From www.wikipedia.org



Understanding the convolution operator is a 
fundamental requirement of this course. You need to 
fully appreciate the graphical interpretation (time-
reversal and time-shift) in both continuous and discrete-
time.

Another fundamental point is to recognize when an 
integral or series expression is a convolution , as this 
could be useful in managing equations more easily.

Exercises
On convolution





Lecture 07
Systems: LTI systems as convolution systems, properties 
of convolution

Tomaso Erseghe 



✦ Commutativity, associativity, linearity (distributivity)

✦ Identity element

✦ Extension

✦ Area

✦ Time-shifts

7.4 Properties of convolution
In continuous and discrete-time



Properties of convolution

commutativity

In both continuous and discrete-time

x * y = y * x  

associativity x * y * z = (y * x) * z        
a = x * (y * z)  

x * y * z = z * x * y        
a = y * z * x  

linearity (x + y) * z =  x * z + y * z 
x * (y + z) =  x * y + x * z

identity x * ! =  x
area Ax*y =  Ax Ay



Commutativity
v = t-u

choose the order you want!

m = n-k



Identity
even symmetric

even symmetric



Area swap integrals

swap sums

area is useful as a check!



Extension of the convolution

tx Tx

x(u)

u

u

ty Ty

y(u)

u

t-Ty t-tyt-Ty t-ty

y(t-u)

e(x*y) = [tx+ty,Tx+Ty] 

end
t-Ty=Tx

start  
t-ty=tx

continuous-time

nx Nx

x(k)

k

k

ny Ny

y(k)

k

n-Ny n-nyn-Ny n-ny

y(n-k)

end
n-Ny=Nx

start       
n-ny=nx

e(x*y) = [nx+ny,Nx+Ny] 

sums of initial/ending times

discrete-time



Time shift property

composition of time-shifts



Understanding the linearity and time-shift 
properties of a continuous or discrete-time 
convolution is a fundamental process that will ease 
the calculation in many cases.

Use the extension and area properties for checking 
the correctness of your results.

Exercises
On systems
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✦ Definition

✦ Properties

✦ Interpretation through periodic repetition

8.1 Circular convolution
In continuous and discrete-time



One periodic signal
In the convolution

periodic Tp
( t = t+Tp )

aperiodicperiodic Tp

periodic N
( n = n+N )

aperiodicperiodic N



Two periodic signals
In the convolution

periodic Tpperiodic Tp

periodic Nperiodic N

periodic Tp

periodic N

These diverge!



Circular convolution

periodic Tp

periodic N



Properties

commutativity

In both continuous and discrete-time

x * y = y * x  

associativity x * y * z = z * x * y        
a = y * z * x  

linearity (x + y) * z =  x * z + y * z 
x * (y + z) =  x * y + x * z

identity

area Ax*y =  Ax Ay

time shift



Interpreting circular conv.

*cir



v

Proof – part 1

0 Tp 2Tp 3Tp-4Tp -3Tp -2Tp -Tp

k=0 k=-1 k=-2k=4 k=3 k=2 k=1



v

Proof – part 2

with a perfectly equivalent proof 
also in discrete-time



Understanding the circular convolution operator is a 
fundamental requirement of this course. You need to 
fully appreciate the interpretation through periodic 
repetition to be able to evaluate it correctly.

Exercises
On the circular convolution





Lecture 08
Systems: Circular convolution, Filters

Tomaso Erseghe 



✦ Recap 

✦ Properties by the impulse response

✦ Eigenfunctions

8.4 Filters
In continuous and discrete-time



v

Filters (LTI systems)

g(n)

g(t)

an LTI system is uniquely identified 
by its impulse response

periodic Tp

aperiodic

periodic N
aperiodic

aperiodic g

periodic Tp

aperiodic

periodic N
aperiodic

aperiodic g



v

Series and parallel

g1 g2
x y=(g1*g2)*x

g=g1*g2

g1

g2

x y=(g1+g2)*x

g=g1+g2

+

by associativity

by linearity



Properties

linearity

In both continuous and discrete-time

time invariance
real-valued greality

BIBO stability absolutely summable 
or integrable g

causal gcausality



Causality

u

x(u)

t

x(t)

future

present

u

g(t-u)

t

past

g(u)

u

causal
part

anti-causal
part



BIBO stability – part 1
If Lg<∞ then filter is BIBO stable



BIBO stability – part 2
If filter is BIBO stable then Lg<∞

1. let Lg=∞ by absurd

2. choose a bounded input |x(t)|=1

3. check that the output diverges at t=0



Eigenfunctions
continuous-time

discrete-time

g(n)

converge 
for BIBO 

stable filters

g(t)

eigenvalueeigenvalue

eigenfunction

eigenfunction



Identifying the impulse response and deriving the 
main properties from its expressions is a fundamental 
process that helps in investigating LTI systems.

Exercises
On filters
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Introduction to MatLab
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✦ Install MatLab

✦ The four MatLab windows

✦ Variables and functions in MatLab

✦ Saving and loading data

9.1 MatLab
An introduction



MatLab
MATrix LABoratory by MathWorks

“is a numerical 
computer environment which 
allows matrix manipulations, 
plotting of  functions and data, 
implementation of algorithms”
[wiki]



MatLab free unipd license
https://asit.unipd.it/servizi/contratti-software-licenze/matlab

https://asit.unipd.it/servizi/contratti-software-licenze/matlab


MatLab desktop

Command 
window Workspace

Current 
folder

Command 
history

Where you 
write code

Latest code 
used

Variables in 
memory, their 
type, size, and 

content

Working 
directory

Change `current folder’ 
from here



Vectors and matrices

Row vector
Separated by 

commas

Column vector
Separated by 
semicolons

Matrix
Rows separated by 

semicolons, 
elements in a row 

separated by 
commas



Simple operations
Transpose

Sum
Entry by entry

Matrix 
product

Needs matching 
dimensions to 
work correctly

Entrywise
product

uses .*



Complex numbers
Imaginary 

unit

Vector
Complex 
valued

Hermitian
Applies complex 
conjugation and 

transpose

Transpose
uses .’



Useful tips
operator description

.* elementwise multiplication
* matrix multiplication
+ matrix sum
./ elementwise division
.^ elementwise power
^ matrix (squared) power
‘ Hermitian transform
.’ transpose

zeros(N) N x N zero matrix
zeros(N,M) N x M zero matrix

eye(N) N x N identity matrix
rand(N,M) N x M matrix with random entries



v

Save and load

save 
command

who List of active variables 
(ans is the output)

clears 
memory

load 
command



v

For and while loops

semicolon
To prevent 

output to be 
printed



v

MatLab help

Help 
command

Help button

Help



We could spend an entire day introducing MatLab, but 
there is plenty of available resources out there!

If you are linked to your university’s Campus-Wide 
License, you are automatically enrolled and can get
started at https://matlabacademy.mathworks.com/

Exercises
On MatLab intro

https://matlabacademy.mathworks.com/




Lecture 9
Introduction to MatLab

Tomaso Erseghe 



✦ Defining time and signal samples

✦ Drawing a figure

✦ Controlling the figure layout

✦ Multiple plots

9.2 Plots in MatLab
An introduction



Plotting a signal
A starting example
Define time 

samples
from 0 to 3 

spaced by .01

Plot

using the MatLab
function sin, here 

pi is 3.14…

Define signal 
samples



Plotting a signal
Using a script

Open a 
script

must be a .m file, 
with no spaces or 
special characters 

in the name

Plot

Close figures, clear 
variables and 

command window

Clear memory

Add grid, 
labels, and 

title

Run script



Plotting a signal
The result

xlabel

title

ylabel

grid



Multiple plots
Same window

Put one after 
another

Add 
legend



Multiple plots
Same window – an alternative

Plot the 
first

Hold the result, 
otherwise only 

the last plot 
command will 

appear

Plot the 
second



Multiple plots
Multiple windows
subplot(rows,cols,pos)

On a grid of size 
rows x cols 

positions the plot at 
pos



Defining a function

Function definition 
must appear at the 

end of the file 
(alternatively you 

put it in file sinc.m)

Correct for t=0 
to avoid nan

entrywise division 
is needed here!



Choosing the sampling rate

Your sampling 
spacing must be 

sufficiently small to 
capture the function 

shape!



Discrete-time signals

use stem 
instead of plot



Signal plots is a fundamental step that allows you to 
correctly represent your data.

Practice yourself with plots, multiple plots, and the 
representation of complex signals through their real 
and imaginary parts, or through absolute value and 
phase.

Pay particular attention in correctly defining the
sampling rate/spacing when representing continuous-
time signals

Exercises
On MatLab plots
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Fourier series: definition and properties
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✦ Orthogonal projections in a signal space

✦ The Fourier series

✦ Convergence properties

✦ Useful Fourier pairs

10.1 The Fourier series
for continuous-time periodic signals



Unveiling filters
A general idea in continuous-time

eigenfunction

g(t)
eigenvalue

We focus on periodic
signals and linear 

complex exponentials 
that are periodic Tp

!k = k 2"/Tp

By linearity we have



Complex exponentials
Periodic of period Tp

period



Main issue
Extracting the signals components

periodic Tp

signal components
Can be extracted using 

standard rules on vectors, 
appropriately rewritten for 
the periodic signal space



Orthogonal base decomposition
Complex vectors Periodic signals

x y

xy

b2

b1x1

xx2

Inner product

Projection along y

Decomposition wrt. an orthogonal basis

signal components



The orthogonal basis

orthogonality
energy

Orthogonality properties



The Fourier series

time domain Fourier domain
continuous-time 

and periodic

t
first 

harmonic

k!0

discrete-pulsation 
and aperiodic

projection onto 
an orthogonal 

basis
Fourier series

signal 
reconstruction

Fourier series 
coefficients

signal components

an alternative         
(and equivalent)    

signal representation



Invertibility conditions
From Sk to s(t) and viceversa

absolutely integrable + 
finite number of finite 
discontinuities + finite 
number of max and min
(in a period)

Dirichlet

finite energy (in a 
period)

Riesz-Fisher

finite number of delta 
functions (in a period)

plus any linear combinations of the above

Dirac



v

Weak convergence 
in norm – converges almost everywhere

partial sums

Gibbs 
phenomenon at 
discontinuities

wikipedia.org



Useful pairs

delta

time domain Fourier domain

dual pair

constant

constant

delta

rect

rectsinc

sinc

dual pair

exponential
delta
dual pair

sinusoid

exponential
delta



v

The periodic sinc

will prove this 
equivalence later on!



Extracting the coefficients of the Fourier series or 
evaluating the signal shape through its Fourier series
expression is a fundamental requirement of this course. 
You need to fully memorize the forward/backward rule 
and take particular care in evaluating integrals and/or 
series correctly.

You also need to memorize the fundamental Fourier 
pairs , as these are relevant in what follows.

Exercises
On the Fourier series





Lecture 10
Fourier series: definition and properties

Tomaso Erseghe 



✦ Time-reversal, conjugation, and symmetries 

✦ Linearity, time-shift, modulation, convolution, product, and 
derivative

✦ Mean value and power

✦ The minimum period issue (de-periodization)

10.4 Properties
Of the Fourier series



v

Symmetries

time-reversal
conjugation
symmetries even even

x(t) = x(-t)

time domain Fourier domain

Xk = X-k

odd odd
x(t) = -x(-t) Xk = -X-k

real Hermitian
x(t) = x*(t) Xk = X*-k

real + even real + even
x(t) = x*(t) = x(-t) Xk = X*-k = X-k

real + odd imaginary + odd
x(t) = x*(t) = -x(-t) Xk = X*-k = -X-k



v

Time-reversal + conjugation

u = -t

k = -(-k)



v

Properties

time-shift
modulation

convolution

time domain Fourier domain

Parseval’s theorem

product

derivative

mean value
power

dual pair

dual pair

linearity



v

Mean + Power

see exercises 
Lecture 2

power



v

Time-shift + modulation

u = t-t1one period

one period



v

Convolution + product

swap

swap



Derivative

swap

Fourier coefficients

derivati
ve

Inversion rule

the value at k=0 is lost since Y0=0, the 
others are multiplied by a known factor



v

Incorrect period case
De-periodization in the time domain

k!0

Sktrue period Tp

period T’p = NTp and  !1= !0/N

k!1

otherwise

!0

!0

m
us

t b
e 

eq
ua

l

interpolation 
effect



By correctly exploiting the properties of the Fourier 
series we can ease the calculation for a large variety 
of signals, but we first need to properly familiarize with 
their use.

Remember to always give a graphical representation 
to your signals, as this might very often become useful 
in correctly interpreting them.

Exercises
On the properties of the Fourier series
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Convolution and Fourier series in MatLab
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✦ Discrete-time convolution

✦ Approximate convolution in continuous-time

11.1 Convolution in MatLab
An overview



Discrete-time convolution
For limited-time signals

LTI system/filter

g(n)

Limited only if 
limited signals

nx Nx

x(k)

k ng Ng

g(k)

k

e(x*g) = [nx+ng,Nx+Ng] 



MatLab conv function

vector y = conv(x,g)

times ny = nx +ng : Nx +Ng

vector x
times tx = nx:Nx

vector g
times tg = ng:Ng

*

Assumption
g zero 

ouside the 
given 

samples
ng Ng

Assumption
x zero outside 

the given 
samples

nx Nx



MatLab conv function

vector x
times tx = nx:Nx

vector g
times tg = ng:Ng

vector y = conv(x,g)              
y = y(1:len(x))

times ny = nx +ng : Nx +ng

*

Assumption
g zero outside 

the given 
samples

cut the result in case nonzero outside

ng Ng

Assumption
x zero on 
the left

nx Nx
or g zero on 
the left and 
Ng-ng ≥Nx-nx



MatLab conv function

vector x
times tx = nx:Nx

vector g
times tg = ng:Ng

vector y = conv(x,g,’valid’)
times ny = nx +Ng : Nx +ng

*

Assumption
g zero outside 

the given 
samples

‘valid’ = keeps an even smaller part 

ng Ng
nx Nx

Assumption
x nonzero 

outside the 
given samples



Continuous-time convolution
An approximation

samples of y

samples of x 
and g

sampling 
spacing: must 
be sufficiently 

(very) small
y = T*conv(x,g)

ty = tx +tg : Tx + Tg



Get acquainted with MatLab convolution operator conv
and remind that when approximating a continuous-time 
convolution you will need to multiply by the sampling 
spacing T, to have T*conv(x,g) 

Remember that the output of the convolution is not 
always valuable everywhere, e.g., in case signals are 
not zero outside the interval where samples are given

Exercises
On the convolution in MatLab
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Convolution and Fourier series in MatLab
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✦ The Gibbs phenomenon

✦ Approximating the coefficients via numerical integration

11.4 Fourier series in MatLab
Some insights



Square wave
And the Gibbs phenomenon

Gibbs

truncated Fourier series



Triangular wave
And the absence of Gibbs phenomenon

truncated Fourier series

no Gibbs



Square wave
Numerically evaluated coefficients

approximated coefficients

perfect 
correspondence



Generic wave
Numerically evaluated coefficients

approximated coefficients

Gibbs at 
discontinuities



Observe the outcome of truncated Fourier series, and 
appreciate the presence of the Gibbs’ phenomenon at 
discontinuities.

Practice yourself with numerically evaluated Fourier 
coefficients, to be able to represent any periodic signal 
through its (truncated) Fourier series

Exercises
On Fourier series
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✦ Orthogonal projections in a signal space

✦ The discrete Fourier transform

✦ The fast Fourier transform

✦ Useful Fourier pairs and symmetry rule

12.1 The discrete Fourier transform
for discrete-time periodic signals



Unveiling filters
A general idea in discrete-time

eigenfunction

We focus on periodic
signals and linear 

complex exponentials 
that are periodic N    

!k = k 2"/N

By linearity we have

eigenvalue
g(n)



The orthogonal basis

N values in a period

N linearly independent 
signals = basis



Basis decomposition

x y

xy

b2

b1x1

xx2

Inner product

Projection along y

Decomposition wrt. an orthogonal basis

signal components



The Discrete Fourier transform (DFT)

time domain Fourier domain

projection onto an 
orthogonal basis

signal 
reconstruction

Fourier series coefficients
signal components

Fourier series

nN

discrete-phase    
and periodic

an alternative         
(and equivalent)    

signal representation
kN

discrete-time and 
periodic



DFT as a matrix product
Invertibility between Sk and s(n)

nN kN

s = F* S

collect the N samples 
of a period into vector 

s

collect the N samples 
of a period into vector 

S

S = (1/N) F s

DFT matrix 



v

The FFT
Fast Fourier transform

✦ The DFT matrix multiplication has 
complexity N2

✦ By exploiting the symmetries of F we 
can devise an algorithm of complexity 
N log2N called FFT

✦ For N=1000 we have N2=106

and N log2N=104

… 100 times faster

✦ FFT is among the Top 10 Algorithms of 
the 20th century

https://en.wikipedia.org/wiki/Fast_Fourier_transform

https://en.wikipedia.org/wiki/Fast_Fourier_transform


Useful pairs

delta

time domain Fourier domain

dual pair

constant

constant

delta

dual pair

exponential
delta

dual pair

sinusoid

exponential
delta

sincrect

rectsinc
K



v

DFT symmetry rule
One transform, two couples

ℱ

ℱ

An example



Extracting the coefficients of the DFT  or evaluating the 
signal shape through its DFT series expression is a 
fundamental requirement of this course. You need to 
fully memorize the forward/backward rule and take 
particular care in evaluating series correctly.

You also need to memorize the fundamental Fourier 
pairs , as these are relevant in what follows.

Exercises
On the DFT
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✦ Time-reversal, conjugation, and symmetries 

✦ Linearity, time-shift, modulation, convolution, product, and 
increment

✦ Mean value and power

✦ Minimum period issue

12.4 Properties
Of the DFT



v

Symmetries

time-reversal
conjugation
symmetries even even

x(n) = x(-n)

time domain Fourier domain

Xk = X-k

odd odd
x(n) = -x(-n) Xk = -X-k

real Hermitian
x(n) = x*(n) Xk = X*-k

real + even real + even
x(n) = x*(n) = x(-n) Xk = X*-k = X-k

real + odd imaginary + odd
x(n) = x*(n) = -x(-n) Xk = X*-k = -X-k



v

Time-reversal + conjugation

m = -n



v

Properties

time-shift
modulation

convolution

time domain Fourier domain

Parseval’s theorem

product

increment

mean value
power

dual pair

dual pair

linearity



v

Mean + Power

see exercises 
Lecture 3

K



v

Increment

increme
nt

Inversion rule

the value at k=0 (mod N) is lost since Y0=0, 
the others are multiplied by a known factor



v

Incorrect period case
De-periodization in the time domain

2"
#

Sktrue period N

interpolation 
effect

m
us

t b
e 

eq
ua

l

period N’ = KN

2"

2"
# 2"



By correctly exploiting the properties of the DFT  we 
can ease the calculation for a large variety of signals, 
but we first need to properly familiarize with their use.

Please be aware that DFT pairs are in general more 
cumbersome to deal with, and that only simple cases 
will be considered at the exam. 

Exercises
On the properties of the DFT
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✦ The Fourier transform

✦ Convergence properties

✦ Useful Fourier pairs 

✦ Symmetry rule and scale property

13.1 The Fourier transform
for continuous-time aperiodic signals



Defining a Fourier transform
From periodic to aperiodic
1/Tp

!0 à 0

Tp à ∞
!0 à 0

Tp à ∞



The Fourier transform

time domain Fourier domain

projection onto an 
orthogonal basis

signal 
reconstruction

Fourier transform
signal components

continuous-pulsation    
and aperiodic

an alternative         
(and equivalent)    

signal representation

continuous-time 
and aperiodic

frequency f=!/2" [Hz]

t [s] ! [rad/s]



Invertibility conditions
From S(!) to s(t) and viceversa

absolutely integrable + 
finite number of finite 
discontinuities + finite 
number of max and min

Dirichlet

finite energy Riesz-Fisher

finite number of delta 
functions

plus any linear combinations of the above

Dirac

Convergence in norm – converges 
almost everywhere



Useful pairs

delta

time domain Fourier domain

dual pair

constant

constant

delta

dual pair

exponential
delta

dual pair

sinusoid

exponential
delta

sincrect

rectsinc



More pairs time domain Fourier domain

dual pair

squared sinctriangle
trianglesquared sinc

dual pair

hyperbolasign
signhyperbola

dual pair

unit step
unit step



v

Symmetry rule
One transform, two couples

ℱ

ℱ
An example



v

Scale property

scale

Proof
inverse scale in the pulsation domain

An example



Deriving the Fourier transform  or evaluating the signal 
shape through the inverse Fourier transform is a 
fundamental requirement of this course. You need to 
fully memorize the forward/backward rule and take 
particular care in evaluating integrals correctly.

You also need to memorize the fundamental Fourier 
pairs , as these are relevant in what follows.

Exercises
On the Fourier transform
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✦ Time-reversal, conjugation, and symmetries 

✦ Linearity, time-shift, modulation, convolution, product, 
derivative, product by t, integration

✦ Mean value and power

13.4 Properties
Of the Fourier transform



v

Symmetries

time-reversal
conjugation
symmetries even even

x(t) = x(-t)

time domain Fourier domain

X(j!) = X(-j!)

odd odd
x(t) = -x(-t) X(j!) = -X(-j!)

real Hermitian
x(t) = x*(t) X(j!) = X*(-j!)

real + even real + even
x(t) = x*(t) = x(-t) X(j!) = X*(-j!) = X(-j!)

real + odd imaginary + odd
x(t) = x*(t) = -x(-t) X(j!) = X*(-j!) = -X(-j!)



v

Time-reversal + conjugation

u = -t



v

Properties

time-shift
modulation

convolution

time domain Fourier domain

Parseval’s theorem

product

derivation

area
energy

dual pair

dual pair

linearity

product by t
dual pair

integration



v

Convolution + product

swap

swap



v

Area + Energy



Derivative

swap derivati
ve

Inversion rule

the value at !=0 is lost since Y(j0)=0, the 
others are multiplied by a known factor

Fourier transform No need to correct for 
a finite value at !=0



v

Integration

area

integrati
on



Through the properties of the Fourier transform  we 
can ease the calculation for a large variety of signals, 
but we first need to properly familiarize with their use.

The Fourier transform is by far the case where we can 
deal with the most complex waveforms, also thanks to 
the fact that managing integrals is easier than 
managing series. 

Exercises
On the properties of the Fourier transform
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✦ De-periodization property

✦ Periodic repetition and sampling properties

14.1 Relations among Fourier transforms
Link between Fourier transform, Fourier series, and DFT



v

De-periodisation
From the Fourier series to the transform

The Fourier 
transform of a 
periodic signal

!

k



Periodic repetition
From the Fourier transform to the series

↓

continuous-time 
aperiodic

continuous-
pulsation 
aperiodic

continuous-time 
periodic Tp

discrete-pulsation 
aperiodic

repTp



A proof
From the Fourier transform to the series

u = t - mTp

swap



Sampling
From the Fourier series to the DFT

↓

repN

discrete-time 
periodic N

continuous-time 
periodic Tp

discrete-phase 
aperiodic

discrete-phase 
periodic N



A proof
From the Fourier series to the DFT

k = ℓ - mN



v

Combining the two

continuous-time 
aperiodic

continuous-
pulsation 
aperiodic

↓

repN

discrete-time 
periodic N

discrete-phase 
periodic N

repTp

↓

From the Fourier transform to the DFT



Evaluating the Fourier series or the DFT coefficients
from a Fourier transform pair can be a much easier 
way of calculating the transforms. 

You need to get acquainted with this powerful rule, as it 
might turn out very useful.

Exercises
On the relations among Fourier transforms
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✦ Filters in the Fourier domain

✦ Selective filters

✦ Response to sinusoids and exponentials

14.4 Filters in continuous-time
A Fourier transform perspective



v

Filters in the Fourier domain

h(t)

Continuous-time aperiodic

x



v

Filters in the Fourier domain

h(t)

Continuous-time periodic

x

!!



v

Series

h1 h2
x(t) y(t)

H = H1 H2

xX(j!) x

H1(j!) H2(j!)

Y(j!)



v

Parallel

h1

h2

+x(t) y(t)

H = H1 + H2

x

X(j!)
x

H1(j!)

H2(j!)

Y(j!)+



v

Feedback

h1

h2

-x(t) y(t)

x

X(j!)
x

H1(j!)

H2(j!)

Y(j!)

z(t)

-
Z(j!)

Z = H2 Y
Y = H1 (X-Z)

= H1 (X- H2Y)

H =     H1
I + H1H2

= H X



v

Complex exponentials

h(t)

x

! !

complex constant



Sinusoids through a real filter

h(t)

x

real

Hermitian

!
!

amplification phase



v

Selective (ideal) filters

all non 
BIBO 
stable

cutoff
pulsation

band

center
pulsation

low-pass band-pass

cutoff
pulsation

high-pass



v

Polishing action of a filter
With a band-pass filter



v

Real filters
With BIBO stability properties

low-pass



Through the Fourier transform approach  we can 
ease the understanding and calculation of a filtering 
operation.

Carry in mind the rule on complex exponentials and 
sinusoids, as it might turn out to be very useful in many 
practical cases. 

Exercises
On continuous-time filters





Lecture 15
The discrete-time Fourier transform: definition, 
properties, relation with other transforms

Tomaso Erseghe 



✦ The discrete-time Fourier transform

✦ Useful Fourier pairs

✦ Time-reversal, conjugation, and symmetries 

✦ Linearity, time-shift, modulation, convolution, product, 
increment, product by n, and current sum

✦ Mean value and power

15.1 The discrete-time Fourier transform
for discrete-time aperiodic signals



Swapping the domains
From periodic to discrete-time

Fourier series Fourier series 
coefficients

swap
! = -t

Fourier series

Fourier series 
coefficients



The discrete-time Fourier transform (DTFT)

time domain Fourier domain
discrete-time and 

aperiodic
!

n

continuous-phase 
and periodic

projection onto an 
orthogonal basis

Fourier series

an alternative         
(and equivalent)    

signal representation

Fourier series 
coefficients

2"



Useful pairs

delta

time domain Fourier domain

dual pair

constant
constant
delta

rect

rectsinc

sinc

dual pair

exponential
delta

dual pair

sinusoid

exponential
delta



v

Symmetries

time-reversal
conjugation
symmetries even even

x(n) = x(-n)

time domain Fourier domain

X(ej!) = X(e-j!)

odd odd
x(n) = -x(-n) X(ej!) = -X(e-j!)

real Hermitian
x(n) = x*(n) X(ej!) = X*(e-j!)

real + even real + even
x(n) = x*(n) = x(-n) X(ej!) = X*(e-j!) = X(e-j!)

real + odd imaginary + odd
x(n) = x*(n) = -x(-n) X(ej!) = X*(e-j!) = -X(e-j!)



v

Properties

time-shift
modulation

convolution

time domain Fourier domain

Parseval’s theorem

product

area
energy

dual pair

dual pair

linearity

product by n
dual pair

current sum

increment



v

Area + Energy

see exercises 
Lecture 3



v

Increment

increme
nt

Inversion rule

the value at !=0 (mod 2") is lost since Y(ej0)=0, 
the others are multiplied by a known factor

No need to correct for a 
finite value at !=0 (mod 2") 



v

Current sum

area

Current 
sum



The discrete-time Fourier transform is evidently 
closely linked to the Fourier series, with similar 
properties and signal pairs. However, these slightly differ 
in their expression, and, moreover, new properties are 
available for the DTFT. Memorize the forward/backward 
rule and take particular care in evaluating integrals 
and/or series correctly.

You also need to memorize the fundamental Fourier 
pairs , as these are relevant in what follows.

Exercises
On the discrete-time Fourier transform





Lecture 15
The discrete-time Fourier transform: definition, 
properties, relation with other transforms

Tomaso Erseghe 



✦ De-periodization property of the DTFT

✦ Periodic repetition and sampling properties

15.4 Relations among Fourier transforms
Link between Fourier transform, DTFT, and DFT



v

De-periodisation
From the DFT to the DTFT

The DTFT of a 
periodic signal kN

!2"



Sampling
From the Fourier transform to the DTFT

↓
continuous-time 

aperiodic
discrete-time T 
aperiodic

continuous-phase 
periodic 2!

rep2!
scale 

T

continuous-pulsation 
aperiodic



Sampling for T=1
From the Fourier transform to the DTFT

↓
continuous-time 

aperiodic

continuous-pulsation 
aperiodic

discrete-time T=1 
aperiodic

continuous-phase 
periodic 2!

rep2!



A proof
From the Fourier transform to the DTFT

swap

swap



Periodic repetition
From the DTFT to the DFT

↓

repN

discrete-time 
periodic N

discrete-time 
aperiodic

continuous-phase 
periodic 2!

discrete-phase 
periodic N



A proof
From the DTFT to the DFT

ℓ = n - mN



v

Combining the two

continuous-time 
aperiodic

↓

discrete-time 
periodic N

discrete-phase 
periodic N

repN

↓

From the Fourier transform to the DFT

rep2!
scale 

T

continuous-
pulsation 
aperiodic



Evaluating the discrete-time Fourier transform from a 
Fourier transform pair can be a much easier way of 
calculating the transforms. 

You need to get acquainted with this powerful rule, as it 
might turn out very useful.

Exercises
On the relations among Fourier transforms





Lecture 16
Filters in discrete-time and wrap-up un 
Fourier transforms

Tomaso Erseghe 



✦ Filters in the Fourier domain

✦ Selective filters

✦ Response to sinusoids and exponentials

16.1 Filters in discrete-time
A Fourier transform perspective



v

Filters in the Fourier domain

h(n)

Discrete-time aperiodic

x

!-!

!-! !-!



v

Filters in the Fourier domain

h(n)

Discrete-time periodic

x

!-!

!-! !-!



v

Series

h1 h2
x(n) y(n)

H = H1 H2

xX(ej!) x

H1(ej!) H2(ej!)

Y(ej!)



v

Parallel

h1

h2

+x(n) y(n)

H = H1 + H2

x

X(ej!)
x

H1(ej!)

H2(ej!)

Y(ej!)+



v

Complex exponentials

h(n)

x

complex constant

2! 2!



Sinusoids through a real filter

h(n)

x

real

Hermitian

amplification phase

!-!
!-!



v

Selective (ideal) filters

non BIBO stable

low-pass

--

cutoff
phase periodic

BIBO stable low-pass

duty cycle



Through the Fourier transform approach  we can 
ease the understanding and calculation of a filtering 
operation.

Carry in mind the rule on sampled complex 
exponentials and sinusoids, as it might turn out to be 
very useful in many practical cases. Be aware of the 
fact that now the Fourier transform is periodic, and that 
a sampled complex exponential with phase !0 is 
equivalent to one with phase !0 + 2" k

Exercises
On discrete-time filters





Lecture 16
Filters in discrete-time and wrap-up un 
Fourier transforms

Tomaso Erseghe 



✦ Four signal domains, four transforms

✦ Four versions of each property or Fourier pair

16.4 Wrap-up on Fourier transforms
On their similarity



Four classes of signals
discretecontinuous

aperiodic
periodic

t

s(t)

sampling

periodic
repetition



Four transforms

Fourier series

Fourier transform DTFT

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic

! t n

n

"

k #$
%

tk!0



Four modulation properties

Fourier series

Fourier transform DTFT

DFT

!0 t n

n

"0

m #$
%

tm!0

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic



Four convolution properties

Fourier series

Fourier transform DTFT

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic



Four derivative properties

Fourier series

Fourier transform DTFT

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic



Four area/energy properties

Fourier series

Fourier transform DTFT

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic



Four delta transforms

Fourier series

Fourier transform

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic

DTFT



Four rect transforms

Fourier series

Fourier transform

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic

DTFT



Four sinc transforms

Fourier series

Fourier transform

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic

DTFT



Four links: 1) sampling

Fourier series

Fourier transform

DFT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic

DTFT

↓
rep2!

scale 
T

↓

repN



Four links: 2) periodic rep

Fourier series
Fourier transform

D
FT

discrete-timecontinuous-time

tim
e aperiodic

tim
e periodic

D
TFT

repTp ↓ ↓repN



Try memorizing the similarities among Fourier 
transforms at your best, since this can ease your 
understanding. 

Solve some review exercises to check your 
comprehension level.

Exercises
On all the Fourier transforms





Lecture 17
Interpolation and Shannon’s Sampling Theorem

Tomaso Erseghe 



✦ The need for interpolation

✦ Interpolation in the time-domain

✦ Correct interpolation property

17.1 Interpolation
A time-domain perspective



v

The need for interpolation

↓

scale T 
rep2!

?

scale 1/T 
low-pass 

filter

2!

How to reconstruct a signal?

no aliasing

how to connect 
values?

here is clearer

interpolation

!/T-!/T



v

Pre-filtering

↓

scale T 
+  

rep2!

h(t)

2!

Real-world samplers avoid aliasing

low-pass 
"c=!/T

x

!/T-!/T

!/T-!/T 2!



v

Interpolation filter
To connect samples

↑h(t)



v

Correct interpolation
To really connect samples



v

Filter examples
Satisfying the correct interpolation

holder

linear interpolation

ideal interpolation

rect(t/T)

triang(t/T)

sinc(t/T)



v

Correct interpolation
In the Fourier domain



v

Filter examples
Satisfying the correct interpolation

T rect(!T/2") Tsinc(t/T)

ircos(t/T) T rcos(!T/2") T

"/T

"/T-"/T

-"/T

½T



We need to introduce further concepts in the Fourier 
domain before being able to fully manage interpolation

No exercises J
On interpolation in the time-domain





Lecture 17
Interpolation and Shannon’s Sampling Theorem

Tomaso Erseghe 



✦ Interpolation in the Fourier domain

✦ Series of sampling and interpolation

✦ Shannon’s Sampling Theorem

17.2 Shannon’s Sampling Theorem
An application of interpolation



v

Interpolation 
In the Fourier domain

↑h(t)

scale 
1/T x

2!/T

2!/T
2! "

#

#



A proof

swap



v

Sampling + interpolation 
In the Fourier domain

↑h(t)

scale 
1/T x

↓

scale T 
rep2!



v

Unveiling the series

xrep2!/T



Sampling Theorem
Shannon’s base-band version
A continuous-time signal s(t) can be perfectly 
recovered from its samples x(n) = s(nT), with 
sampling spacing T, under the condition that 
its Fourier transform S(j!) has an extension 
e(S) contained in the interval [-"/T, "/T]

↓ ↑h(t)

h(t)=sinc(t/T)T



A proof

x

!/T-!/T

2!/T
"

rep2!/T

rect("T/2!)

2!/T "

no aliasing



Generalisation

x

!0+"/T!0-"/T

!0+2"/T
!

rep2"/T

rect((!-!0)T/2")

!0 !

no aliasing

!0

!0

To pass-band signals



Sampling Theorem
Its pass-band version
A continuous-time signal s(t) can be perfectly 
recovered from its samples x(n) = s(nT), with 
sampling spacing T, under the condition that its 
Fourier transform S(j!) has an extension e(S) 
contained in the interval [!0-"/T, !0+"/T]

↓ ↑h(t)

h(t)=sinc(t/T) exp(j!0t)T



Shannon’s Sampling Theorem and the general 
concept of sampling and interpolation are key tools in 
signal processing that must be well understood.

Test your comprehension level with the exercises 
proposed.

Exercises
On sampling and interpolation





Lecture 18
Fourier transforms in MatLab

Tomaso Erseghe 



✦ Sampled signals and DFT

✦ The fft and fftshift functions

18.1 The Fourier transform in MatLab
An overview



The Fourier transform

!0 = 2"/(NT)

2"/T

N

N!0n

n

N

NT !

"

k!0

#

sampling

periodic rep

periodic rep

sampling

X(jk!0)

X(j!) 2"/T > e(X)

No aliasing 
condition

Y(ej#)
X(j#/T)/T
No aliasing

2"



MatLab fft function
From time to Fourier samples

x % signal samples

T % sampling spacing

N = length(x); % samples length

t = (0:N-1)*T; % time samples

X = ifftshift(T*fft(x)); % Fourier samples

! = (-round((N-1)/2):round(N/2)-1) *2*pi/(N*T);          
% pulsations (in a period)

-N/2: N/2-1 
N even -(N-1)/2: (N-1)/2

N odd



Corrections for time-samples
Using the time-shift dual

x % signal samples

T % sampling spacing

N = length(x); % samples length

t = (0:N-1)*T + t0; % time samples starting at t0

X = ifftshift(T*fft(x)); % Fourier samples

! = (-round((N-1)/2):round(N/2)-1) *2*pi/(N*T);          
% pulsations (in a period)

X = X .* exp(-1j*!*t(1)); % Modulation effect



Get acquainted with MatLab Fourier operators fft and 
fftshift and learn how to correctly calculate Fourier 
transforms.

Check that you get the analytical expression of the 
Fourier transform for known signal couples.

Exercises
On the Fourier transform in MatLab





Lecture 18
Fourier transforms in MatLab

Tomaso Erseghe 



✦ Presence of spectral lines

✦ Estimating the period from the Fourier domain

✦ Filtering sinusoidal noises

18.4 Periodic signals in MatLab
Some insights on their Fourier transform



Periodic signals
A view in the Fourier domain

Fourier domain spectral lines

Windowed signal

Periodic signal

!0



Increasing precision
In the Fourier domain

x = [x, zeros(1,2*length(x))]

Natural Fourier 
sampling

Increased precision 
by zero padding



Filtering
In the Fourier domain

1. transform

2. high-pass filter

3. inverse 
transform

distortion



Observe the outcome of quasi-periodic signals like the 
ECG signal displaying spectral lines! Try estimating its 
period from the Fourier domain.

Practice yourself with filters in the Fourier domain by 
removing a sinusoidal distortion applied to an ECG 
signal

Exercises
On ECG signal processing





Lecture 19
Laplace transform: definition and properties

Tomaso Erseghe 



✦ The Laplace transform

✦ Region of convergence

✦ Useful Laplace pairs 

✦ Properties of the Laplace transform

19.1 The Laplace transform
for continuous-time aperiodic signals



The Laplace transform

time domain

projection onto 
an orthogonal 

basis

continuous-time 
and aperiodic

Laplace transform

ROC = region of 
convergence

complex valued 

signal 
reconstruction

the Fourier 
transform 

exists in the 
imaginary axis

analytic in the ROC

+ ROC

Laplace domain
continuous and 
complex s

an alternative         
(and equivalent)    

signal representation



Interpretation
For a causal signal

Fourierx

damping effect                         
(the signal can also increase in t) 

Inverse 
Fourier x

Inverse transform



ROC shapes
causal signals anti-causal signals

poles                   
(where the transform 
expression diverges)

s2 s1s1s2

ROC on the 
right of the 
rightmost 

pole!

ROC on the 
left of the 
leftmost 

pole!



General ROC shape

s1 s2

vertical, limited 
by poles

mixed causal and 
anti-causal signals



Useful pairs

delta

time domain Laplace domain

constant

exponential

sinusoids

unit step
ramp

delta derivatives

does not exist!

does not exist!

ROC

one-sided exp
exponential ramp



v

Properties

time-shift
modulation

convolution

time domain Laplace domain

derivation

dual pair

linearity

product by t
dual pair

integration

scale
conjugation

time-reversal



v

Time-shift + modulation

u=t-t0



v

Convolution + product-by-t

swap

time-shift

swap



v

Derivation + integration

swap

by convolution

the exact inverse!



Deriving the Laplace transform  through its forward rule 
is a fundamental requirement of this course. 

You need to fully memorize the forward rule and the 
Laplace properties, and take particular care in 
evaluating integrals correctly.

You also need to memorize the fundamental Laplace 
pairs , as these are relevant in what follows.

Exercises
On the Laplace transform





Lecture 19
Laplace transform: definition and properties

Tomaso Erseghe 



✦ Definition

✦ Properties

✦ Inverting fractional Laplace expressions

19.4 The unilateral Laplace transform
For causal signals



The unilateral Laplace transform

time domain

projection onto 
an orthogonal 

basis

continuous-time 
and aperiodic

rightmost ROC

complex valued 

signal 
reconstruction

the Fourier 
transform 

exists in the 
imaginary axis

analytic in the ROC

Laplace domain
continuous and 
complex s

an alternative         
(and equivalent)    

signal representation

(causal part)
t > 0- only



v

Properties

modulation

convolution

time domain Laplace domain

derivation

linearity

product by t

integration

scale
conjugation

all time-domain signals are causal!!!



v

Derivation

by parts

What if we integrate?

the info on the 
starting level 

is lost



v

Derivation of order k

First derivative
Second derivative

Third derivative

kth derivative



v

Rational functions
Inverting a rational Laplace transform

Improper version (m≥n)

Proper counterpart (m≥n)

reminder
quotient

delta  
impulses in the 
time-domain

?



v

Proper rational functions

distinct poles

m<n

zeros

partial 
fraction

residue

The case of distinct poles 



v

Proper rational functions

partial 
fractions

The general case
distinct 
poles

pole 
multiplicity

m<n

pole index multiplicity index
residues

highest degree case



v

An example

Inversion by known 
transforms

causal signal

multiplicity 2



v

General inverse transform

Inversion by known 
transforms

causal signal

Im[s]

Re[s]

x
x

x

x
x p1

p2
p3

p4

p5



Through the properties of the Laplace transform  we 
can easily calculate the causal counterpart to any 
rational expression of the unilateral Laplace transform.

You must get acquainted with this inversion as it will 
be the basis for solving systems of linear differential 
equations in the next lecture. 

Exercises
On inverting rational Laplace transforms





Lecture 20
Laplace transform: application to differential equations

Tomaso Erseghe 



✦ Examples of differential equations

✦ Solution via the transfer function and initial conditions

20.1 Differential equations
Solved through the Laplace transform



Differential equations
A linear (constant) model

differential 
system

differential equation

input signal (known)
initial conditions (known)



RC filter

differential equation

An example from electric circuits



Spring-mass system

differential equation

An example from physics
y(t)

F(t)         



Laplace counterpart
Of a differential equation

unilateral 
Laplace 
transform

bm(s) xm-1(s)

yn-1(s)
an(s)



Reinterpreting the result
Of a differential equation

inverse unilateral 
Laplace

transfer 
function 
H(s)

natural response Yn(s)      
(initial conditions only)forced 

response 
Yf(s)

h(t) +
LTI causal



v

BIBO stability conditions

h(t) +
LTI causal

1. Filter h(t) BIBO stable

2. Natural response yn(t) limited

Of a differential system

• m≤n, otherwise delta derivatives
• Re[pi]<0, otherwise h(t) not 

absolutely integrable

• m≤n, otherwise deltas appear
• Re[pi]<0, guarantees a limit



v

More on BIBO stability

Filter h(t) BIBO stable à Re[pi]<0

Of a proper rational transfer function

it exists 
in the 

imaginary 
axisconverges

Re[pi]<0 à Filter h(t) BIBO stable



v

BIBO stability properties

h(t)

At steady state t≫0

natural 
response 

vanishes for 
large t

at t≫0

BIBO stable

h(t)

at t≫0

BIBO stable, 
and real

impulse 
response 

vanishes for 
large t



Solving differential equations by use of the       
Laplace transform  is a fundamental requirement of 
this course. 

You need to fully memorize the method, and take 
particular care in applying it correctly.

You also need to memorize the fundamental Laplace 
pairs , as these are relevant in what follows.

Exercises
On differential equations





Lecture 20
Laplace transform: application to differential equations

Tomaso Erseghe 



✦ Definition and properties

✦ Solution to difference equations

20.4 The unilateral Z transform
For causal discrete-time signals



Difference equations
Or discrete differential equations

difference 
system

differential equation

input signal (known)
initial conditions (known)



The ARMA model
Auto-regressive moving-average

b0

z-1

z-1

z-1

z-1

z-1

z-1

bm

b2

b1 a1

a2

an

-

a0=1x(k) y(k)

FIR = finite impulse
response

IIR = infinite 
impulse response

fe
ed

ba
ck

 
lo

op

delay 
(memory)

x(k-1)

x(k-2)

x(k-m)

y(k-1)

y(k-2)

y(k-n)



The unilateral Z transform

time domain

projection onto 
an orthogonal 

basis

discrete-time and 
aperiodic

outmost 
ROC

signal 
reconstruction

the Fourier 
transform 

exists in the 
unit circle

Z domain
continuous and 
complex z

an alternative         
(and equivalent)    

signal representation

(causal part)
n ≥ 0 only

0    

complex valued 

analytic in the ROC

x
x

x

x
x

poles



v

Properties

modulation
convolution

time domain Z domain

linearity

product by n

all time-domain signals are causal!!!

time-shift



v

Modulation + time-shift

n

x(n) x(n-n0)

n



v

Convolution + product-by-n

-n z-n-1

0    

0    



Useful pairs

delta

time domain Z domain

unit step
ramp

shifted delta

ROC

one-sided exp
exponential ramp



Z counterpart
Of a difference equation

unilateral Z 
transform

bm(z) xm-1(z)

yn-1(z)
an(z)



Reinterpreting the result
Of a difference equation

inverse unilateral 
Z transform

h(k) +
LTI causal

transfer 
function 
H(z)

natural response Yn(z)      
(initial conditions only)forced 

response 
Yf(z)

fractional 
functions in z-1



v

BIBO stability conditions

h(k)

LTI causal

1. Filter h(k) BIBO stable

2. Natural response yn(k) limited

Of a difference system

• |pi|<1, otherwise h(k) not 
absolutely integrable

• |pi|<1, guarantees a limit

+

here deltas are not a problem



Solving difference equations by use of the Z transform  
is a fundamental requirement of this course. 

You need to fully memorize the method, and take 
particular care in applying it correctly.

You also need to memorize the fundamental Z pairs , 
as these are relevant in what follows. Beware of the fact 
that now  fractional expressions are in z-1 , and that 
particular care is needed to correctly identify the poles

Exercises
On difference equations




