
FOUNDATIONS OF SIGNALS AND SYSTEMS
1.2 Homework assignment

Prof. T. Erseghe

Exercises 1.2

Please review your knowledge on complex numbers, and in particular on their
representation in either Cartesian form (real and imaginary part) or polar form
(absolute value and phase), namely

x = ax + jbx = |x| ej'x = |x| cos('x) + j|x| sin('x) ,

where j is the imaginary unit, and where we denoted <[x] = ax and =[x] = bx.
Keep in mind the relations

|x| =
p
a2x + b2x , 'x = arctan( bxax

) +
n 0 ax � 0
⇡ ax < 0

as well as the concept of complex-conjugate

x⇤ = ax � jbx = |x| e�j'x .

Recall the product rules

x · y = |x| |y| e'x+'x , |x · y| = |x| · |y| ,

as well as Euler’s indentities

cos(↵) = 1
2e

j↵ + 1
2e

�j↵ , sin(↵) = 1
2j e

j↵ � 1
2j e

�j↵ ,

that will be extensively used during the course. Remember that, a complex
exponential might also have a real-valued part at the exponent, that is

x = e↵+j� = e↵ · ej� , |x| = ea , 'x = � .

Then solve the following:

1. write e�j ⇡
2 , jej3⇡, and

p
2 ej

⇡
4 in Cartesian form;

2. write 1 + j, �3j, and �2 in polar form;

3. write 1/(3� 2j) in Cartesian form;

4. given x = [ej
⇡
3 � cos(⇡3 )] · e

�(2+j ⇡
3 ) evaluate its complex-conjugate x⇤ in

Cartesian and polar form;



Solutions.

1. For the first value we have

x1 = ej
⇡
2 = cos(�⇡

2 ) + j sin(�⇡
2 ) = 0 + j ·�1 = �j .

For the second, it is

x2 = jej3⇡ = j · [cos(3⇡) + j sin(3⇡)] = j · [�1 + j0] = �j .

since, by the periodicity of the phase, it is ej3⇡ = ej(3⇡�2⇡) = ej⇡ = �1.
For the third value we finally have

x3 =
p
2 ej

⇡
4 =

p
2 · [cos(⇡4 ) + j sin(⇡4 )] =

p
2 · [ 1p

2
+ j 1p

2
] = 1 + j .

2. For the first value x1 = 1 + j we have

|x1| =
p
1 + 1 =

p
2 , '1 = arctan( 11 ) =

⇡
4 .

For the second value x2 = 0� 3j we have

|x2| =
p
0 + 9 = 3 , '2 = arctan(�3

0 ) = arctan(�1) = �⇡
2 .

Finally, for the third value x3 = �2 + j0 we have

|x3| =
p
0 + 4 = 2 , '3 = arctan( 0

�1 ) + ⇡ = arctan(0) + ⇡ = ⇡ .

3. In this case it is x = 1/y for y = 3�2j, so that we can multiply numerator
and denominator by y⇤ to have

x =
1

y
· y

⇤

y⇤
=

y⇤

|y|2 =
3 + 2j

32 + (�2)2
= 3

13 + j 2
13 .

4. We can write the complex conjugate in the form (where j maps into �j)

x⇤ = [e�j ⇡
3 � cos(⇡3 )] · e

�(2�j ⇡
3 )

= [cos(�⇡
3 ) + j sin(�⇡

3 )� cos(⇡3 )] · e
�(2�j ⇡

3 )

= �j sin(⇡3 ) · e
�(2�j ⇡

3 )

= �j sin(⇡3 ) · [e
�2 · ej ⇡

3 ]

= �je�2 sin(⇡3 ) e
j ⇡

3

In case we are interested to the Cartesian form, we have

x⇤ = �je�2 sin(⇡3 ) [cos(
⇡
3 ) + j sin(⇡3 )]

= sin2(⇡3 ) e
�2 � cos(⇡3 ) sin(

⇡
3 ) e

�2

In case we are, instead, interested in the polar form we simply need to
recall that �j = e�j ⇡

2 , to have

x⇤ = e�2 sin(⇡3 ) e
j ⇡

3 e�j ⇡
2 = e�2 sin(⇡3 ) e

j(⇡
3 �⇡

2 ) = e�2 sin(⇡3 ) e
�j ⇡

6 ,

so that |x⇤| = |x| = e�2 sin(⇡3 ) and '(x⇤) = �'(x) = �⇡
6 .



FOUNDATIONS OF SIGNALS AND SYSTEMS
1.4 Homework assignment

Prof. T. Erseghe

Exercises 1.4

Please review your knowledge on integrals and series with complex numbers,
and in particular the geometric series equivalences

N�1X

n=0

↵n =
1� ↵N

1� ↵
,

1X

n=0

↵n =

⇢
1

1�↵ , |↵| < 1
indeterminate , otherwise

and the complex exponential integral
Z t1

t0

e↵t dt =
e↵t

↵

���
t1

t0
=

e↵t1 � e↵t0

↵
,

which are valid for complex ↵. Then solve the following:

1. Evaluate the complex integral

x(!) =

Z 1
2

� 1
2

ej!t dt

as a function of the real value !, and write the result in the Cartesian
form.

2. Evaluate the complex series

x(�, ✓) =
1X

n=0

e(��j✓)n

as a function of the real values � and ✓, and write the result in the Carte-
sian form.

3. Evaluate the two complex series

x1(✓) =
9X

n=0

e�j✓n , x2(✓) =
0X

n=�9

e�j✓n

as a function of the real value ✓.

4. Evaluate the complex series

x(✓) =
9X

n=�9

e�j✓n

as a function of the real value ✓. Although this might be challenging, try
to write the result in the Cartesian form.



Solutions.

1. We have

x(!) =

Z 1
2

� 1
2

ej!t dt =
ej!t

j!

���
1
2

� 1
2

=
ej

!
2 � e�j !

2

j!

=
2j sin(!2 )

j!
=

2 sin(!2 )

!
,

where we used the primitive of a complex exponential with ↵ = j!, as
well as Euler’s identity on the sinus. The result is real-valued.

2. This is a in the form of a geometric series with ↵ = e��j✓, that is

|↵| = |e� e�j✓| = |e� | · |e�j✓| = e� · 1 = e� ,

so that we have |↵| < 1 only for � < 0. Therefore, if � � 0 then the series
does not converge, if instead � < 0 we have

x(�, ✓) =
1

1� ↵
=

1

1� e��j✓
=

1

1� cos(✓) e� + j sin(✓) e�
.

In order to identify the real and imaginary parts, we need to multiply
numerator and denominator by the complex conjugate version of the de-
nominator, that is

x(�, ✓) =
1

y
=

1

y
· y

⇤

y⇤
=

y⇤

|y|2

=
1� cos(✓) e� � j sin(✓) e�

(1� cos(✓) e�)2 + (� sin(✓) e�)2

=
1� cos(✓) e� � j sin(✓) e�

1� 2 cos(✓) e� + e2�

=
1� cos(✓) e�

1� 2 cos(✓) e� + e2�
� j

sin(✓) e�

1� 2 cos(✓) e� + e2�
.

3. The first sum is a finite geometric sum with ↵ = e�j✓ and therefore we
have

x1(✓) =
0X

n=0

e�j✓n =
1� e�j10✓

1� e�j✓
.

The second sum is almost written in the form of a finite geometric sum,
but the range is negative. We can, however make it positive by replacing
variable n with m = �n, that is

x2(✓) =
0X

n=�9

e�j✓n =
9X

m=0

ej✓m =
1� ej10✓

1� ej✓
.



4. We can exploit the result of the previous exercise, to write

x(✓) = x1(✓) + x2(✓)� 1 =
1� e�j10✓

1� e�j✓
+

1� ej10✓

1� ej✓
� 1

where the contribution �1 takes into account that we are counting twice
the contribution for n = 0. By taking the common denominator, and by
taking some care in rearranging the result, we have

x(✓) =
(1� e�j10✓)(1� ej✓) + (1� ej10✓)(1� e�j✓)� (1� ej✓)(1� e�j✓)

(1� ej✓)(1� e�j✓)

=
�ej10✓ � e�j10✓ + ej9✓ + e�j9✓

2� ej✓ � e�j✓

=
cos(9✓)� cos(10✓)

1� cos(✓)

=
�2 sin( 192 ✓) sin(� 1

2✓)

�2 sin( 12✓) sin(�
1
2✓)

=
sin( 192 ✓)

sin( ✓2 )
,

where we used the formula cos a�cos b = �2 sin(a+b
2 ) sin(a�b

2 ) to compact
the result. Alternatively, we can work on the series and introduce a new
variable m with n = m� 9, so that the range of m is [0, 18], to have

x(✓) =
18X

m=0

e�j✓(m�9) = ej9✓
18X

m=0

e�j✓m

= ej9✓
1� e�j19✓

1� e�j✓
=

ej9✓ � e�j10✓

1� e�j✓

With some e↵ort we can show that the two results correspond. As a matter
of fact

x(✓) =
ej9✓ � e�j10✓

1� e�j✓
· e

j ✓
2

ej
✓
2

=
ej

19
2 ✓ � e�j 19

2 ✓

ej
✓
2 � e�j ✓

2

=
2j sin( 192 ✓)

2j sin( ✓2 )
=

sin( 192 ✓)

sin( ✓2 )



FOUNDATIONS OF SIGNALS AND SYSTEMS

2.2 Solved exercises

Prof. T. Erseghe

Exercises 2.2

Calculate area, mean value, energy, and power for the following signals:

1. unit step s(t) = 1(t),

2. bilateral exponential s(t) = e�a|t|
for a > 0.

Solutions.

1. For the unit step, the area is

As =

Z 1

�1
1(t) dt

=

Z 1

0
1(t) dt

=

Z 1

0
1 dt = t

��1
0

= 1 ,

where in the second row we exploited the fact that 1(t) has extension

[0,1) hence the integral can be limited to this interval (it provides zero

value outside), and in the third row we exploited the fact that the unit

step has values 1 in the interval [0,1) (note that the value
1
2 at t = 0

is dropped since we are integrating, i.e., since a single point has zero

Lebesgue measure). For the mean value we instead have

ms = lim
T!1

1

2T

Z T

�T
1(t) dt

= lim
T!1

1

2T

Z T

0
1(t) dt

= lim
T!1

1

2T

Z T

0
1 dt = lim

T!1

1

2T
· T =

1
2 ,

where we exploited the same tricks as for the area. Observe that, a finite

and non-zero average value corresponds to an infinite area.

For energy and power we first need to evaluate |s(t)|2, for which we have

|s(t)|2 =

(
1 , t > 0
1
4 , t = 0

0 , t < 0

' 1(t)

the equivalence being valid everywhere but in t = 0. Since energy and

power are integral measures, and since a single point has zero Lebesgue



measure, we can replace |s(t)|2 with 1(t) so that energy and power corre-

spond to the area and the mean value of 1(t), to have

Es = 1 , Ps =
1
2 .

2. For the bilateral exponential, illustrated in the figure below

t

s(t)

�T T ! 1

e�ateat

1

we have

As = lim
T!1

Z T

�T
e�a|t| dt

= lim
T!1

2

Z T

0
e�at dt

= lim
T!1

2e�at

�a

���
T

0

= lim
T!1

2
e�aT � 1

�a
=

2

a
,

where in the second line we exploited both the symmetry of the bilateral

exponential (i.e., the fact that the integral over [�T, T ] is twice that over

[0, T ]) and the fact that in the interval [0, T ] the bilateral exponential has

value e�at
, as illustrated in the figure. Note also in the fourth line how

the value e�aT
tends to 0 as T approaches infinity, as can be appreciated

from the figure. Being the area finite, we readily have

ms = 0 .

For energy and power we first need to evaluate |s(t)|2, for which we have

|s(t)|2 =

⇣
e�a|t|

⌘2
= e�2a|t| ,

since e�a|t|
is real valued. The squared modulo, therefore, has the same

structure of the original signal (bilateral exponential) where we should take

care of replacing a ! b = 2a. Energy and power therefore follow from the

results on area and mean value by exploiting this simple replacement, to

have

Es =
2

b
=

1

a
, Ps = 0 .



FOUNDATIONS OF SIGNALS AND SYSTEMS
2.3 Homework assignment

Prof. T. Erseghe

Exercises 2.3

Calculate area, mean value, energy, and power for the following signals:

1. rectangle s(t) = rect(t),

2. ramp s(t) = t · 1(t),

3. triangle s(t) = triang(t),

4. unilateral exponential s(t) = 1(t) · e�at for a > 0,

5. complex signal s(t) = (1 + j) · rect(t),

6. dumped complex exponential s(t) = ep0t1(t) with po = �0 + j!0 and
�0 < 0.



Solutions.
We exploit the same tricks as in Exercises 2.2, and provide short answers.

1. For the rectangular pulse we have

As =

Z 1

�1
rect(t) dt =

Z 1
2

� 1
2

1 dt = 1 , ms = 0 .

Since it is |s(t)|2 ' rect(t), with inequality only in t = ± 1
2 , we can replace

|s(t)|2 with rect(t) to have Es = 1 and Ps = 0.

2. For the ramp

t

s(t) t

we have

As =

Z 1

�1
t · 1(t) dt =

Z 1

0
t dt = 1

ms = lim
T!1

1

2T

Z T

0
t dt = lim

T!1

1

2T
1
2 t

2
��T
0
= lim

T!1

T 2 � 0

4T
= 1

that is for some signals both area and mean value can have no meaning.
By observing that |s(t)|2 = t2 · 1(t) we also have Es = Ps = 1.

3. For the triangular pulse

t

s(t)

1� t

�1 1

1

it is, by symmetry,

As = 2

Z 1

0
(1� t) dt = 2t� t2

��1
0
= 1



and therefore ms = 0. From the equivalence

|s(t)|2 =

8
<

:

(1� t)2 , 0 < t < 1
(1 + t)2 , �1 < t < 0
0 , otherwise

we readily have, again by symmetry,

Es = 2

Z 1

0
(1� t)2 dt = 2t� 2t2 + 2

3 t
3
��1
0
= 2

3

and as a consequence Ps = 0.

4. For the unilateral exponential

t

s(t)

T ! 1

e�at

1

we have a similar result to the bilateral one, but for a factor 1
2 that takes

into accoput for the asymmetry, to have

As =
1

a
, ms = 0 , Es =

1

2a
, Ps = 0 .

5. For the complex signal, which we illustrate separately in its real and imag-
inary values,

t

<[s(t)]

� 1
2

1
2

1

t

=[s(t)]

� 1
2

1
2

1

it is s(t) = B rect(t) with B = 1 + j, so that by linearity we simply have

As = BArect = B = 1 + j , ms = 0 ,

that is the area is in this case complex valued. By instead observing that
|B|2 = 12+12 = 2, it then is |s(t)|2 = |B|2 ·rect2(t) = 2 rect2(t) ' 2 rect(t),
and therefore, by linearity,

Es = 2Arect = 2 , Ps = 0 .



6. For the damped sinusoid we have

s(t) = e�0tej!0t1(t)

= e�0t cos(2⇡f0t)1(t)| {z }
<[s(t)]

+j e�0t sin(2⇡f0t)1(t)| {z }
=[s(t)]

so that its real and imaginary values are of the form

t

<[s(t)]
1

t

=[s(t)]
1

The area is, however, easily calculated directly from the complex expres-
sion, to have

As =

Z 1

�1
ep0t1(t) dt =

Z 1

0
ep0t dt =

ep0t

p0

���
1

0
=

0� 1

p0
= � 1

p0

the value of ep0t at t ! 1 being zero as can be observed by the plot (both
real and imaginary parts tend to zero at t ! 1). Being the area finite, it
is ms = 0. For the power we first need to identify

|s(t)|2 = |e(�0+j!0)t1(t)|2 = |e�0t|2·|ej!0t|2·|1(t)| ' e2�0t·1·1(t) = e2�0t1(t)

the equivalence being valid everywhere but in t = 0, which is fine since a
single point has zero Lebesgue measure. This is a unilateral exponential
from which we obtain (see previous Exercise 2.3.4)

Es =
1

�2�0
=

1

2|�0|
> 0 ,

and accordingly it is Ps = 0.



FOUNDATIONS OF SIGNALS AND SYSTEMS

2.5 Solved exercises

Prof. T. Erseghe

Exercises 2.5

Calculate area, mean value, energy, and power for the following signals:

1. signum s(n) = sgn(n),

2. exponential s(n) = an 10(n) for |a| < 1, and real valued a.

Solutions.

1. For the signum

n

s(n)
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

we have

As = lim
N!1

NX

n=�N

sgn(n) = lim
N!1

N �N = 0

and hence ms = 0. For energy and power, instead, we must acknowledge
that

|s(n)|2 =

⇢
1 , n 6= 0
0 , n = 0

and therefore

Es = lim
N!1

NX

n=�N

|s(n)|2 = lim
N!1

2N = 1

while

Ps = lim
N!1

1

1 + 2N

NX

n=�N

|s(n)|2 = lim
N!1

2N

1 + 2N
= 1

2. For the unilateral exponential, in case a > 0 we have

n

s(n)

•a
1

• •a
2

• •a
3

• •a
4

• •a
5

• •a
6

• •a
7

•

•1



and when a < 0, instead,

n

s(n)

•a
2

• •a
4

• •a
6

•
•
a1

• •
a3

• •
a5

• •
a7

•

•1

The area follows from

As =
1X

n=�1
an10(n) =

1X

n=0

an =
1

1� a

which is a result of the geometric series. Therefore we also have ms = 0.
For energy and power, instead, we must identify

|s(n)|2 = |a|2n10(n) = bn10(n) , b = |a|2

revealing that

Es =
1X

n=�1
bn10(n) =

1

1� b
=

1

1� |a|2

and Ps = 0.



FOUNDATIONS OF SIGNALS AND SYSTEMS
2.6 Homework assignment

Prof. T. Erseghe

Exercises 2.6

Calculate area, mean value, energy, and power for the following signals:

1. unit step s(n) = 10(n),

2. sampled complex exponential s(n) = ej2⇡f0nT 10(n).



Solutions.

1. For the unit step

n

s(n)
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•1

we have

As = lim
N!1

NX

n=�N

10(n) = 1 +N = 1

and

ms = lim
N!1

1

1 + 2N

NX

n=�N

10(n) =
1 +N

1 + 2N
= 1

2 .

For energy and power, instead, we must acknowledge that

|s(n)|2 =

⇢
1 , n � 0
0 , n < 0

= 10(n)

and therefore Es = 1 and Ps =
1
2 .

2. For the complex exponential we have a signal of the form

n

<[s(n)]
• •

•
•
•
• • •

•
•
•
• • • •

•
•
•
• • •

•
•
•
• •

•••••

•1

n

=[s(n)]

•
•
• • •

•
•
•
• • • •

•
•
•
• • •

•
•
•
• • •

•
••••••

which we can write as

s(n) = bn10(n) , b = ej2⇡f0T



The area follows from

As =
1X

n=�1
bn10(n) = lim

N!1

N�1X

n=0

bn = lim
N!1

1� bN

1� a
=?

which is a result of the geometric series, but the limit is not defined, hence
the area cannot be stated (i.e., it is not a meaningful parameter). For the
mean value we instead have

ms =
1

1 + 2N
lim

N!1

N�1X

n=0

bn = lim
N!1

1� bN

(1� a)(1 + 2N)
= 0

the limit being well defined since the numerator is a number satisfying the
triangular inequality |1� bN | < 1 + |bN | = 1+ 1 = 2 (as a consequence of
the fact that |b| = 1)), i.e., it is limited, while the denominator tends to
infinity. For energy and power, instead, we must identify

|s(n)|2 = |b|2n10(n) = 10(n) ,

which, again, follows from |b| = 1. Therefore, from the results obtained
with the unit step we have Es = 1 and Ps =

1
2 .



FOUNDATIONS OF SIGNALS AND SYSTEMS

3.2 Solved exercises

Prof. T. Erseghe

Exercises 3.2

Calculate energy and power for the following signals:

1. complex exponential s(t) = Aej2⇡f0t, f0 6= 0, and A > 0 real valued,

2. composition of complex exponentials s(t) = A1ej(2⇡f1t+'1)+A2ej(2⇡f2t+'2),

with f1 6= f2, f1, f2 6= 0, and A1, A2 > 0,

3. composition of complex exponentials

s(t) = A0 +

KX

k=1

Ake
j2⇡fkt

for fk 6= 0, fk 6= fj for k 6= j, and Ak complex valued.

Solutions.

1. For the complex exponential, which is a periodic signal, we separately

draw its real and imaginary values

t

<[s(t)] = A cos(2⇡f0t)

Tp

A

t

=[s(t)] = A sin(2⇡f0t)

Tp

A

where the period is Tp = 1/|f0| (common to both real and imaginary

parts). Therefore, we have

As(Tp) =

Z Tp

0
Aej2⇡f0t dt

=
A

j2⇡f0
ej2⇡f0t

���
Tp

0

= A
ej2⇡f0Tp � ej2⇡f00

j2⇡f0
= A

1� 1

j2⇡f0
= 0



since it is ej2⇡f00 = ej0 = 1 (zero phase) and also ej2⇡f0Tp = e±j2⇡
= 1

(phase of either 2⇡ or �2⇡). Please check your knowledge on complex

numbers for this result. As a consequence it also is

ms =
As(Tp)

Tp
= 0 .

For the value of power we need to first identify the value of |s(t)|2, which
in the present context is simply

|s(t)|2 = |A|2 · |ej2⇡f0t|2 = A2 · 12 = A2

and therefore we have

Es(Tp) =

Z Tp

0
A2 dT = A2Tp , Ps =

Es(Tp)

Tp
= A2 .

2. For the composition of complex exponentials, which we write in the form

s(t) = B1e
j2⇡f1t +B2e

j2⇡f2t , Bi = Aie
j'i

we are not confident on wether s(t) is periodic or not (it is only if f1 and

f2 are in a rational relation), and therefore we do not exploit this result.

However, from the linearity of the mean value it is

ms = B1m1 +B2m2

where m1 and m2 are the average values of, respectively, s1(t) = ej2⇡f1t

and s2(t) = ej2⇡f2t. Since form the previous exercise we have that for

f1, f2 6= 0 it is m1 = m2 = 0, then it is

ms = 0 .

For the power we need to investigate

|s(t)|2 = (B1s1(t) +B2s2(t)) · (B1s1(t) +B2s2(t))
⇤

= |B1|2|s1(t)|2 + |B2|2|s2(t)|2 +B1B
⇤
2s1(t)s

⇤
2(t) +B⇤

1B2s
⇤
1(t)s2(t)

= |B1|2 + |B2|2 +B1B
⇤
2e

j2⇡(f1�f2)t +B⇤
1B2e

�j2⇡(f1�f2)t

whose last two contributions are complex exponentials with nonzero fre-

quencies ±(f1 � f2) 6= 0, hence we know that their average value is zero.

Therefore, given that the average value of a constant is the constant itself,

we obtain

Ps = |B1|2 + |B2|2 = A2
1 +A2

2 .



3. For the second composition of complex integrals, we proceed by linearity

and state that

ms = A0 +

KX

k=1

Akmean

⇣
ej2⇡fkt

⌘
= A0

since we already learned that the complex exponential ej2⇡fkt has zero

mean value when fk 6= 0. For the power, we need to identify

|s(t)|2 =

 
KX

k=0

Ake
j2⇡fk

! 
KX

`=0

Ake
j2⇡fk

!⇤

=

KX

k,`=0

AkA
⇤
`e

j2⇡(fk�f`)t

=

KX

k=0

|Ak|2 +
KX

k,`=0
,k 6=`

AkA
⇤
`e

j2⇡(fk�f`)t

where we assumed f0 = 0. Now, frequencies fk � f` 6= 0, by assumption,

hence the corresponding average value is zero. This implies that

Ps =

KX

k=0

|Ak|2

that is that, in the composition of complex sinusoids, the power is the sum

of the individual powers of each component, which is a notable result that

must be kept in mind.



FOUNDATIONS OF SIGNALS AND SYSTEMS
3.3 Homework assignment

Prof. T. Erseghe

Exercises 3.3

Identify the periodicity, mean value, and power for the following signals:

1. sinusoid s(t) = A cos(2⇡f0t+ #0), f0 6= 0, and A > 0 real valued;

2. composition of sinusoids

s(t) = A0 +

KX

k=1

Ak cos(2⇡fkt+ #k)

for fk > 0, fk 6= fj for k 6= j, and Ak real valued;

3. s(t) = A cos(2⇡t+ ⇡
2 ) +B sin(8⇡t+ ⇡);

4. s(t) = ej20⇡t;

5. s(t) = ej20t;

6. s(t) = e�j2⇡t
1(t);

7. s(t) = cos(10⇡t) + sin(
8
3⇡t);

8. s(t) = A sin
2
(10⇡t+ ⇡

4 );

9. s(t) = sin(5t)
sin(t) .

Suggestion: here you might want to exploit Euler’s identity cos(a) =
1
2e

ja
+

1
2e

�ja
, as well as the identity ej(a+b)

= eja · ejb.



Solutions.

1. For the real-valued sinusoid

t

s(t) = A cos(2⇡f0t+ #0)

Tp

A

the period is Tp = 1/|f0|. Therefore, we have

As(Tp) =

Z Tp

0
A cos(2⇡f0t+ #0) dt

=
�A

2⇡f0
sin(2⇡f0t+ #0)

���
Tp

0

= �A
sin(2⇡f0Tp + #0)� sin(#0)

2⇡f0
= A

sin(#0)� sin(#0 ± 2⇡)

2⇡f0
= 0

since sin(#0 ± 2⇡) = sin(#0). As a consequence it also is

ms =
As(Tp)

Tp
= 0 .

For the value of power we need to first identify the value of |s(t)|2, which
in the present context requires use of

cos
2
(↵) = 1

2 +
1
2 cos(2↵)

to have

|s(t)|2 = s2(t) = 1
2A

2
+

1
2A

2
cos(2⇡2f0t+ 2#0)

By exploiting this result we can then write

Es(Tp) =

Z Tp

0

1
2A

2 dt+

Z Tp

0

1
2A

2
cos(2⇡2f0t+ 2#0) dt =

1
2A

2Tp + 0

where the zero value is a consequence of the fact that the second contri-

bution is a sinusoid with frequency 2f0, hence its period is 1/2|f0| = 1
2Tp,

and its integral over [0, Tp], i.e., over two periods, is 0 because of the result

stated for the area. We finally obtain

Ps =
Es(Tp)

Tp
=

1
2A

2 .



Incidentally note that, this result can also be derived by exploiting the

outcome of Exercise 3.2.2 since by Euler’s formula we have

s(t) = A cos(2⇡f0t+ '0) =
1
2Aej(2⇡f0t+'0) +

1
2Ae�j(2⇡f0t+'0)

which corresponds to the present context by assuming, in Exercise 3.2.2,

that f1 = �f2 = f0, that A1 =
1
2Aej'0 , and that A2 =

1
2Ae�j'0 .

Therefore, it readily follows that ms = 0 and Ps = |A1|2 + |A2|2 =

(
1
2A)

2
+ (

1
2A)

2
=

1
2A

2
.

2. For the composition of sinusoids, by resorting to Euler’s formula we can

write the signal in the form

s(t) = A0 +

KX

k=1

1
2Ake

j#kej2⇡fkt +
KX

k=1

1
2Ake

�j#ke�j2⇡fkt

where frequencies fk and �fk are naturally di↵erent. As a consequence

we can exploit the results of Exercise 3.2.3 to have ms = A0 and

Ps = A2
0 +

KX

k=1

| 12Ake
j#k |2 +

KX

k=1

| 12Ake
j#k |2 = A2

0 +
1
2

KX

k=1

A2
k

3. In this case it is !1 = 2⇡ = 2⇡f1 with f1 = 1 and T1 = 1/|f1| = 1, and

!2 = ⇡ = 2⇡f2 with f2 = 4 and T2 = 1/|f2| = 1
4 . Hence we must solve

Tp = kT1 = mT2 =) k

m
=

T2

T1
=

1
4

which reveals k = 1 and therefore Tp = 1. From the results of Exer-

cise 3.3.2 we readily have ms = 0 and Ps =
1
2A

2
+

1
2B

2
.

4. In this case it is !0 = 20⇡ = 2⇡f0 with f0 = 10 and Tp = 1/|f0| = 1
10 .

From the results of Exercise 3.2.3 we readily have ms = 0 and Ps = 1.

5. In this case it is !0 = 20 = 2⇡f0 with f0 = 10/⇡ and Tp = 1/|f0| = ⇡
10 .

From the results of Exercise 3.2.3 we readily have ms = 0 and Ps = 1.

6. This signal is aperiodic because of the presence of the unit step 1(t). For
the mean value in this case we need to calculate it directly, to have

ms = lim
T!1

1

2T

Z T

0
e�j2⇡t dt = lim

T!1

1

2T

e�j2⇡T � 1

�j2⇡
= 0

since e�j2⇡T � 1 is limited, and in fact by triangular inequality we have

|e�j2⇡T �1| < |e�j2⇡T |+1 = 1+1 = 2, while the denominator 2T diverges.

For the power, instead, we must identify

|s(t)|2 = |e�j2⇡t|2 · |1(t)|2 = 1
2
(t) ' 1(t)

hence form the results of the unit step we readily have Ps =
1
2 .



7. In this case it is !1 = 10⇡ = 2⇡f1 with f1 = 5 and T1 = 1/|f1| = 1
5 , and

!2 =
8
3⇡ = 2⇡f2 with f2 =

4
3 and T2 = 1/|f2| = 3

4 . Hence we must solve

Tp = kT1 = mT2 =) k

m
=

T2

T1
=

3
4 · 5 =

15

4

which reveals k = 15 and therefore Tp = 3. From the results of Exer-

cise 3.3.2 we readily have ms = 0 and Ps =
1
2 +

1
2 = 1.

8. In this case it is

s(t) = A sin
2
(10⇡t+ ⇡

4 ) =
1
2A� 1

2A cos(20⇡t+ ⇡
2 )

so that its periodicity corresponds to the one of the cosine, where !0 =

20⇡ = 2⇡f0 with f0 = 10 and Tp = 1/|f0| = 1
10 . This is consistent with

the fact that sin
2
is periodic of period ⇡. From the results of Exercise 3.3.2

we readily have ms =
1
2A and Ps = (

1
2A)

2
+

1
2 (

1
2A)

2
=

3
8A

2
.

9. In this case it is !1 = 5 = 2⇡f1 with f1 = 5/2⇡ and T1 = 1/|f1| = 2
5⇡,

and !2 = 1 = 2⇡f2 with f2 = 1/2⇡ and T2 = 1/|f2| = 2⇡. Hence we must

solve

Tp = kT1 = mT2 =) k

m
=

T2

T1
=

5
2

which reveals k = 5 and therefore Tp = 2⇡. However, as can be seen from

the graph

t

s(t)

⇡

2⇡ is certainly a periodicity, but it is not the minimum one, which instead

is ⇡. This is due to the fact that, in the division, two negative signs (at

the numerator and at the denominator) appear at distance ⇡, and they

naturally simplify. Therefore, remember that the mcm approach reveals

one periodicity, but not necessarily the minimum one. Mean value and

power are in this case hard to evaluate... it is in fact impossible to solve

the integral since the primitive is not known in this case. We will see

later on, by use of Fourier transforms, how this exercise can be e�ciently

completed.



FOUNDATIONS OF SIGNALS AND SYSTEMS

3.5 Solved exercises

Prof. T. Erseghe

Exercises 3.5

Calculate energy and power for the following signals:

1. the sampled sinusoid s(n) = A cos(2⇡f0nT ) periodic of period N , with

f0NT an integer value,

2. the complex sampled exponential s(n) = ej2⇡f0nT with generic f0 6= 0,

3. the composition of complex exponentials s(n) = aej2⇡f1nT + bej2⇡f2nT ,
with f1 6= f2 + k/T and f1, f2 6= k/T (non-zero frequencies).

Solutions.

1. In this case we have a signal of the form

n

s(n)
•
•
•
•
• • •

•
•
• • •

•
•
• • •

•
•
• • •

•
•
• • •

•
•
• • •

•
•
• • •

•
•
•
••A

N

For the mean value we identify the area in a period, that is, by Euler’s

formula,

As(N) =

N�1X

n=0

A cos(2⇡f0nT )

=
1
2A

N�1X

n=0

(ej2⇡f0T )n +
1
2A

N�1X

n=0

(e�j2⇡f0T )
n

=
1
2A

1� ej2⇡f0NT

1� ej2⇡f0T
+

1
2A

1� e�j2⇡f0NT

1� e�j2⇡f0T

=
1
2A

1� 1

1� ej2⇡f0T
+

1
2A

1� 1

1� e�j2⇡f0T

= 0

since ej2⇡f0NT
= e�j2⇡f0NT

= 1 because of the assumption that f0NT is

an integer. Hence, ms = 0. For the power we first need to investigate

|s(t)|2 =
1
2A

2
+

1
2A

2
cos(2⇡2f0nT )



where the latter contribution has 2f0NT integer valued, hence its average

value is zero. Therefore, we readily have

Ps =
1
2A

2

that is the result perfectly corresponds to the continuous case.

2. For the complex exponential we do not know wether it is periodic or not,

hence we need to resort to the general definition of mean value. We have

ms = lim
N!1

1

1 + 2N

NX

n=�N

an , a = ej2⇡f0T

= lim
N!1

1

1 + 2N
a�N

2NX

`=0

a`

= lim
N!1

1

1 + 2N
a�N 1� a2N+1

1� a
= 0

where the fact that the limit is 0 can be explained by the fact that 1�a 6= 0

since f0 6= 0 is a given value (finite), and also the numerator is finite

since |a�N | = 1 because |a| = 1, and by triangular inequality it also is

|1� a1+2N | < 1 + |a1+2N | = 1 + 1 = 2, hence the numerator is limited in

absolute value by 2. The fact that the denominator 1 + 2N diverges to

infinity, ensures the final result. For the power, we need to observe that

|s(n)|2 = 1, hence it also is Ps = 1.

3. For the composition of complex exponentials the mean value follows from

the previous exercise by linearity, and we have ms = a · 0 + b · 0 = 0. For

the power we need to evaluate

|s(n)|2 = s(n)s⇤(n) = |a|2 + |b|2 + ab⇤ej2⇡(f1�f2)nT + a⇤be�j2⇡(f1�f2)nT

where ±(f1 � f2) 6= k/T (i.e., it is. a non-zero frequency) so that the two

latter contributions have zero mean value. As a consequence it is

Ps = |a|2 + |b|2 ,

which is equivalent to the continuous case. Incidentally note that this

result can be used to solve Exercise 3.5.1 for any value of f0, since by

Euler’s identity we have

y(n) = A cos(2⇡f0nT ) =
1
2Aej2⇡f0nT +

1
2Ae�j2⇡f0nT

that is we can set f1 = �f2 = f0 and A1 = A2 =
1
2A to obtain my = 0

and Py = (
1
2A)

2
+ (

1
2A)

2
=

1
2A

2
.



FOUNDATIONS OF SIGNALS AND SYSTEMS
3.6 Homework assignment

Prof. T. Erseghe

Exercises 3.6

Identify the periodicity, mean value, and power for the following signals:

1. composition of sampled complex exponentials

s(n) = A0 +

KX

k=1

Ake
j2⇡fknT

for fk 6= `/T (non-zero frequencies), fk 6= fj + `/T for k 6= j (di↵erent

frequencies), and Ak complex valued;

2. composition of sinusoids

s(n) = A0 +

KX

k=1

Ak cos(2⇡fknT + #k)

for fk > 0, fk 6= `/T (non-zero frequencies), fk 6= fj + `/T for k 6= j
(di↵erent frequencies), and Ak real valued;

3. s(n) = cos(
4
3⇡n);

4. s(n) = cos(2⇡n/
p
3);

5. s(n) = cos(2n)� ej
⇡
4 n

;

6. s(n) = ej
3
2⇡n cos(

5
2⇡n) + j sin(⇡n);

7. s(n) = ejn sin(n);

8. s(n) = ej⇡n sin(⇡n).

Suggestion: also here you might want to exploit Euler’s identity cos(a) = 1
2e

ja
+

1
2e

�ja
, as well as the identity ej(a+b)

= eja · ejb.



Solutions.

1. We proceed as in the continuous case. For the mean value we exploit

the result of Exercise 3.5.3 and linearity to acknowledge that all active

sampled exponentials have zero average value, hence ms = A0. For the

power, instead, we write

|s(n)|2 =

 
KX

k=0

Ake
j2⇡fknT

! 
KX

`=0

A`e
j2⇡f`nT

!⇤

=

KX

k,`=0

AkA
⇤
`e

j2⇡(fk�f`)nT

=

KX

k=0

|Ak|2 +
KX

k,`=0
k 6=`

AkA
⇤
`e

j2⇡(fk�f`)nT

where the second summation contains exponentials of non-null frequencies,

hence their average value is zero. As a consequence we have

Ps =

KX

k=0

|Ak|2

2. We first exploit Euler’s identity

s(n) = A0 +

KX

k=1

1
2Ake

j#kej2⇡fknT +

KX

k=1

1
2Ake

�j#ke�j2⇡fknT

which identifies a sum of sampled complex exponentials, all with di↵erent

frequency values. Hence, from the results from Exercise 3.6.1 we immedi-

ately have ms = A0 and

Ps = A2
0 + 2

KX

k=1

(
1
2Ak)

2
= A2

0 +
1
2

KX

k=1

A2
k .

This also corresponds to the continuous case.

3. We have !0T = 2⇡f0T =
4
3⇡, so that f0T =

2
3 and N = 3. By the results

of Exercise 3.6.2 the mean value is ms = 0 and the power Ps =
1
2 .

4. We have !0T = 2⇡f0T = 2⇡/
p
3, so that f0T = 1/

p
3 which is not

rational, hence the sampled sinusoid is non-periodic. By the results of

Exercise 3.6.2 the mean value is ms = 0 and the power Ps =
1
2 .

5. For the first contribution we have !1T = 2⇡f1T = 2, so that f1T =
1
⇡

which is not rational, hence the sampled sinusoid is non-periodic. By

combining the results of Exercise 3.6.1 and Exercise 3.6.2 the mean value

is ms = 0 and the power Ps =
1
2 + 1 =

3
2 .



6. We need to reinterpret the signal first. By Euler’s identity we have

s(n) = ej
3
2⇡n · 1

2 (e
j 5
2⇡n + ej

5
2⇡n) + j sin(⇡n)

=
1
2e

j4⇡n
+

1
2e

�j⇡n
+ j sin(⇡n)

=
1
2 +

1
2 (�1)

n
+ j0

=
1
2 +

1
2e

�j⇡n

The signal is evidently periodic of period N = 2, as in a period carries the

values s(0) = 1 and s(1) = 0. Moreover, from the results of Exercise 3.6.1

we have ms =
1
2 and Ps = (

1
2 )

2
+ (

1
2 )

2
=

1
2 .

7. We need to reinterpret the signal first. By Euler’s identity we have

s(n) = ejn · 1
2j (e

jn � e�jn
) =

1
2j e

j2n � 1
2j .

The second contribution is constant, hence periodic of any period. For

first contribution we have !1T = 2⇡f1T = 2, so that f1T =
1
⇡ which is

not rational, hence the sampled signal is non-periodic. By the results of

Exercise 3.6.1 the mean value is ms = � 1
2j =

1
2j and the power Ps =

1
4 +

1
4 =

1
2 .

8. Since sin(⇡n) = 0 it is s(n) = 0, hence it is periodic of any period with

ms = Ps = 0.



FOUNDATIONS OF SIGNALS AND SYSTEMS

4.2 Solved exercises

Prof. T. Erseghe

Exercises 4.2

Solve the following:

1. express the signal in figure as a function of triang(t) by using basic trans-
formations,

t

s(t)

t1 t1 + T

A

2. express rect(t) as a function of the unit step 1(t) by exploiting linear
combinations and basic transformations,

3. draw the discrete time signal

s(n) = rect

✓
n

1 + 2N

◆
.

Solutions.

1. We observe that s(t) is a triangle of height A, centred at t0 = 1
2 t1+

1
2 (t1+

T ) = t1+
1
2T , with basis of length T . Since triang(t) has a basis of length

2 (its extension is [�1, 1]), in order to scale it to length T we need a scaling
factor a that maps the extension [�1, 1] into [�a, a] of length 2a = T , that
is we need a = 1

2T . Therefore, by exploiting the notation x((t � t0)/a)
whose meaning we have learned during the lectures, we have

s(t) = A triang

✓
t� t0
a

◆

= A triang

✓
t� t1 � 1

2T
1
2T

◆

= A triang

✓
2(t� t1)

T
� 1

◆

As a check it is

s(t1) = Atriang

✓
2(t1 � t1)

T
� 1

◆
= Atriang(�1)

s(t1 + T ) = Atriang

✓
2(t1 + T � t1)

T
� 1

◆
= Atriang(1)



which evidences the (linear) map t1 ! �1 and t1 + T ! 1, which is
correct.

2. The rectangular signal can be expressed through the expression

rect(t) = 1(t+ 1
2 )� 1(t� 1

2 ) =

8
<

:

0� 0 = 0 , t < � 1
2

1� 0 = 1 , � 1
2 < t < 1

2
1� 1 = 0 , t > 1

2

as can be appreciated from the following figure

t� 1
2

1
2

1(t+ 1
2 )

�1(t� 1
2 )

where 1(t + 1
2 ) = 1(t � (� 1

2 )) is a unit step shifted to the left by 1
2 , and

1(t� 1
2 ) is a unit step shifted to the right by 1

2 .

3. We can interpret this signal as the sampled version s(n) = x(n) of

x(t) = rect(t/T ) , T = 1 + 2N

with extension [� 1
2T,

1
2T ] and where 1

2T = N + 1
2 . The result can be

better understood graphically, providing

n

s(n) = x(n)

• • • • • • • • • • •

•• •• •• •• ••

x(t) = rect(t/T )
1

N

that is we have

s(n) =

⇢
1 , |n|  N
0 , otherwise

and the discrete-time signal is a rectangle with 1+2N samples centred at
the origin.



FOUNDATIONS OF SIGNALS AND SYSTEMS
4.3 Homework assignment

Prof. T. Erseghe

Exercises 4.3

Solve the following:

1. express the signal in figure as a function of rect(t) by using basic trans-

formations,

t

s(t)

�t1 t2

B

2. draw s(t) = x( 32 t+ 1) for x(t) as given in figure,

t

x(t)

1 2

1

3. draw s(t) = x(�t+ 2) for x(t) as given in figure,

t

x(t)

2 3

1

4. express sgn(t) as a function of the unit step 1(t) by exploiting linear com-

binations and basic transformations,

5. draw the signal

s(t) =
n
t� 1 1 < t < 3

0 otherwise

then express it as a linear combination of the unit step 1(t), the ramp

ramp(t) = t · 1(t), and their time shifts,

6. consider the signal s(t) = x(�2t+1) where x(t) has period Tx = 2. Is s(t)
a periodic signal? If so, what is its period Ts?

7. consider s(t) = x(t/a) a time scaled version of x(t). What is the connection

between the area, mean, energy and power of x(t) and those of s(t)?



8. consider s(n) = x(n � n0) a time shifted version of x(n). What is the

connection between the area, mean, energy and power of x(n) and those

of s(n)?

9. draw the discrete-time signal

s(n) = � rect

✓
n� 1

2

2N

◆

then evaluate its area, mean value, energy, and power.



Solutions.
We exploit the same tricks as in Exercises 4.2, and provide short answers.

1. We observe that s(t) is a rectangle of height B, centred at t0 =
1
2 (t2� t1),

with basis of length T = t2 + t1. Since rect(t) has a basis of length

1 (its extension is [� 1
2 ,

1
2 ]), in order to scale it to length T we need a

scaling factor a that maps the extension [� 1
2 ,

1
2 ] into [� 1

2a,
1
2a] of length

a = T , that is we need a = t1 + t2. Therefore, by exploiting the notation

x((t� t0)/a) whose meaning we have learned during the lectures, we have

s(t) = B rect

✓
t� t0
a

◆

= A rect

✓
t+ 1

2 t1 �
1
2 t2

t1 + t2

◆
.

2. We observe that s(t) can be reinterpreted in the form

s(t) = x

✓
t� t0
a

◆
= x

✓
t� (� 2

3 )

2
3

◆

hence it is the result of first scaling x(t) by a =
2
3 , then shifting it by

t0 = � 2
3 (i.e., a shift on the left by

2
3 ). We therefore have the following

t

x(t/a)

2
3

4
3

1

t

s(t)

2
3� 2

3

1

3. We observe that s(t) can be reinterpreted in the form

s(t) = x(�(t� 2)) = x�(t� 2)

hence it is the result of first reversing it in time to obtain x�(t) = x(�t),
then shifting the result (to the right) by t0 = 2. We therefore have the

following

t

x(�t)

�2�3

1

t

s(t)

�1

1

The time reversal and shift operations can be also swapped, by interpreting

the signal in the form

s(t) = y(�t) , y(t) = x(t+ 2) = x(t� (�2))



that is as the result of first shifting the signal by t1 = �2 (a shift on the

left by 2), and by then applying a time reversal, as illustrated below

t

y(t)

1

1

t

s(t) = y(�t)

�1

1

4. The signum signal can be expressed through the expression

sgn(t) = 1(t)� 1(�t) =

⇢
0� 1 = �1 , t < 0

1� 0 = 1 , t > 0

as can be appreciated from the following figure

t0

1(t)

�1(�t)

5. The signal is illustrated in figure

t

s(t)

1 3

2

and can be expressed in the form

s(t) = ramp(t� 1)� 2 · 1(t� 3)� ramp(t� 3) .

6. Observe that

s(t) = x(�(2t� 1)) = x�(2t� 1) = x�

✓
t� 1

2
1
2

◆

that is it is a scaled (by a =
1
2 ) and shifted (by t0 =

1
2 ) version of x(�t).

Now, if a signal is periodic of period Tp so is its time reversed counterpart

(by symmetry), as well as any time-shift counterpart. In fact we have

x�(t+ Tp) = x(�t� Tp) = x(�t) = x�(t)

xt0(t+ Tp) = x(t� t0 + Tp) = x(t� t0) = xt0(t) ,



where we used xt0(t) = x(t � t0). The only basic transformation that

changes periodicity is the scaling factor a, which naturally multiplies the

time axis, and therefore it simply is Ts = aTx = 1. We show this with an

example of a signal periodic of period 2, that is x(t) = sin(2⇡t) + cos(⇡t),
for which s(t) = x(�2t+ 1) is illustrated in figure

t

x(t)

2

t

s(t)

21

7. For the area, by a change of variable u = t/a, we have

As =

Z 1

�1
x(t/a) dt = a

Z 1

�1
x(u) du = aAx ,

so the area is scaled by a. So is the energy, by the same rationale, and in

fact

Es =

Z 1

�1
|x(t/a)|2 dt = a

Z 1

�1
|x(u)|2 du = aEx .

Mean value and power, instead, follow a di↵erent rule, as they are robust

to scaling. We have

ms = lim
T!1

1

2T

Z T

�T
x(t/a) dt

= lim
T!1

a

2T

Z T/a

�T/a
x(u) du

= lim
T 0!1

1

2T 0

Z T 0

�T 0
x(u) du = mx , T 0

= T/a

and by an identical argument it also is Ps = Px.

8. For the area, by a change of variable m = n� n0, we have

As =

1X

n=�1
x(n� n0) =

1X

m=�1
x(m) = Ax ,



and so is for the energy, as it is simply the area of |s(n)|2, that is

Es =

1X

n=�1
|x(n� n0)|2 =

1X

m=�1
|x(m)|2 = Ex ,

Mean value and power are instead more tricky, but they lead to the same

result. For the mean, in case n0 > 0, we have

ms = lim
N!1

1

1 + 2N

NX

n=�N

x(n� n0)

= lim
N!1

1

1 + 2N

N�n0X

m=�N�n0

x(m)

= lim
N!1

1

1 + 2N

 
NX

m=�N

x(m) +

�N�1X

m=�N�n0

x(m)�
NX

m=N�n0+1

x(m)

!

= mx

the final equivalence being valid since the second and third series are sums

of n0 values, and are divided by value 1+2N that grows to infinity, hence

their contribution goes to zero if the signal values are limited as n grows.

A similar argument can be used when n0 < 0. Equivalently we can show

that Ps = Px.

9. We can interpret this signal as the sampled version s(n) = x(n) of

x(t) = � rect((t� 1
2 )/T ) , T = 2N

which is a rectangle with extension [�N,N ] shifted by
1
2 , hence its exten-

sion is [�N +
1
2 , N +

1
2 ]. The result can be better understood graphically,

providing

n

s(n) = x(n)

• • • • • • • • • •

•• •• •• •• •• •

x(t)
�1

N�N

that is we have

s(n) =

⇢
�1 , �N < n  N
0 , otherwise

or, in other words, the signal has 2N active values each one associated

with value �1. Therefore, its area is As = �2N , its energy Es = 2N ,

while mean value and power are ms = Ps = 0.
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4.5 Solved exercises

Prof. T. Erseghe

Exercises 4.5

Solve the following:

1. identify, and draw, the even and odd parts of signal,

t

s(t)

1

1

2. identify the even and odd parts of s(t) = cos(2⇡f0t+ '0),

3. identify the even and odd parts of s(t) = ej2⇡f0t,

4. prove that every even and Hermitian signal s(t) is necessarily real-valued.

Solutions.

1. Since we have s(t) = rect(t� 1
2 ), by definition it is

se(t) =
1
2s(t) +

1
2s(�t)

=
1
2 rect(t�

1
2 ) +

1
2 rect(�t� 1

2 )

=
1
2 rect(t�

1
2 ) +

1
2 rect(t+

1
2 ) (since rect is even)

=
1
2 rect(

1
2 t)

so(t) =
1
2s(t)�

1
2s(�t)

=
1
2 rect(t�

1
2 )�

1
2 rect(t+

1
2 )

=
1
2 rect(

1
2 t) sgn(t)

as illustrated in figure

t

se(t)

1

1
2

t

so(t)

1

1
2



2. In this case it is easier to proceed by exploiting standard rules on sinusoids,

to have

s(t) = cos(2⇡f0t+ '0)

= cos('0) cos(2⇡f0t)| {z }
se(t)

� sin('0) sin(2⇡f0t)| {z }
so(t)

to recall that there might exist simpler ways than to apply the rule as-it-is.

3. In this case it is easier to proceed by exploiting Euler’s identity, to have

s(t) = ej2⇡f0t+'0

= cos(2⇡f0t)| {z }
se(t)=sre(t)

+ j sin(2⇡f0t)| {z }
so(t)=sim(t)

4. An even and Hermitian signal s(t) satisfies

s(t) = s(�t)

s(t) = s⇤(�t)

so that by exploiting the first equality in the second we obtain

s(t) = [s(�t)]⇤ = [s(t)]⇤ = s⇤(t) ,

which proves the assertion. Clearly, since an Hermitian signal has an

even real part and an odd imaginary part, being the signal even its odd

imaginary part must be equal to zero. This property is valid in both

continuous and discrete-time.
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4.6 Homework assignment

Prof. T. Erseghe

Exercises 4.6

Solve the following:

1. identify and sketch the real and imaginary parts of s(t) = (1+j) e�|t|+j⇡|t|
;

is the signal real and/or Hermitian?

2. identify and sketch the real and imaginary parts of s(t) = (1� j) e(�+j!)t
,

3. identify the even and odd parts of s(n) = 10(n),

4. what is the symmetry (even, odd, or none) of the product among:

a) two even signals,

b) two odd signals,

c) an even and an odd signal?

5. prove that every odd and Hermitian signal s(t) is necessarily imaginary-

valued.

6. what are the symmetries of s(n) = n2
+ jn? (even/odd, real/imaginary,

Hermitian/anti-Hermitian)

7. what are the symmetries of s(t) = jejt?

8. what are the symmetries of s(n) = ejn cos(n)?

9. what are the symmetries of s(t) = ejt sin(t)?

10. identify a signal that is real, odd and Hermitian,

11. prove that the only signal that is both even and odd is the all-zero signal,

12. prove that the only signal that is both Hermitian and anti-Hermitian is

the all-zero signal.



Solutions.

1. We first write s(t) in the more readable form

s(t) =
p
2 ej

⇡
4 ej⇡|t| e�|t|

=

p
2 e�|t|

cos(⇡|t|+ ⇡
4 ) + j

p
2 e�|t|

sin(⇡|t|+ ⇡
4 )

which evidences the presence of both a real and an imaginary part, sketched

in the figure below.

t

<[x(t)]

1

t

=[x(t)]

1

As can be appreciated from the figure, because of the presence of the

map |t| the signal is even, so that both its real and imaginary parts (both

active) are even, hence it is not an Hermitian signal.

2. We write s(t) in the more readable form

s(t) =
p
2 e�j ⇡

4 ej!t e�t

=

p
2 e�t cos(!t� ⇡

4 ) + j
p
2 e�t sin(!t� ⇡

4 )

which evidences the presence of both a real and an imaginary part, sketched

in the figure below for � > 0.

t

<[x(t)]



t

=[x(t)]

3. For the discrete-time unit step we have

10(�n) =
n
1 , n  0

0 otherwise

hence it is

se(n) =
1
210(n) + 1

1
210(�n) =

8
<

:

1
2 , n < 0

1 , n = 0
1
2 , n > 0

so(n) =
1
210(n)� 1

1
210(�n) =

8
<

:

1
2 , n < 0

0 , n = 0

� 1
2 , n > 0

=
1
2 sgn(n)

which is slightly di↵erent from the continuous case since, as illustrated

below, the even part is not constant.

n

se(n)

•• •• •• •• •• •• •• •• •• ••
•1 1

2

n

so(n)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

1
2

4. When a) a(t) = a(�t) and b(t) = b(�t) then the product s(t) = a(t)b(t)
satisfies

s(�t) = a(�t)b(�t) = a(t)b(t) = s(t) ,

hence the product is even; when, instead, b) it is a(t) = �a(�t) and

b(t) = �b(�t) then we have

s(�t) = a(�t)b(�t) = [�a(�t)] · [�b(�t)] = a(t)b(t) = s(t) ,

and the product is still even; when, finally, c) t is a(t) = a(�t) and

b(t) = �b(�t) then we have

s(�t) = a(�t)b(�t) = �a(�t) · [�b(�t)] = �a(t)b(t) = �s(t) ,



so that the product is in this case odd. The above properties are valid in

both continuous and discrete-time.

5. An odd and Hermitian signal s(t) satisfies

s(t) = �s(�t)

s(t) = s⇤(�t)

so that by exploiting the first equality in the second we obtain

s(t) = [s(�t)]⇤ = [�s(t)]⇤ = �s⇤(t) ,

which proves the assertion. Clearly, since an Hermitian signal has an even

real part and an odd imaginary part, being the signal odd its even real

part must be equal to zero. This property is valid in both continuous and

discrete-time.

6. Signal s(n) = n2
+ jn has an even real part (n2

) and an odd imaginary

part (n), hence it is Hermitian.

7. Signal s(t) = jejt = j cos(t) � sin(t) has an odd real part (� sin(t)) and

an even imaginary part (cos(t)), hence it is anti-Hermitian.

8. Signal s(n) = ejn cos(n) = cos
2
(n) + j sin(n) cos(n) has an even real part

(cos
2
(n)) and an odd imaginary part (cos(n) sin(n)), hence it is Hermitian.

9. Signal s(t) = ejt sin(t) = cos(t) sin(t) + j sin2(t) has an odd real part

(cos(t) sin(t)) and an even imaginary part (sin
2
(t)), hence it is anti-Hermitian.

10. An Hermitian signal has an even real part and an imaginary o↵ part,

therefore no signal can be real, odd, and Hermitian, except for s(t) = 0,

which satisfies any symmetry.

11. The odd symmetry implies s(t) = �s(�t) or, equivalently, s(�t) = �s(t).
By using this result in the odd symmetry statement we obtain s(t) =

s(�t) = �s(t) which identifies the signal s(t) = 0. This property is valid

in both continuous and discrete-time.

12. The anti-Hermitian symmetry implies s(t) = �s⇤(�t) or, equivalently,

s⇤(�t) = �s(t). By using this result in the Hermitian symmetry statement

we obtain s(t) = s⇤(�t) = �s(t) which identifies the signal s(t) = 0. This

property is valid in both continuous and discrete-time.
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5.2 Solved exercises

Prof. T. Erseghe

Exercises 5.2

Solve the following:

1. calculate the periodic repetition of period Tp for u(t) = e�at1(t) with
a > 0,

2. prove that the period repetition of u(�t) is equivalent to the time-reversed
counterpart of the periodic repetition s(t) = repTp

u(t) of u(t).

Solutions.

1. We first plot the signal u(t) = e�at1(t) and observe that it has infinite
extension, which will naturally introduce aliasing.

t

u(t)

Tp

1

•e
�aTp

If we then investigate the periodic repetition

s(t) =
1X

n=�1
u(t� nTp)

we see that the contributions u(t� nTp) superpose (aliasing e↵ect)

t

u(
t�

�5
T p
)

�5Tp

u(
t�

�4
T p
)

�4Tp

u(
t�

�3
T p
)

�3Tp

u(
t�

�2
T p
)

�2Tp

u(
t�

T p
)

�Tp

u(
t)

u(
t�

T p
)

Tp

u(
t�

2T
p
)

2Tp

u(
t�

3T
p
)

3Tp

u(
t�

4T
p
)

4Tp



Now, the correct approach to periodic repetition is to identify one specific
period, which we choose to be the period (0, Tp). In this reference period,
as can be observed from the figure, because of the presence of the unit step
1(t), only the shifted contributions u(t�nTp) with n  contribute to s(t).
These are highlighted in solid lines in the figure, while the contributions
for n > 0 are highlighted in dashed lines. Specifically, we have

s(t) =
0X

n=�1
u(t� nTp) =

0X

n=�1
e�a(t�nTp) , t 2 (0, Tp)

which identifies a (truncated) geometric series that can be easily solved as

s(t) = e�at
0X

n=�1
enaTp

= e�at
1X

m=0

e�maTp

= e�at
1X

m=0

(e�aTp)m =
e�at

1� e�aTp
, t 2 (0, Tp)

where we also note that e�aTp < 1. Knowing the signal expression in one
period naturally allows for extending it to any period by means of a simple
time-shift, that is

s(t) =

8
>><

>>:

v(t) = Be�at , t 2 (0, Tp)
v(t� Tp) = Be�a(t�Tp) , t 2 (Tp, 2Tp)
v(t+ Tp) = Be�a(t+Tp) , t 2 (�Tp, 0)
...

, B =
1

1� e�aTp

and in general we have

s(t) = v(t� nTp) = Be�a(t�nTp) , t 2 (nTp, (n+ 1)Tp) ,

as illustrated in the figure below

t

s(t)

Tp

e�at

1� e�aTp



2. We want to prove that

z(t) = rep
Tp

u(�t) = s(�t) , s(t) = rep
Tp

u(t)

To do so we expand z(t), to have

z(t) =
1X

n=�1
u(�(t�nTp)) =

1X

n=�1
u(�t+nTp) =

1X

m=�1
u(�t�mTp) = s(�t)

where we replaced n = �m.



FOUNDATIONS OF SIGNALS AND SYSTEMS
5.3 Homework assignment

Prof. T. Erseghe

Exercises 5.3

Solve the following:

1. evaluate the periodic repetition of period Tp for u(t) = e�a|t|
with a > 0,

2. evaluate the periodic repetition of period Tp = 2 for the signal

t

u(t)

�1 31

3

2

1

3. evaluate the periodic repetition of period Tp for the signal

u(t) =
|t|
T

rect

✓
t

2T

◆

by considering Tp 2 (T, 2T ),

4. evaluate the periodic repetition of period N for the discrete-time signal

u(n) = a�n
10(n) for |a| > 1.



Solutions.

1. We can solve the exercise by exploiting the result of Exercise 5.2.1 and

the properties of the periodic repetition. We first observe that

u(t) = e�a|t|
=

⇢
eat , t < 0

e�at
, t > 0

t

u(t)

Tp

1

•e
�aTp

can be written in the form

u(t) = u1(t) + u1(�t) , u1(t) = e�at
1(t)

so that by the properties (linearity and time reversal) of the periodic

repetition we have

s(t) = rep
Tp

u(t) = s1(t) + s1(�t) , s1(t) = rep
Tp

u1(t)

where from Exercise 5.1.1 we know that

s1(t) = B e�at , B =
1

1� e�aTp
, t 2 (0, Tp) .

Now, for the time-reversed version of s1(t) we have (by symmetry)

s1(�t) = B eat , t 2 (�Tp, 0) ,

from which we obtain, by time-shift,

s1(�t) = B ea(t�Tp) , t 2 (0, Tp) ,

and, therefore,

s(t) = B
⇣
e�at

+ ea(t�Tp)
⌘
, t 2 (0, Tp) ,

as illustrated in the figure below



t

s(t)

Tp

e�at
+ ea(t�Tp)

1� e�aTp

Alternatively, we can proceed without exploiting any property, by observ-

ing the behaviour of u(t� nTp)

t

u(
t�

�5
T p
)

�5Tp

u(
t�

�4
T p
)

�4Tp

u(
t�

�3
T p
)

�3Tp

u(
t�

�2
T p
)

�2Tp

u(
t�

T p
)

�Tp

u(
t)

u(
t�

T p
)

Tp

u(
t�

2
T p
)

2Tp

u(
t�

3
T p
)

3Tp

u(
t�

4
T p
)

4Tp

where the solid lines indicate the contributions that are active in the in-

terval (0, Tp), that is, the contributions e�a(t�nTp) for n  0, and the

contributions ea(t�nTp) for n > 0. Hence, we have

s(t) =
0X

n=�1
u(t� nTp)

=

0X

n=�1
e�a(t�nTp) +

1X

n=1

ea(t�nTp)

= e�at
0X

n=�1
(e�aTp)

�n
+ eat

1X

n=1

(e�aTp)
n

= Be�at
+ (B � 1) eat

= B
⇣
e�at

+ ea(t�Tp)
⌘
, t 2 (0, Tp) ,

which correctly leads to the same result.

2. For the signal at hand, the time-shifted counterparts u(t � 2n) take the

form



t

u(t� 2n)

�1 1

3

2

1

where we highlighted in solid lines the only two contributions that are

active in the period (�1, 1), namely those for u(t) and for u(t+ 2). Since

it is

u(t) =

(
2 + t , t 2 (�1, 1)
7
2 � 1

2 t , t 2 (1, 3)
0 otherwise

we have, by time-shift,

u(t+ 2) =
7
2 � 1

2 (t+ 2) =
5
2 � 1

2 t , t 2 (�1, 1)

and therefore

s(t) = u(t) + u(t+ 2) = 2 + t+ 5
2 � 1

2 t = 4 +
1
2 (t+ 1) , t 2 (�1, 1)

as illustrated in figure

t

s(t)

�1 31

4
5

3. We first plot the signal

t

u(t� nTp)

�T T

1

then illustrate its time-shifts u(t� nTp) for Tp 2 (T, 2T )



t

u(t)

TpTp � T

T

1

where we denoted in solid lines the only two contributions that are active

in the period (0, Tp), namely those for u(t) and for u(t� Tp). Since its is

u(t) =

8
<

:

t/T , t 2 (0, T )
�t/T , t 2 (�T, 0)
0 , otherwise

and

u(t� Tp) =

8
<

:

(t� Tp)/T , t 2 (Tp, Tp + T )
�(t� Tp)/T , t 2 (Tp � T, Tp)

0 , otherwise

and since Tp � T < T < Tp, then in the period (0, Tp) we have

s(t) = u(t) + u(t� Tp) =

8
<

:

t/T + 0 , t 2 (0, Tp � T )
t/T � (t� Tp)/T = Tp/T , t 2 (Tp � T, T )
�(t� Tp)/T , t 2 (T, Tp)

as illustrated in the figure below

t

s(t)

TpTp � T

T

1

Tp/T 2 (1, 2)

(Tp � T )/T < 1

4. This is the discrete counterpart to Exercise 5.2.1. The signal u(n) =

a�n
10(n) corresponds to a unilateral exponential signal in discrete time

n

u(n)

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
N

1

•a
�N



whose periodic repetition, in the period [0, N), only includes the time-shify

counterparts u(n� kN) for k  0, that is it assumes the form

s(n) =
1X

k=�1
u(n� kN)

=

0X

k=�1
u(n� kN)

=

0X

k=�1
a�(n�kN)

= a�n
0X

k=�1
(a�N

)
�k

= B a�n , B =
1

1� a�N
, n 2 [0, N)

the result being displayed in the figure below for a > 1.

n

s(n)

••••••••••

••••••••••

••••••••••

••••••••••

••••••••••

••••••••••

••••••••••

••••••••••

••••••••••

••••••••••

N

1



FOUNDATIONS OF SIGNALS AND SYSTEMS

5.5 Solved exercises

Prof. T. Erseghe

Exercises 5.5

Solve the following:

1. apply the sifting property to the following expressions

s1(t) = cos(t)�(t) + sin(t)�(t� ⇡)

a1 =

Z 40

0
�(t+ 3)� �(t� 3) + 2�(t� 10) dt

s2(n) = sin(n+ 1)�(n+ 1) + e�n�(n� 3)

a2 =
5X

n=�5

�(n+ 3)� �(n� 3) + 2�(n� 10) ,

2. prove that the first derivative �0(t) is a generalised function that satisfies
the sifting property

Z 1

�1
s(t)�0(t� t0) dt = �s0(t0) ,

3. evaluate the generalised derivative for rect(t) and sgn(t),

4. evaluate the generalised derivative for the signal

t

s(t)

1 2 4

1

�1

3

5. evaluate the generalised derivative for s(t) = cos(t)1(t).

Solutions.

1. For the first signal we simply have

s1(t) = cos(0)�(t) + sin(⇡)�(t� ⇡) = 1�(t) + 0�(t� ⇡) = �(t)

The second is an integral over the range [0, 40] hence the sifting property
must be applied only to those deltas belonging to the interval, that is we
have

a1 =

Z 40

0
��(t� 3) + 2�(t� 10) dt = �1 + 2 = 1



where �(t + 3) was dropped since it is centred in �3, i.e., outside the
interval. For the third signal we have

s2(n) = sin(0)�(n+ 1) + e�3�(n� 3) = e�3�(n� 3)

Finally, the last sum has range [�5, 5], hence any delta outside this interval
must be discarded, and we have

a2 =
5X

n=�5

�(n+ 3)� �(n� 3) = 1� 1 = 0

where we discarded �(n� 10) since it is centred in 10.

2. In this case we solve the integral by parts considering the couples � ! �0

and s ! s0, to have

Z 1

�1
s(t)�0(t� t0) dt = s(t)�0(t� t0)

���
1

�1
�
Z 1

�1
s0(t)�(t� t0) dt

= (0� 0)� s0(t0)

where in the last equality we exploited the sifting property.

3. The generalised derivatives can be easily identified from the plots

t

rect(t)

1
2� 1

2

1

t

sgn(t)

0

1

�1

from which we observe that the rectangle has a discontinuity of D = 1
in t = � 1

2 (the value increases), and one of D = �1 in t = 1
2 (the

value decreases), while for the signum there is only one discontinuity d =
2 at t = 0. Elsewhere, both signals are constant (they are piecewise
constant signals), hence their derivative in the constant regions is simply
zero. Hence, it is

rect0(t) = �(t+ 1
2 )� �(t� 1

2 ) , sgn0(t) = 2�(t) .

One could also exploit the link with the unit step, to write

rect(t) = 1(t+ 1
2 )� 1(t� 1

2 ) , sgn(t) = 1(t)� 1(�t) ,

and then obtain the same result by derivation and by exploiting 10 = �.



4. The generalized derivative here is easily obtained by simply reading the
plot. The signal is a piecewise constant signal, hence its derivative is zero,
except at discontinuities. The discontinuities are: one with D = 3 at t = 1
(the signal value increases by 3), a second with d = �4 at t = 2 (the signal
value decreases by 4), and, finally, a third one with D = 2 at t = 4. Hence,
we have

s0(t) = 3�(t� 1)� 4�(t� 2) + 2�(t� 4) .

5. Here we simply need to exploit the rule of the derivative of a product, to
have

s0(t) = cos0(t)1(t) + cos(t)10(t)

= � sin(t)1(t) + cos(t)�(t)

= � sin(t)1(t) + cos(0)�(t) = � sin(t)1(t) + �(t)

as illustrated graphically in the figure below.

t

s(t)

t

s0(t)

1



FOUNDATIONS OF SIGNALS AND SYSTEMS
5.6 Homework assignment

Prof. T. Erseghe

Exercises 5.6

Solve the following:

1. prove that the second derivative �00(t) is a generalised function that satis-

fies the sifting property

Z 1

�1
s(t)�00(t� t0) dt = s0(t0) ,

2. evaluate the generalised derivative for s(t) = sgn(t) e(2+j)t
,

3. evaluate the generalised derivative for s(t) = 1
2 sgn(t)� 1(t) + t2 · 1(t),

4. evaluate the generalised derivative for a signal s(t) periodic of period Tp =

2 and such that, in a period,

s(t) =

⇢
3t , t 2 (0, 1)
0 , t 2 (1, 2)



Solutions.

1. In this case we solve the integral by parts considering the couples �0 ! �00

and s ! s0, to have

Z 1

�1
s(t)�00(t� t0) dt = s(t)�00(t� t0)

���
1

�1
�
Z 1

�1
s0(t)�0(t� t0) dt

= (0� 0)� [�s00(t0)]

where in the last equality we exploited the result of Exercise 5.5.2. Using

the same rationale, one can also easily prove, by induction, that

Z 1

�1
s(t)�(k)(t� t0) dt = (�1)

ks(k)(t0)

where
(k)

denotes the derivative of order k.

2. Here we simply need to exploit the rule of the derivative of a product, to

have

s0(t) = sgn
0
(t) e(2+j)t

+ sgn(t) (2 + j) e(2+j)t

= 2 e(2+j)t�(t) + (2 + j) sgn(t) e(2+j)t

= 2 �(t) + (2 + j) sgn(t) e(2+j)t

3. Here, again, we simply need to exploit the rule of the derivative of a

product, to have

s0(t) = 1
2 sgn

0
(t)� 1

0
(t) + 2t · 1(t) + t2 · 10(t)

=
1
2 2�(t)� �(t) + 2t · 1(t) + t2�(t)

= �(t)� �(t) + 2t · 1(t) + 0�(t)

= 2t · 1(t)

4. In this case we can either draw the signal

t

s(t)

1 2

3

from which its derivative, graphically, is

t

s0(t)

�3 �3 �3 �3 �3 �3 �3 �3 �3 �3

1 2

3



or we can exploit formulas, and write the signal in the form

s(t) = rep2u(t) , u(t) = 3t rect(t� 1
2 )

so that

s0(t) = rep2u
0
(t) , u0

(t) = 3 rect(t� 1
2 ) + 3t rect0(t� 1

2 )

= 3 rect(t� 1
2 ) + 3t �(t� 1

2 +
1
2 )� 3t �(t� 1

2 � 1
2 )

= 3 rect(t� 1
2 ) + 3t �(t)� 3t �(t� 1)

= 3 rect(t� 1
2 ) + 0 �(t)� 3 �(t� 1)

= 3 rect(t� 1
2 )� 3 �(t� 1)



FOUNDATIONS OF SIGNALS AND SYSTEMS

6.2 Solved exercises

Prof. T. Erseghe

Exercises 6.2

Discuss reality, memory (static, causal, anti-causal, finite-memory), and BIBO
stability properties for the following systems:

1.

y(n) =
5X

k=�5

e|k||x(n� k)|2 ,

2.

y(t) =

⇢
0 , t  2
cos(t+ 2)

R t�2
�1 x(u) du , t > 2,

3.

y(n) =

⇢
sgn(1/x(n)) , x(n) 6= 0
0 , x(n) = 0,

4.
y(n) = min(|x(n)|, |n|) .

Solutions.

1. The system is real, as, independently of the values of x(n), the output is
a linear combination of real-valued positive contributions thanks to the
presence of the absolute value. With respect to memory, the output at
time n gathers together input values in the range [n� 5, n+5], hence the
system has finite-memory. With respect to BIBO stability, for |x(n)| < Lx

we have

|y(n)| =

�����

5X

k=�5

e|k||x(n� k)|2
�����

=
5X

k=�5

e|k||x(n� k)|2


5X

k=�5

e|k|Lx

= Ly < 1

where it is evident that Ly is limited (it is a limited sum) even without
the need to calculate its exact value. Hence, the system is BIBO stable.



2. The system is real, as it only involves multiplications by real-valued signals
(cos(t+2)). With respect to memory, the output at time t gathers together
input values in the range [�1, t� 2] when t > 2, hence it is causal. With
respect to BIBO stability, we show with a counterexample that it is not
BIBO stable. In fact, by choosing x(t) = 1(t) we obtain

y(t) =

⇢
0 , t  2
cos(t+ 2)

R t�2
�1 1(u) du = (t� 2) cos(t+ 2) , t > 2,

= (t� 2) cos(t+ 2) 1(t� 2)

which is an oscillating signal that gets larger and larger as t increases.

3. Note that this is a static system of the form y(n) = f(x(n)) with

f(x) =

⇢
sgn(1/x) , x 6= 0
0 , x = 0

= sgn(x)

It is real by construction, since the definition does not make sense for
complex x(n). It is also BIBO stable since |y(n)| = |sgn(x(n))|  1 from
the properties of the signum.

4. Also this is a static system, whose function, however, is updated at each
time-step n, that is y(n) = fn(x(n)). It is a real system, thanks to the
presence of the absolute value. It is also a BIBO stable system since, for
|x(n)| < Lx we have

|y(n)| = y(n) = min(|x(n)|, |n|) < min(Lx, |n|)  Lx .



FOUNDATIONS OF SIGNALS AND SYSTEMS
6.3 Homework assignment

Prof. T. Erseghe

Exercises 6.3

Discuss reality, memory (static, causal, anti-causal, finite-memory), and BIBO
stability properties for the following systems:

1.

y(t) =

Z t+1

t�1
|t� u|x(u) du ,

2.

y(n) =
1X

k=1

2kx(n� k) ,

3.

y(t) =

Z t

t�1
et+ux(u) du ,

4.

y(n) =
n+10X

k=n�10

x(k) ,

5.
y(t) = x(t� 2) ,

6.

y(n) =
n�1X

k=�1
3kx(k) ,

7.
y(t) = cos(t� 2)x(t) ,

8.
y(t) = x(t+ 5)x(t� 1) ,

9.

y(t) =

Z 2t

�1
|t� u|2x(u) du ,



Solutions.

1. The system is real, as, for real x(t) the output is a real-valued linear
combination of real-valued signal samples. With respect to memory, the
output at time t gathers together input values in the range [t � 1, t + 1],
hence the system has finite-memory. With respect to BIBO stability, for
|x(n)| < Lx we have

|y(t)| =
����
Z t+1

t�1
|t� u|x(u) du

����


Z t+1

t�1
|t� u||x(u)| du

<

Z t+1

t�1
|t� u|Lx du

= Lx

Z 1

�1
|v| dv = Lx < 1

where v = t� u. Hence, the system is BIBO stable.

2. The system is real, as, for real x(n) the output is a real-valued linear
combination of real-valued signal samples. With respect to memory, the
output at time n gathers together input values in the range (�1, n� 1],
hence the system is causal. The system is non BIBO stable, as we can
verify using x(n) = 1, for which we have

y(n) =
1X

k=1

2k = 1 .

3. The system is real, as, for real x(t) the output is a real-valued linear
combination of real-valued signal samples. With respect to memory, the
output at time t gathers together input values in the range [t�1, t], hence
the system has finite-memory and it is also causal. The system is non
BIBO stable, as we can verify using x(t) = 1, for which we have

y(t) =

Z t

t�1
et+u du

= et
Z t

t�1
eu du

= et
⇣
et � et�1

⌘
= e2t (1� e�1)

which gets to infinite value as t approaches infinity.

4. The system is real, as, for real x(n) the output is a real-valued linear
combination of real-valued signal samples. With respect to memory, the



output at time n gathers together input values in the range [n�10, n+10],
hence the system has finite memory. The system is BIBO stable, as we
can verify assuming |x(n)| < Lx, for which we have

|y(n)| =

�����

n+10X

k=n�10

x(k)

�����


n+10X

k=n�10

|x(k)|

<
n+10X

k=n�10

Lx = 21Lx < 1

5. The system is real, as, for real x(t) the output is evidently real-valued.
With respect to memory, the output at time t gathers together input
values in the range [t � 2], hence the system has finite memory, and it
is also causal. The system is BIBO stable, as we can verify assuming
|x(n)| < Lx, for which we have |y(t)| = |x(t� 2)| < Lx.

6. The system is real, as, for real x(n) the output is a real-valued linear
combination of real-valued signal samples. With respect to memory, the
output at time n gathers together input values in the range (�1, n� 1],
hence the system is causal. The system is non BIBO stable, as we can
verify assuming x(n) = 1, for which we have

y(n) =
n�1X

k=�1
3k

=
1X

m=0

3n�1�m

= 3n�1 1

1� 1
3

= 1
2 · 3n

where we used m = n� 1� k.

7. The system is real, as, for real x(t) the output is evidently real-valued.
With respect to memory, the output at time t gathers together input
values in the range [t], hence the system is instantaneous (both causal
and anti-causal). The system is BIBO stable, as we can verify assuming
|x(n)| < Lx, for which we have |y(t)| = | cos(t� 2)| · |x(t)| < 1 · Lx.

8. The system is real, as, for real x(t) the output is evidently real-valued.
With respect to memory, the output at time t gathers together input
values in the range [t � 1, t + 5], hence it has finite memory. The system
is BIBO stable, as we can verify assuming |x(n)| < Lx, for which we have
|y(t)| = |x(t+ 5)| · |x(t� 1)| < L2

x < 1.



9. The system is real, as, for real x(t) the output is a real-valued linear
combination of real-valued signal samples. With respect to memory, the
output at time t gathers together input values in the range (�1, 2t], hence
the system is simply dynamic. The system is non BIBO stable, as we can
verify assuming x(n) = 1(t), for which we have

y(t) =

Z 2t

�1
|t� u|21(u) du

= 1(t)

Z 2t

0
(t� u)2 du

= 1(t)

Z t

�t
v2 dv = 1(t) 2

3 t
3

where we used v = u� t



FOUNDATIONS OF SIGNALS AND SYSTEMS

6.5 Solved exercises

Prof. T. Erseghe

Exercises 6.5

For each of the following systems state if they are linear and/or time-invariant,

and evaluate their impulse response h(t), as well as the response h�1(t) to the

unit step:

1.

y(n) =
5X

k=�5

e|k||x(n� k)|2 ,

2.

y(t) =

⇢
0 , t  2

cos(t+ 2)
R t�2
�1 x(u) du , t > 2,

3.

y(n) =

⇢
sgn(1/x(n)) , x(n) 6= 0

0 , x(n) = 0,

4.

y(n) = min(|x(n)|, |n|) .

Solutions.

1. The system is not linear, since it involves the absolute value, which is not

a linear mapping. With respect to time invariance, we need to compare

y(n� n0) =

5X

k=�5

e|k||x(n� n0 � k)|2

⌃[x(n� n0)] =

5X

k=�5

e|k||x(n� k � n0)|2

which are equal, hence the system is time-invariant. The impulse response

is

h(n) =
5X

k=�5

e|k||�(n� k)|2

=

5X

k=�5

e|k|�(n� k)

=

5X

k=�5

e|k|�(k � n) since �(n) is even

= e|n|
5X

k=�5

�(k � n) =

⇢
e|n| , n 2 [�5, 5]
0 , otherwise



while the response to the unit step is

h�1(n) =
5X

k=�5

e|k||10(n� k)|2

=

5X

k=�5

e|k|10(n� k)

where 10(n � k) is active for n � k � 0, that is, for k  n. Hence, we

obtain

h�1(n) =

8
<

:

0 , n < �5Pn
k=�5 e

|k|
, n 2 [�5, 5]

P5
k=�5 e

|k|
, n > 5

2. The system is linear, since it involves a product by a known waveform

and an integral, both linear. With respect to time invariance, we need to

compare

y(t� t0) =

⇢
0 , t� t0  2

cos(t� t0 + 2)
R t�t0�2
�1 x(u) du , t� t0 > 2,

⌃[x(t� t0)] =

⇢
0 , t  2

cos(t+ 2)
R t�2
�1 x(u� t0) du , t > 2,

=

⇢
0 , t  2

cos(t+ 2)
R t�2�t0
�1�t0

x(v) dv , t > 2,

which are evidently di↵erent, hence the system is not time-invariant. For

the impulse response we have

h(t) =

⇢
0 , t  2

cos(t+ 2)
R t�2
�1 �(u) du , t > 2,

=

⇢
0 , t  2

cos(t+ 2) , t > 2,

= cos(t+ 2) 1(t� 2) ,

while the response to the unit step is

h(t) =

⇢
0 , t  2

cos(t+ 2)
R t�2
�1 1(u) du , t > 2,

=

⇢
0 , t  2

cos(t+ 2)
R t�2
0 1 du , t > 2,

= cos(t+ 2) (t� 2) 1(t� 2) .

3. The system is evidently non-linear since sgn(x) is not a linear function.

Recalling that this is a mapping y(n) = f(x(n)), with respect to time



invariance, we need to compare

y(n� n0) = f(x(n� n0)) , f(x) = sgn(x) =

⇢
sgn(1/x) , x 6= 0

0 , x = 0

⌃[x(n� n0)] = f(x(n� n0))

which are equal, hence the system is time-invariant (every mapping of

the form y(n) = f(x(n)) is time-invariant by construction). The impulse

response is

h(n) = f(�(n)) =

⇢
1 , n = 0

0 , n 6= 0
= �(n) ,

while for the response to the unit step we have

h�1(n) = f(10(n)) =

⇢
1 , n � 0

0 , n < 0
= 10(n) .

4. The system is evidently non-linear since |x| is not a linear function. With

respect to time invariance, we need to compare

y(n� n0) = min(|x(n� n0)|, |n� n0|)
⌃[x(n� n0)] = min(|x(n� n0)|, |n|)

which are evidently di↵erent, hence the system is non time invariant either.

The impulse response is

h(n) = min(|�(n)|, |n|) =
⇢
min(1, 0) = 0 , n = 0

min(0, |n|) = 0 , n 6= 0

= 0 ,

while for the response to the unit step we have

h�1(n) = min(|10(n)|, |n|) =

8
<

:

min(1, |n|) = 1 , n > 0

min(0, 0) = 0 , n = 0

min(0, |n|) = 0 , n < 0

= 10(n)� �(n) .



FOUNDATIONS OF SIGNALS AND SYSTEMS
6.6 Homework assignment

Prof. T. Erseghe

Exercises 6.6

For each of the following systems state if they are linear and/or time-invariant,

and evaluate their impulse response h(t), as well as the response h�1(t) to the

unit step:

1.

y(t) =

Z t+1

t�1
|t� u|x(u) du ,

2.

y(n) =
1X

k=1

2
kx(n� k) ,

3.

y(t) =

Z t

t�1
et+ux(u) du ,

4.

y(n) =
n+10X

k=n�10

x(k) ,

5.

y(t) = x(t� 2) ,

6.

y(n) =
n�1X

k=�1
3
kx(k) ,

7.

y(t) = cos(t� 2)x(t) ,

8.

y(t) = x(t+ 5)x(t� 1) ,

9.

y(t) =

Z 2t

�1
|t� u|2x(u) du ,



Solutions.

1. The system is linear, since it involves a product by a known waveform

and an integral, both linear. With respect to time invariance, we need to

compare

y(t� t0) =

Z t�t0+1

t�t0�1
|t� t0 � u|x(u) du

⌃[x(t� t0)] =

Z t+1

t�1
|t� u|x(u� t0) du

=

Z t+1�t0

t�1�t0

|t� (v + t0)|x(v) dv

where v = u� t0, which are equal, hence the system is time-invariant. For

the impulse response we have

h(t) =

Z t+1

t�1
|t� u|�(u) du

= |t|
Z t+1

t�1
�(u)du =

(
0 , t < �1

|t| , t 2 (�1, 1)
0 , t > 1

= |t| rect( 12 t)

while the response to the unit step is

h�1(t) =

Z t+1

t�1
|t� u|1(u) du

=

8
>>><

>>>:

0 , t < �1R t+1
0 |t� u|du =

R 1
�t |v|dv =

1
2 � 1

2 t
2

, t 2 (�1, 0)
R t+1
0 |t� u|du =

R 1
�t |v|dv =

1
2 +

1
2 t

2
, t 2 (0, 1)

R t+1
t�1 |t� u|du =

R 1
�1 |v|dv = 1 , t > 1

2. The system is linear, since it involves a product by a known waveform

and an integral, both linear. With respect to time invariance, we need to

compare

y(n� n0) =

1X

k=1

2
kx(n� n0 � k)

⌃[x(n� n0)] =

1X

k=1

2
kx(n� k � n0)

which are equal, hence the system is time-invariant. For the impulse

response we have

h(n) =
1X

k=1

2
k�(n� k) =

1X

k=1

2
k�(k � n) = 2

n
1X

k=1

�(k � n)

= 2
n
10(n� 1)



while the response to the unit step is

h�1(n) =
1X

k=1

2
k
10(n� k)

=

⇢
0 , n  0Pn

k=1 2
k
=

1�2n+1

1�2 � 1 = 2
n+1 � 2 , n > 0

= 2(2
n � 1) 10(n� 1) ,

since 10(n� k) is active for n� k � 0, that is k  n.

3. The system is linear, since it involves a product by a known waveform

and an integral, both linear. With respect to time invariance, we need to

compare

y(t� t0) =

Z t�t0

t�t0�1
et�t0+ux(u) du

⌃[x(t� t0)] =

Z t

t�1
et+ux(u� t0) du

=

Z t�t0

t�1�t0

et+v+t0x(v) dv

which di↵er in the exponential. hence the system is non BIBO stable. For

the impulse response we have

h(t) =

Z t

t�1
et+u�(u) du = et

Z t

t�1
�(u) du

= et rect(t� 1
2 ) =

⇢
et , t 2 (0, 1)
0 , otherwise

while the response to the unit step is

h�1(t) =

Z t

t�1
et+u

1(u) du

=

8
<

:

0 , t < 0

et
R t
0 eu du = et(et � 1) , t 2 (0, 1)

et
R t
t�1 e

u du = e2t(1� e�1
) , t > 1

4. The system is linear, since it involves a summation, which is a linear

mapping. With respect to time invariance, we need to compare

y(n� n0) =

n�n0+10X

k=n�n0�10

x(k)

⌃[x(n� n0)] =

n+10X

k=n�10

x(k � n0)

=

n+10�n0X

m=n�10�n0

x(m)



which are equivalent, hence the system is time-invariant. The impulse

response is

h(n) =
n+10X

k=n�10

�(k) =

⇢
1 , n 2 [�10, 10]
0 , otherwise

= rect(n/21) ,

while the response to the unit step is

h�1(n) =
n+10X

k=n�10

10(k) =

8
<

:

0 , n < �10Pn+10
k=0 1 = n+ 11 , n 2 [�10, 10]Pn+10
k=n�10 1 = 21 , n > 10

5. The system is evidently linear. With respect to time invariance, we need

to compare

y(t� t0) = x(t� t0 � 2)

⌃[x(t� t0)] = x(t� 2� t0)

which are equivalent, hence the system is time-invariant. The impulse

response is y(t) = �(t� 2), and the response to the unit step is h�1(t) =
10(t� 2).

6. The system is linear, since it involves a product by a known waveform and

a summation, both linear. With respect to time invariance, we need to

compare

y(n� n0) =

n�n0�1X

k=�1
3
kx(k)

⌃[x(n� n0)] =

n�1X

k=�1
3
kx(k � n0)

=

n�1�n0X

k=�1
3
kx(m)

which are equivalent, hence the system is time-invariant. The impulse

response is

h(n) =
n�1X

k=�1
3
k�(k) =

n�1X

k=�1
�(k) = 10(n� 1)

while the response to the unit step is

h(n) =
n�1X

k=�1
3
k
10(k) =

⇢
0 n  0Pn�1

k=0 3
k
=

1�3n

1�3 , n > 0

=
1
2 (3

n � 1) 10(n� 1)



7. The system is linear, since it involves a product by a known waveform,

and in fact

cos(t� 2) [ax1(t) + bx2(y)] = a [cos(t� 2)x1(t)] + b [cos(t� 2)x2(t)] .

With respect to time invariance, we need to compare

y(t� t0) = cos(t� t0 � 2)x(t� t0)

⌃[x(t� t0)] = cos(t� 2)x(t� t0)

which are di↵erent, hence the system is not time-invariant. Impulse re-

sponse and the response to the unit step are

h(t) = cos(t� 2) �(t) = cos(2) �(t)

h�1(t) = cos(t� 2) 1(t) .

8. The system is not linear since it involves a product of the signal by itself

(quadratic function). With respect to time invariance, we need to compare

y(t� t0) = x(t� t0 + 5)x(t� t0 � 1)

⌃[x(t� t0)] = x(t+ 5� t0)x(t� 1� t0)

which are equivalent, hence the system is time-invariant. Impulse response

and the response to the unit step are

h(t) = �(t+ 5) �(t� 1) = 0

h�1(t) = 1(t+ 5) 1(t� 1) = 1(t� 1) .

9. The system is linear, since it involves a product by a known waveform

and an integral, both linear. With respect to time invariance, we need to

compare

y(t� t0) =

Z 2t�2t0

�1
|t� t0 � u|2x(u) du

⌃[x(t� t0)] =

Z 2t

�1
|t� u|2x(u� t0) du

=

Z 2t�t0

�1
|t� v � t0|2x(v) dv

which di↵er in the upper extreme of the integral, hence the system is not

time-invariant. The impulse response is

h(t) =

Z 2t

�1
|t� u|2�(u) du = |t|

Z 2t

�1
�(u) du = |t| 1(t) = t 1(t) ,

and the response to the unit step provides

h�1(t) =

Z 2t

�1
|t� u|21(u) du

=

⇢
0 , t < 0R 2t
0 |t� u|2 du =

R t
�t |v|

2 dv =
2
3 t

3
, t > 0

=
2
3 t

3
1(t) .



FOUNDATIONS OF SIGNALS AND SYSTEMS

7.2 Solved exercises

Prof. T. Erseghe

Exercises 7.2

Solve the following:

1. evaluate the convolution z(n) = x ⇤ y(n) for x(n) = A + cos(✓0n) and

y(n) = 10(n)↵n
, �1 < ↵ < 1,

2. evaluate the convolution z(t) = x ⇤ y(t) for x(t) = A + cos(!0t) and

y(t) = 1(t) e�↵t
, ↵ > 0,

3. evaluate the convolution z(t) = x ⇤ y(t) for x(t) = rect(t/4D) and y(t) =
rect(t/2D),

4. express the following signals

z1(t) =

Z 1

�1
e�|u|

sin(t� u) du

z2(t) =

Z 1

0
et�u

sin(u+ 2) du

z3(n) =
nX

�1
ek sin(n� k + 2)

z4(t) =

⇢
0 , t < 0R t
0 et�u

sin(u+ 2) du , t > 0

as a convolution z = x ⇤ y,

5. prove that the convolution z(n) = x ⇤ y(n) between an aperiodic signal

x(n) and a periodic signal y(n +N) = y(n), is periodic of period N , the

same of y(n), that is we have z(n+N) = z(n).

Solution.

1. We illustrate the signals first, which we do with respect to the time-

variable k, as illustrated in the following figure

k

x(k)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A+ cos(#0k)



k

y(k)

•
• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

•1
↵k

Then, we need to visualise the time-reversed and time-shifted version of

y, to have

k

y�(k)

•
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •

•1
↵�k

k

y�(k � n)

•••••••••••••••••••••• • • • • • • • •

•1

n

↵n�k

where it becomes evident that y�(k�n) = y(n�k) has extension (�1, n],
which equivalently constrains the extension of the product. Hence, we can

easily interpret the convolution operation in the form

z(n) =
1X

k=�1
x(k)y�(k � n)

=

nX

k=�1
x(k)y�(k � n)

=

nX

k=�1
[A+ cos('0k)]↵

n�k

which we can solve by expressing the cosine through Euler’s identity, and

by a further change of variable m = n� k in the sum in order to evidence



the presence of a geometric series. We have

z(n) =
nX

k=�1
[A+

1
2e

j'0k +
1
2e

�j'0k]↵n�k

=

1X

m=0

[A+
1
2e

j'0(n�m)
+

1
2e

j'0(m�n)
]↵m

= A
1X

m=0

↵m
+

1
2e

j'0n
1X

m=0

[↵ e�j'0 ]
m
+

1
2e

�j'0n
1X

m=0

[↵ ej'0 ]
m

=
A

1� ↵
+

1
2

ej'0n

1� ↵ e�j'0
+

1
2

e�j'0n

1� ↵ ej'0

=
A

1� ↵
+ <


ej'0n

1� ↵ e�j'0

�

where in the last equivalence we exploited the equivalence 2<[x] = x +

x⇤
. Note that the geometric series converge since |↵e±j'0 | = |↵| < 1.

Incidentally observe that, if we define � = 1 � ↵ e�j'0 = |�|ej'� , then it

also is

z(n) =
A

1� ↵
+

cos('0n� '�)

|�|
where we observe that the original constant contribution A to x(n) has

been scaled, and so has the contribution cos('0n), with an additional

change in phase. That is, the original contributions are somehow kept

by convolution, which, as we will better learn later on in the course, is a

fundamental result.

2. This is the continuous-time counterpart to the previous exercise. We il-

lustrate the signals first, which we do with respect to the time-variable u,
as illustrated in the following figure

u

x(u)

A+ cos(!0u)

u

y(u)

e�↵u

Then, we need to visualise the time-reversed and time-shifted version of

y, to have



u

y�(u)

e↵u

u

y�(u� t)

e↵(u�t)

t

where it becomes evident that y�(u� t) = y(t�u) has extension (�1, t],
which equivalently constrains the extension of the product. Hence, we can

easily interpret the convolution operation in the form

z(t) =

Z 1

�1
x(u)y�(u� t) du

=

Z t

�1
x(u)y�(u� t) du

=

Z t

�1
[A+ cos(!0u)] e

↵(u�t) du

which we can solve by expressing the cosine through Euler’s identity, and

by a further change of variable v = t� u in the integral. We have

z(t) =

Z t

�1
[A+

1
2e

j!0u +
1
2e

�j!0u] e↵(u�t) du

=

Z 1

0
[A+

1
2e

j!0(t�v)
+

1
2e

j!0(v�t)
] e�↵v dv

= A

Z 1

0
e�↵v dv + 1

2e
j!0t

Z 1

0
e�(↵+j!0)v dv + 1

2e
�j!0t

Z 1

0
e�(↵�j!0)v dv

=
A

↵
+

1
2

ej!0t

↵+ j!0
+

1
2

e�j!0t

↵� j!0

=
A

↵
+ <


ej!0t

↵+ j!0

�

Note that the integrals converge since <[�↵±j!0] = �↵ < 0. Incidentally

observe that, if we define � = ↵+ j!0 = |�|ej'� , then it also is

z(n) =
A

↵
+

cos(!0t� '�)

|�|

where we observe that the original constant contributionA to x(t) has been
scaled, and so has the contribution cos(!0t), with an additional change in



phase. That is, the original contributions are somehow kept by convolu-

tion, which, as we will better learn later on in the course, is a fundamental

result perfectly equivalent to the discrete-time case.

3. For the convolution of the two rectangles, given that y�(t) = y(t) since

the rectangle is an even signal, we have the following

u

x(u)

�2D 2D u

y(u) = y�(u)

�D D

u

y�(u� t)

t�
D

(A)

t+
D

t�
D

(B)

t+
D

t�
D

(C)

t+
D

�2D 2D

u

y(u) = y�(u)

u

y�(u� t)

t�
D

(D)

t+
D

t�
D

(E)

t+
D

�2D 2D

u

y(u) = y�(u)

where we highlighted the five cases (A to E) of interest in the relative

position between x(u) and y(t� u). We have

(A) In this case y(t�u) is at the left of x(u), hence their product is zero,
and we have z(t) = 0. The range of validity is t+D < �2D, that is

t < �3D.

(B) In this case y(t � u) is at the right of x(u), hence their product is

zero, and we have z(t) = 0. The range of validity is t�D > 2D, that

is t > 3D.

(C) In this case y(t�u) is inside x(u), hence their product is x(u)y(t�u) =
y(t�u), and since the area of y is 2D we have z(t) = 2D. The range

of validity is t+D < 2D and t�D > �2D, that is �D < t < D.

(D) In this case y(t� u) enters x(u) from the left, and we have

z(t) =

Z 1

�1
x(u)y(t�u) du =

Z t+D

�2D
1 du = t+D� (�2D) = t+3D .

The range of validity is t�D < �2D < t+D, that is �3D < t < �D.



(E) In this case y(t� u) exits x(u) from the right, and we have

z(t) =

Z 1

�1
x(u)y(t� u) du =

Z 2D

t�D
1 du = 2D � (t�D) = 3D � t .

The range of validity is t�D < 2D < t+D, that is D < t < 3D.

By putting the results together, we obtain

z(t) =

8
><

>:

3D + t , t 2 (�3D,�D)

2D , t 2 (�D,D)

3D � t , t 2 (D, 3D)

0 , otherwise

which is the trapezoidal shape illustrated in the figure below.

t

z(t)

�3D 3D�D D

2D

4. In this exercise we wish to write the integrals in the form

z(t) =

Z 1

�1
x(u)y(t� u) , du , z(n) =

1X

k=�1
x(k)y(n� k)

for some x and y. In the first expression the solution is trivial

z1(t) =

Z 1

�1
e�|u|
| {z }
x(u)

sin(t� u)| {z }
y(t�u)

du

so that x(t) = e�|t|
and y(t) = sin(t). For the second integral, instead we

first need to extend the integral to (�1,1), which is possible by intro-

ducing a unit step (appropriately shifted and/or reversed) in the following

form

z2(t) =

Z 1

0
et�u

sin(u+ 2) du

=

Z 1

�1
et�u
|{z}
y(t�u)

sin(u+ 2)1(u)| {z }
x(u)

du

so that x(t) = sin(t + 2) 1(t) and y(t) = et. For the third signal, instead,

we have

z3(n) =
nX

�1
ek sin(n� k + 2)

=

1X

�1
ek|{z}
x(k)

sin(n� k + 2) 10(n� k)| {z }
y(n�k)



where 10(n� k) = 10�(k� n) is active for n� k � 0, that is for k  n, as
we wish. Therefore, it is x(n) = ek and y(n) = sin(n + 2) 10(n). Finally,

the integral expression in the last signal suggests writing it, for t > 0, in

the form

z4(t) =

Z t

0
et�u

sin(u+ 2) du

=

Z 1

�1
et�u

1(t� u)| {z }
y(t�u)

sin(u+ 2)1(u)| {z }
x(u)

du

so that x(t) = sin(t+ 2)1(t) and y(t) = et1(t), which provides the correct

result since for t < 0 the product 1(t� u)1(u) is zero.

5. Assume that, in the discrete-time convolution, we have y(n+N) = y(n).
Hence, we can write

x ⇤ y(n+N) =

1X

k=�1
x(k)y(n+N � k) =

1X

k=�1
x(k)y(n� k) = x ⇤ y(n)

since y(n+N � k) = y(n� k) by periodicity.



FOUNDATIONS OF SIGNALS AND SYSTEMS
7.3 Homework assignment

Prof. T. Erseghe

Exercises 7.3

Solve the following:

1. prove that the convolution z(t) = x⇤y(t) between an aperiodic signal x(t)
and a periodic signal y(t+ Tp) = y(t), is periodic of period Tp, that is, we

have z(t+ Tp) = z(t),

2. show that rect ⇤ rect(t) = triang(t),

3. show that 1 ⇤ 1(t) = t · 1(t),

4. evaluate the convolution between x(t) = 1(t) and y(t) = rect(t),

5. evaluate the convolution between x(t) = e�↵t
1(t) and y(t) = rect(t),

6. evaluate the convolution between x(t) = A cos(!0t) and y(t) = rect(t/2D),

7. evaluate the convolution between x(n) = a�|n|
and y(n) = rect(

1
1+2N n),

8. evaluate the convolution between x(t) = rect(t+ 1
2 ) and y(t) = sgn(t) e�|t|

,

9. evaluate the convolution between x(n) = rect(
1

1+2N n) and y(n) = sgn(n),

10. evaluate the convolution between x(t) = rect(t) and y(t) = |t| rect( 12 t),

11. evaluate the convolution between the two discrete-time rectangles

x(n) =

⇢
1 , n 2 [0, N)

0 , otherwise
y(n) =

⇢
1 , n 2 [0,M)

0 , otherwise

where N � M ,

12. express the following signals as convolutions

z1(n) =
n�1X

�1
3
k , z2(t) =

Z t+4

t�4
sin(u) du .



Solutions.

1. Assume that, in the continuous-time convolution, we have y(t+Tp) = y(t).
Hence, we can write

x ⇤ y(t+ Tp) =

Z 1

�1
x(u)y(t+ Tp � u) du =

Z 1

�1
x(u)y(t� u) du = x ⇤ y(t)

since y(t+ Tp � u) = y(t� u) by periodicity.

2. For the case x(t) = rect(t) and y(t) = y�(t) = rect(t) we have the following
cases

z(t) =

Z 1

�1
rect(u) rect(u� t) du =

8
>>><

>>>:

0 , t < �1R t+ 1
2

� 1
2

1 du = 1 + t , �1 < t < 0

R 1
2

t� 1
2
1 du = 1� t , 0 < t < 1

0 , t > 1

which corresponds to z(t) = triang(t).

3. For the case x(t) = 1(t) and y(t) = 1(t), y�(t) = 1(�t) we have the

following cases

z(t) =

Z 1

�1
1(u)1�(u� t) du =

⇢
0 , t < 0R t
0 1 du = t , t > 0

which corresponds to the ramp z(t) = t · 1(t).

4. For the case x(t) = 1(t) and y(t) = y�(t) = rect(t) we have the following

cases

z(t) =

Z 1

�1
rect(u) rect(u� t) du

=

8
>><

>>:

0 , t < � 1
2R t+ 1

2

0 1 du =
1
2 + t , � 1

2 < t < 1
2R t+ 1

2

t� 1
2
1 du = 1 , t > 1

2

as illustrated in the figure below.

t

z(t)

1
2� 1

2



5. For the case x(t) = e�↵t
1(t) and y(t) = y�(t) = rect(t) we have the

following cases

z(t) =

Z 1

�1
rect(u) rect(u� t) du

=

8
>><

>>:

0 , t < � 1
2R t+ 1

2

0 e�↵t du =
1�e�↵(t+1

2
)

↵ , � 1
2 < t < 1

2R t+ 1
2

t� 1
2
e�↵t du =

e
↵
2 �e�

↵
2

↵ e�↵t
, t > 1

2

as illustrated in the figure below.

t

z(t)

1
2� 1

2

6. In this case, given that y(t) = y�(t) = rect(t/2D), we have

z(t) =

Z 1

�1
A cos(!0u) rect

✓
u� t

2D

◆
du

=

Z t+D

t�D
A cos(!0u) du

= A
sin(!0u)

!0

���
t+D

t�D

= A
sin(!0t+ !0D)� sin(!0t� !0D)

!0

=
2A sin(!0D)

!0
cos(!0t)

hence the output is still a sinusoid of the same period.

7. In this case we have y�(n) = y(n) and

y�(k � n) =

⇢
1 , n�N  k  n+N
0 , otherwise



so that we can distinguish three cases

z(n) =
1X

k=�1
x(k)y�(k � n)

=

8
><

>:

Pn+N
k=n�N ak , n+N  0

P0
k=n�N ak +

Pn+N
k=1 a�k

, �N < n < N
Pn+N

k=n�N a�k
, n�N � 0

=

8
><

>:

a�N�a1+N

1�a an , n  �N
1�an�N�1

1�a�1 +
1�a�n�N�1

1�a�1 � 1 , �N < n < N
aN�a�(1+N)

1�a�1 a�n
, n � N

as illustrated in the figure below.

n

z(n)

••
•• •• •• •• •• •• ••

•• •• ••

8. In this specific case we have y�(t) = �y(t) = �sgn(t) e�|t|
, with a breaking

point at zero, hence we obtain three di↵erent regions

z(t) = �
Z 0

�1
sgn(u� t) e�|u�t| du

=

8
><

>:

�
R 0
�1 e

�(u�t) du , t < �1
R t
�1 e

(u�t) du�
R 0
t e�(u�t) du , �1 < t < 0

R 0
�1 e

(u�t) du , t > 0

=

8
<

:

�(e� 1) et , t < �1

et � e�t�1
, �1 < t < 0

(1� e�1
) e�t

, t > 0

as illustrated in the figure below.

t

x(t)

�1



t

y(t)

t

z(t)

�1

9. In this case it is

x(k) =

⇢
1 , �N  k  N
0 , otherwise

and y�(k) = �y(k) = �sgn(k), so that we can identify five regions

z(n) = �
NX

k=�N

sgn(k � n)

=

8
>>>>>><

>>>>>>:

�
PN

k=�N 1 = �(1 + 2N) , n < �N

�
PN

k=�N+1 1 = �2N , n = �N
Pn�1

k=�N 1�
PN

k=n+1 1 = 2n , �N < n < N
PN�1

k=�N 1 = 2N , n = �N
PN

k=�N 1 = 1 + 2N , n > N

=

8
<

:

�(1 + 2N) , n < �N
2n , �N  n  N
1 + 2N , n > N

as illustrated in the figure below.

n

z(n)

•
•
•
•
•
•
• •

•

•

•

•

•

•

•

•

•

•

•

•

•



10. In this case it is y�(t) = y(t) and we have

z(t) =

Z 1
2

� 1
2

|u� t| rect( 12 (u� t)) du

=

8
>>>>>><

>>>>>>:

R t+1

� 1
2
(u� t) du =

3
8 � 1

2 t�
1
2 t

2
, t 2 (� 3

2 ,�
1
2 )

R 1
2
t (u� t) du�

R t

� 1
2
(u� t) du =

1
4 + t2 , t 2 (� 1

2 ,
1
2 )

�
R 1

2
t�1(u� t) du =

3
8 +

1
2 t�

1
2 t

2
, t 2 (

1
2 ,

3
2 )

0 , otherwise

as illustrated in the figure below.

t

x(t)
1

1
2 t

y(t)
1

1 t

z(t)

1
2

1
2

3
2

11. We have

x(k) =

⇢
1 , k 2 [0, N)

0 , otherwise
y�(k � n) =

⇢
1 , k 2 (n�M,n]
0 , otherwise

so that

z(n) =
N�1X

k=0

y�(k � n)

=

8
>><

>>:

Pn
k=0 1 = n+ 1 , k 2 [0,M)Pn
k=n�M+1 1 = M , k 2 [M,N)

PN�1
k=n�M+1 1 = N +M � 1� n , k 2 [N,N +M � 1)

0 , otherwise

as illustrated in the figure below.

n

z(n)

• • • • •
•
•
•
•
•

M � 1 N � 1 M +N � 1

• • • • •
•
•
•
•
• • • • • • •



As shown in the figure, the result is equivalent to that of a (sampled)

isosceles trapezoid, with bases of M + N and N � M , and height M ,

time-shifted to the right by one sample.

12. For the first signal, we have

z1(n) =
n�1X

�1
3
k
=

1X

�1
3
k
10(n� 1� k)

hence it is the convolution between x(n) = 3
n
and y(n) = 10(n� 1). For

the second signal, we similarly have

z2(t) =

Z t+4

t�4
sin(u) du =

Z 1

�1
sin(u) 1(u� (t� 4)) 1((t+ 4)� u)du

hence it is the convolution between x(t) = sin(t) and y(t) = 1�(t�4) 1(t+
4) = rect(t/8).



FOUNDATIONS OF SIGNALS AND SYSTEMS

7.5 Solved exercises

Prof. T. Erseghe

Exercises 7.5

Solve the following by using the properties of convolution:

1. prove that the convolution between x(t) = rect(T/T1) and rect(t/T2),
T2  T1, is a trapezoid with bases T1 + T2 and T1 � T2, and with height
T2, by expressing rectangles as di↵erences of unit steps, and by exploiting
the result 1 ⇤ 1(t) = t · 1(t);

2. evaluate the convolution between the two signals in figure

t

x(t)4

�2

�12 �8

4 12

t

y(t)
A

2

by exploiting the result of the previous exercise;

3. evaluate the convolution between x(n) = �(n) + 1
2�(n � 1) and y(n) =

rect((n� 1)/3), as well as the convolution between x(n� 3) and y(n+2);

4. evaluate the output of a series of two LTI systems with impulse responses
h1(n) = sin(8n) and h2(n) = an10(n), respectively, by considering an
input of the form x(n) = �(n)� a�(n� 1).

Solutions.

1. We have

x(t) = 1(t+ 1
2T1)� 1(t� 1

2T1) , y(t) = 1(t+ 1
2T2)� 1(t� 1

2T2)

so that, by linearity and time-shift property, we have

z(t) = x ⇤ y(t)
= [1(t+ 1

2T1)] ⇤ [1(t+ 1
2T2)]� [1(t+ 1

2T1)] ⇤ [1(t� 1
2T2)]

� [1(t� 1
2T1)] ⇤ [1(t+ 1

2T2)] + [1(t� 1
2T1)] ⇤ [1(t� 1

2T2)]

= 1 ⇤ 1(t+ 1
2T1 +

1
2T2)� 1 ⇤ 1(t+ 1

2T1 � 1
2T2)

� 1 ⇤ 1(t� 1
2T1 +

1
2T2) + 1 ⇤ 1(t� 1

2T1 � 1
2T2)

whose contributions are illustrated in figure below in dashed lines, together
with their sum which readily provides a trapezoid.



t

z(t)

T2

�
1

2
(T
1
+
T 2
)

1
2
(T
1
+
T 2
)

�
1

2
(T
1
�
T 2
)

1
2
(T
1
�
T 2
)

As a matter of fact, in the first interval [� 1
2 (T1 + T2),� 1

2 (T1 � T2)] there
is only one contribution active, hence the slope is 1. In the next interval,
[� 1

2 (T1 � T2),
1
2 (T1 � T2)], instead, two contributions are active, where

one has positive slope and the second has negative slope, hence the slope
is 1 � 1 = 0, and in fact the signal is constant. In the third interval,
[ 12 (T1 � T2),

1
2 (T1 + T2)], the active contributions are three, with slopes

1� 1� 1 = �1, and in fact the signal decreases here. In the last interval
the signal must be zero because of the property of the extension of the
convolution. Incidentally, we can also check the validity of our result
through the property of the area, for which we have

Az = (T1 � T2)T2 + 2 · 1
2

⇣
1
2 (T1 + T2)� 1

2 (T1 � T2)
⌘
T2 = T1T2 = AxAy ,

where the area was derived graphically by summing the sum of the two
side triangles to the central rectangle building the trapezoid.

2. By using the notation rectT (t) = rect(t/T ) we can express the signals in
the form

x(t) = 4 rect4(t+ 10)� 2 rect8(t� 8) , y(t) = A rect2(t� 1) ,

so that by exploiting the linearity and time-shift properties of convolution
we have

z(t) = x ⇤ y(t)

=
h
4 rect4(t+ 10)� 2 rect8(t� 8)

i
·
h
A rect2(t� 1)

i

= 4A rect4(t+ 10) ⇤ rect2(t� 1)� 2A rect8(t� 8) ⇤ rect2(t� 1)

= 4A rect4 ⇤ rect2(t+ 10� 1)� 2A rect8 ⇤ rect
2

(t� 8� 1)

= 4A rect4 ⇤ rect2(t+ 9)� 2A rect8 ⇤ rect2(t� 9)

where rect4 ⇤ rect2 is a trapezoid of bases 4+2 = 6 and 4�2 = 2, and height
2, while rect8 ⇤ rect2 is a trapezoid of bases 8 + 2 = 10 and 8� 2 = 6, and
height 2. The results is therefore the one illustrated in the figure below.



t

z(t)4A

�2A

�12 �6�10 �8

4 146 12

Note that the property of the area holds also in this case, and in fact

Az = 4 · 4A� 8 · 2A = 0 = AxAy = (4 · 4� 8 · 2) 2A

and so does the property on the extension [�12, 12] + [0, 2] ! [�12, 14].

3. We preliminarily observe that

y(n) = rect((n� 1)/3) =

⇢
1 , n = 0, 1, 2
0 , otherwise

as can be inferred from the graphical illustration below.

n

x(n)

•
•

••••• ••••••
n

y(n)

•••

••••• •••••

rect( t�1
3 )

n

z(n)

•
••

•
••••• ••••

Then, by the properties of convolution we have

z(n) = x ⇤ y(n)
= [�(n) + 1

2�(n� 1)] ⇤ y(n)

= y(n) + 1
2y(n� 1) =

8
><

>:

1 , n = 0
3
2 , n = 1, 2
1
2 , n = 3
0 , otherwise

whose result is also provided in the figure above. Note that the property
on the area of the convolution is verified, since we have

Az = 1 + 3
2 + 3

2 + 1
2 = 9

2 = AxAy = 3 · 3
2 ,

and so is the property on the extension [0, 1] + [0, 2] ! [0, 3]. By the
time-shift property we also have

x(n� 3) ⇤ y(n+ 2) = x ⇤ y(n� 3 + 2) = z(n� 1) =

8
><

>:

1 , n = 1
3
2 , n = 2, 3
1
2 , n = 4
0 , otherwise



4. In a series of two LTI systems, the output of the first system is z(n) =
x ⇤ h1(n), and the final output assumes the form

y(n) = z ⇤ h2(n) = x ⇤ h1 ⇤ h2(n) ,

where by commutativity and associativity the convolutions can be taken in
any order. In the specific case it is reasonable to approach the calculation
in the form

y(n) = (x ⇤ h2) ⇤ h1(n) ,

that is by inverting the two LTI systems. We have

x ⇤ h2(n) = [�(n)� a�(n� 1)] ⇤ h2(n)

= h2(n)� a h2(n� 1)

= an10(n)� a · an�110(n� 1)

= an · [10(n)� 10(n� 1)]

= an �(n)

= �(n)

so that y(n) = � ⇤ h1(n) = h1(n) = sin(8n). Any other ordering, although
leading to the same final result, will involve much cumbersome calcula-
tions, hence highlighting the power of commutativity and associativity.



FOUNDATIONS OF SIGNALS AND SYSTEMS
7.6 Homework assignment

Prof. T. Erseghe

Exercises 7.6

Solve the following by using, where needed, the properties of convolution:

1. prove (either in continuous-time or discrete-time) that the convolution

between two even signals is even, the convolution between two odd signals

is even, and the convolution between an odd and an even signal is odd;

2. evaluate the convolution between x(t) = sgn(t) rect( 14 t) and the signal

y(t) = A rect(
1
2 t);

3. evaluate the output of a LTI system with impulse response g(t) = rect(t)
when the input is the square wave x(t) = rep2 rect(t� 1

2 ),

4. evaluate the output of a LTI system with impulse response g(t) = e�at
1(t),

a > 0, when the input is the square wave x(t) = rep2 rect(t),

5. evaluate the convolution between x(n) = �(n)� 1
2�(n�1)� 1

2�(n+1) and

y(n) = a�n
10(�n), |a| < 1;

6. evaluate the output of a LTI system with impulse response g(n) = �(n�
1)� �(n+ 1), a > 0, when the input is x(n) = a|n|, |a| < 1;

7. evaluate the output of a LTI system with impulse response g(n) = sgn(n),
when the input is x(n) = |n| 10(n� 3) 10(3� n);

8. evaluate the output of a LTI system with impulse response g(n) = 10(n),
when the input is x(n) = rect((n� 1)/3);

9. evaluate the convolution between x(n) = 2�(n)� �(n� 1)� �(n+ 1) and

y(n) = 10(n� 1)� 10(n� 5);

10. evaluate the convolution between

x(n) =

⇢
(
1
5 )

n
, n 2 [0, 4]

0 , otherwise
y(n) =

⇢
cos(

⇡
10k) , k multiple of 5

0 , otherwise



Solutions.

1. We consider the continuous-time first, for which we write

x ⇤ y(�t) =

Z 1

�1
x(u)y((�t)� u) du

=

Z 1

�1
x(�v)y(�t+ v) dv

=

Z 1

�1
x�(v)y�(t� v) dv

= x� ⇤ y�(t)

This is enough to prove the results since when both signals are either even

or odd we have x� ⇤ y� = x ⇤ y hence it follows that x ⇤ y(�t) = x ⇤ y(t).
When, instead, one signal is even and the other is odd we have x� ⇤ y� =

�x ⇤ y, so that x ⇤ y(�t) = �x ⇤ y(t). The counterpart in discrete-time

takes the form

x ⇤ y(�n) =
1X

k�1
x(k)y((�n)� k)

=

1X

m=�1
x(�m)y(�n+m)

=

1X

�1
x�(m)y�(n�m)

= x� ⇤ y�(n)

and leads to the same result by the same rationale.

2. We have

x(t) = u(t� 1)� u(t+ 1) , y(t) = Au(t) , u(t) = rect(
1
2 t)

so that by linearity and time-shift property we can write

x ⇤ y(t) = [u(t� 1)� u(t+ 1)] ⇤ [Au(t)] = Au ⇤ u(t� 1)�Au ⇤ u(t+ 1)

with u ⇤ u(t) = 2 triang(
1
2 t). Hence, it readily follows that

x ⇤ y(t) = 2A triang(
1
2 (t� 1))� 2A triang(

1
2 (t+ 1))

as illustrated in the figure below.

t

x(t)

�1

1

2

�2

t

y(t)

A

1

t

x ⇤ y(t) 2A

1 3



3. By writing the input in the form

x(t) = rep2 rect(t� 1
2 ) =

1X

k=�1
rect(t� 2k � 1

2 )

the LTI system output becomes

y(t) = x ⇤ g(t) =
1X

k=�1
rect ⇤ rect| {z }

triang

(t� 2k � 1
2 ) = rep2 triang(t� 1

2 )

where we simply exploited linearity. The result is depicted in the figure

below.

t

y(t)

� 1
2

3
2

4. By writing the input in the form

x(t) = rep2 rect(t) =
1X

k=�1
rect(t� 2k)

the LTI system output becomes

y(t) = x ⇤ g(t) =
1X

k=�1
rect ⇤g(t� 2k) = rep2 rect ⇤g(t)

where we simply exploited linearity, and where (see Exercise 7.3.5)

rect ⇤g(t) =

8
><

>:

0 , t < � 1
2

1�e�a(t+1
2
)

a , � 1
2 < t < 1

2
e
a
2 �e�

a
2

a e�at
, t > 1

2

whose periodic repetition segments active in the period [� 1
2 ,

3
2 ] are shown

in the figure below.

t

rect ⇤g(t� 2k)

1
2� 1

2
3
2



Hence, in the reference period [� 1
2 ,

3
2 ] the periodic repetition provides

y(t) = rect ⇤g(t) +
�1X

k=�1

e
a
2 � e�

a
2

a
e�a(t�2k)

= rect ⇤g(t) + e
a
2 � e�

a
2

a
e�at e�2a

1� e�2a
, t 2 [� 1

2 ,
3
2 ]

=

(
1
a �Kae�at

, � 1
2 < t < 1

2 , where Ka =
e
a
2 �e�

a
2

a(ea�e�a)

Kae�a(t�1)
,

1
2 < t < 3

2

as illustrated in the figure below.

t

y(t)

1
2� 1

2
3
2

5. We proceed by linearity and time-shift property and write

z(n) = x ⇤ y(n)
= [�(n)� 1

2�(n� 1)� 1
2�(n+ 1)] ⇤ y(n)

= y(n)� 1
2y(n� 1)� 1

2y(n+ 1)

= a�n
10(�n)� 1

2 a
�(n�1)

10(�n+ 1)� 1
2 a

�(n+1)
10(�n� 1)

=

8
>><

>>:

a�n � 1
2 a

�(n�1) � 1
2 a

�(n+1)
= � (1�a)2

2a a�n
, n < 0

1� 1
2a+ 0 = 1� 1

2a , n = 0

0� 1
2 + 0 = � 1

2 , n = 1

0 , otherwise

the result being sketched in the figure below for a =
1
2 .

n

z(n)

• • • • • • • • • • • • • • •

•

•

• • • • • • • • • • • • • •



6. By linearity and time-shift properties we have

y(n) = x ⇤ g(n)
= x ⇤ [�(n� 1)� �(n+ 1)]

= x(n� 1)� x(n+ 1)

= a|n�1| � a|n+1|

=

8
<

:

a�n+1 � a�n�1
= �(a�1 � a) a�n

, n < 0

a� a = 0 , n = 0

an�1 � an+1
= (a�1 � a) an , n > 0

= (a�1 � a) sgn(n) a|n|

the result being sketched in the figure below for a =
1
2 .

n

y(n)

•

•

•

•

•
•

•
• •• •• •• •• •• •• •• •• •• •• •• •

7. In this case it is fundamental to observe that

x(n) = |n| 10(n� 3) 10(3� n) = x(n) = |n| �(n� 3) = 3 �(n� 3)

hence it simply is

y(n) = x ⇤ g(n) = 3� ⇤ g(n) = 3 g(n) = 3 sgn(n) .

8. Since the input can be written in the form (see signal y(n) in Exer-

cise 7.5.3)

x(n) = rect((n� 1)/3) = �(n) + �(n� 1) + �(n� 2)

then by linearity and time-shift properties we have

y(n) = x ⇤ g(n)
= [�(n) + �(n� 1) + �(n� 2)] ⇤ g(n)
= g(n) + g(n� 1) + g(n� 2)

= 10(n) + 10(n� 1) + 10(n� 2)

=

8
><

>:

0 , n < 0

1 , n = 0

2 , n = 1

3 , n > 1

the result being sketched in the figure below.



n

y(n)
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
•
•

9. Note that y(n) can be written in the form

y(n) =

⇢
1 , n 2 [1, 4]
0 , otherwise

= �(n� 1) + �(n� 2) + �(n� 3) + �(n� 4)

then by linearity and time-shift properties we have

z(n) = x ⇤ y(n)
= [2�(n)� �(n� 1)� �(n+ 1)] ⇤ y(n)
= 2y(n)� y(n� 1)� y(n+ 1)

= 2�(n� 1) + 2�(n� 2) + 2�(n� 3) + 2�(n� 4)

� �(n� 2)� �(n� 3)� �(n� 4)� �(n� 5)

� �(n)� �(n� 1)� �(n� 2)� �(n� 3)

= ��(n) + �(n� 1) + �(n� 4)� �(n� 5)

as illustrated in the figure below.

n

z(n)

• • • • • • • • • •• • • • • • • • • • • • • • •

•

•

• •

•

•

10. We first observe that

y(n) =

⇢
cos(

⇡
2n) , k = 5n

0 , otherwise

hence y(n) is periodic of period N = 20 with active values y(0) = 1 and

y(10) = �1 in a period, that is

y(n) = rep20�(n)� �(n� 10) .

In the convolution with x(n), by linearity and time-shift properties, as

already seen many times in the preceding exercises, we have

z(n) = x ⇤ y(n) = rep20x(n) ⇤ [�(n)� �(n� 10)] = rep20x(n)� x(n� 10)



so that, in the period n 2 [0, 20), we have

z(n) =

8
>><

>>:

(
1
5 )

n
, n 2 [0, 5)

0 , n 2 [5, 10)
�(

1
5 )

n�10
, n 2 [10, 15)

0 , n 2 [15, 20)

as illustrated in the figure below.

n

z(n)

•

•

•• •• •• •• •

•

•• •• •• •• •

•

•• •• •• •• •

•

•• •• •• •• •

•

•• •• •• •• •

•

•• •• •• •• •

•

•• •• •• ••
20



FOUNDATIONS OF SIGNALS AND SYSTEMS

8.2 Solved exercises

Prof. T. Erseghe

Exercises 8.2

Solve the following:

1. evaluate the circular convolution between the signals x(t) = rep3 rect(t� 1
2 )

and y(t) = rep3 rect(t� 5
2 ),

2. prove that the circular convolution between x(n) = repN x0(n) and y(n) =
repN y0(n), has the form

z(n) = x ⇤cir y(n)
= repNx0 ⇤ y0(n)
= x ⇤ y0(n)
= x0 ⇤ y(n) ,

3. evaluate the the circular convolution between the signals x(t) = 4A cos(2⇡t)+
A and y(t) = sin(⇡t).

Solutions.

1. We have x0(t) = rect(t � 1
2 ) and y0(t) = rect(t � 5

2 ), hence the circular

convolution provides

z(t) = x ⇤cir y(t)
= rep3x0 ⇤ y0(t)
= rep3triang(t� 1

2 � 5
2 )

= rep3triang(t� 3)

= rep3triang(t)

as illustrated in the figure below.

t

z(t)



2. We follow the same procedure seen for the continuous-time, and write

z(n) = x ⇤cir y(n)

=

N�1X

k=0

x(k)y(n� k)

=

N�1X

k=0

 1X

`=�1
x0(k � `N)

!
y(n� k)

=

1X

`=�1

N�1X

k=0

x0(k � `N)y(n� k)

=

1X

`=�1

N�1�`NX

m=�`N

x0(m)y(n�m� `N)

=

1X

`=�1

N�1�`NX

m=�`N

x0(m)y(n�m)

where we replaced m = k�`N and we exploited in the last equivalence the

periodicity of y(n). Hence, by observing that the sum in ` is combining

the sums of m over the entire time-axis, we can write

z(n) = x ⇤cir y(n)

=

1X

m=�1
x0(m)y(n�m)

= x0 ⇤ y(n) ,

which proves one of the results. By further expanding y in the form of a

periodic repetition we also have

z(n) = x ⇤cir y(n)

=

1X

m=�1
x0(m)

 1X

`=�1
y0(n�m� `N)

!

=

1X

`=�1

 1X

m=�1
x0(m)y0(n�m� `N)

!

=

1X

`=�1
x0 ⇤ y0(n� `N)

= repNx0 ⇤ y0(n)

thus completing the proof.

3. We preliminarily observe that the periodicity of x(t) is Tx = 1, and that

of y(t) is Ty = 2, hence we take the common periodicity Tp = 2 in the



circular convolution. In this specific case, the best approach is to apply

directly the definition (with t0 = 0) since the signals are not piecewise

defined. We obtain

z(t) = x ⇤cir y(t)

=

Z 2

0
x(u) y(t� u) du

=

Z 2

0
[4A cos(2⇡u) +A] sin(⇡(t� u)) du

=
A
2j

Z 2

0
[2ej2⇡u + 2e�j2⇡u

+ 1] [ej⇡(t�u) � e�j⇡(t�u)
] du

=
A
2j

Z 2

0
[2ej⇡(t+u)

+ 2e⇡(t�3u)
+ ej⇡(t�u)

� 2e�j⇡(t+u) � 2e�⇡(t�3u) � e�j⇡(t�u)
] du

= A

Z 2

0
[2 sin(⇡(t+ u)) + 2 sin(⇡(t� 3u)) + sin(⇡(t� u))] du

= 0

since the three sinusoids in the integral have periods, respectively, of 2,
2
3

(i.e., one third of 2), and 2.



FOUNDATIONS OF SIGNALS AND SYSTEMS
8.3 Homework assignment

Prof. T. Erseghe

Exercises 8.3

Solve the following:

1. evaluate the circular convolution between two square waves of duty cycle
dx and dy, respectively, with dx + dy < 1, and generic period Tp,

2. evaluate the circular convolution between x(t) = 4A cos(2⇡t/Tp)+A, and
a periodic signal y(t), defined in [� 1

2Tp,
1
2Tp] as y(t) = 2 cos(⇡t/Tp),

3. evaluate the circular convolution between a signal x(n) periodic of period
N and defined in the period [0, N) as

x(n) =

⇢
1 , 0  n  N

2 � 1
0 , N

2  n < N

and itself (self-convolution),

4. identify a periodic signals x(t) whose circular self-convolution provides
z(t) = x ⇤ x(t) = repTp

triang(2t/Tp � 1).



Solutions.

1. The two square waves can be written as x(t) = repTp
x0(t) and y(t) =

repTp
y0(t) where

x0(t) = rect

✓
t

dxTp

◆
, y0(t) = rect

✓
t

dyTp

◆
,

so that z(t) = x ⇤ y(t) = repTp
x0 ⇤ y0(t) where x0 ⇤ y0 is a trapezoid

with bases B = Tp(dx + dy) and b = Tp|dx � dy|, and with height h =
Tp min(dx, dy), thus providing the periodic signal z(t) illustrated in the
figure below.

t

z(t)

h

b
2

B
2

Tp

2
Tp

2. We have y(t) = repTp
y0(t) with

y0(t) = 2 cos(⇡t/Tp) rect(t/Tp) ,

so that the circular convolution can be written in the form

z(t) = x ⇤cir y(t)
= x ⇤ y0(t)
= y0 ⇤ x(t)

=

Z 1

�1
y0(u)x(t� u) du

=

Z 1
2Tp

� 1
2Tp

2 cos(⇡u/Tp) [4A cos(2⇡(t� u)/Tp) +A] du

= A

Z 1
2Tp

� 1
2Tp

[ej⇡u/Tp + e�j⇡u/Tp ] [2ej2⇡(t�u)/Tp + 2e�j2⇡(t�u)/Tp + 1] du

= A

Z 1
2Tp

� 1
2Tp

[2ej⇡(2t�u)/Tp + 2ej⇡(3u�2t)/Tp + ej⇡u/Tp

+ 2ej⇡(2t�3u)/Tp + 2e�j⇡(2t�u)/Tp + e�j⇡u/Tp ] du

= A

Z 1
2Tp

� 1
2Tp

[4 cos(⇡ u�2t
Tp

) + 4 cos(⇡ 3u�2t
Tp

) + 2 cos(⇡ u
Tp

)] du



By solving the integral, we obtain

z(t) = x ⇤cir y(t)

=
ATp

⇡

h
4 sin(⇡ u�2t

Tp
) + 4

3 sin(⇡
3u�2t
Tp

) + 2 sin(⇡ u
Tp

)
i 1
2Tp

� 1
2Tp

=
ATp

⇡

h
4 sin(⇡2 � 2⇡t

Tp
) + 4

3 sin(
3⇡
2 � 2⇡t

Tp
) + 2 sin(⇡2 )

� 4 sin(�⇡
2 � 2⇡t

Tp
)� 4

3 sin(�
3⇡
2 � 2⇡t

Tp
)� 2 sin(�⇡

2 )
i

=
ATp

⇡

h
8 cos( 2⇡tTp

)� 8
3 cos(

2⇡t
Tp

) + 4
i

=
4ATp

⇡

h
4
3 cos(

2⇡t
Tp

) + 1
i

3. We write x(n) = repn x0(n) with

x0(n) =

⇢
1 , n 2 [0,Kx]
0 , otherwise

Kx =

⇢ N
2 � 1 , N even
N
2 � 3

2 , N odd

so that z(n) = x ⇤cir x(n) = repN x0 ⇤ x0(n) with

x0 ⇤ x0(n) =

8
<

:

1 + n , n 2 [0,Kx]
1 + 2Kx � n , n 2 (Kx, 2Kx]
0 , otherwise

where

2Kx =

⇢
N � 2 , N even
N � 3 , N odd

so that there is no aliasing in the periodic repetition. The resulting signal
is illustrated for N even in the figure below (for N odd there would be
two zeros in a row separating the periodic repetitions).

n

z(n)

• •• •• •• •• •••

• •• •• •• •• •••

• •• •• •• •• •••

• •• •• •• •• •••

• •• •• •• •• •••

• •• •• •• •• •••

N

4. We look for x(n) = repn u(n) such that

u ⇤ u(t) = triang
⇣

t� 1
2Tp

1
2Tp

⌘

which is an isosceles triangle with base Tp, so that we can choose

u(t) = 1p
1
2Tp

rect
⇣

t� 1
4Tp

1
2Tp

⌘
,



that is a square wave x(t) of duty cycle 1
2 . The result is correctly scaled

since we can notice that

rect
⇣

t
1
2Tp

⌘
⇤ rect

⇣
t

1
2Tp

⌘
= 1

2Tp triang
⇣

t
1
2Tp

⌘
.



FOUNDATIONS OF SIGNALS AND SYSTEMS

8.5 Solved exercises

Prof. T. Erseghe

Exercises 8.5

Solve the following:

1. prove that a necessary and su�cient condition for a discrete-time filter to
be BIBO stable is that its impulse response is absolutely summable;

2. discuss the BIBO stability of a filter with impulse response g(n) = n cos(n⇡
4 ) 10(n);

3. discuss the BIBO stability of a filter with impulse response g(t) = e�t cos(t) 1(t).

Solution.

1. We proceed as in the continuous-time case. We first prove that an abso-
lutely summable g(n) identifies a BIBO stable system. We have

|y(n)| =

�����

1X

k=�1
x(k)g(n� k)

�����


1X

k=�1
|x(k)| · |g(n� k)|

<
1X

k=�1
Lx · |g(n� k)|

= Lx

1X

`=�1
|g(`)| = LxLg

which proves BIBO stability. Conversely, we wish to prove that a BIBO
stable filter implies an absolutely summable g(n). To do so, we proceed
by absurd and assume Lg = 1. We then build a limited signal x(n) =
e�j#(�n) where g(n) = |g(n)|ej#(n), which is a signal satisfying |x(n)| = 1.
This limited signal, however produces an output which is not limited at
n = 0, and in fact

y(0) =
1X

k=�1
x(k)g(0� k)

=
1X

k=�1
e�j#(�k) · |g(�k)|ej#(�k)

=
1X

k=�1
|g(�k)| =

1X

`=�1
|g(`)| = Lg

where Lg = 1, which is an absurd proving the result.



2. The causal filter g(n) = n cos(n⇡
4 ) 10(n) is sketched in the figure below

n

g(n)

• • • • • •
•
• • •

•
•
• •

•

•
•
•

•

•
•
•

•

•
•
•

•••••

which reveals that the impulse response is not vanishing, and that its val-
ues tend to increase (to infinity) as n increases. Hence, it is not absolutely
summable and the filter is not BIBO stable.

3. This is a vanishing causal filter for which

Lg =

Z 1

�1
|g(t)| dt

=

Z 1

0
e�t | cos(t)| dt


Z 1

0
e�t dt

= 1

which reveals a BIBO stable system. Note that we are not interested in
the true value of Lg, but rather on knowing if Lg is finite or not, which
makes it useful also to work with bounds (thus simplifying calculations).



FOUNDATIONS OF SIGNALS AND SYSTEMS
8.6 Homework assignment

Prof. T. Erseghe

Exercises 8.6

For the following systems, state if they are LTI systems (filters). If so, identify
their impulse response, and exploit it to assess their memory and BIBO stability
properties:

1. the system with input/output relation

y(t) = 2

Z t+2

t�2
x(u)eu�t du� x(t+ 2) ;

2. the system with input/output relation

y(t) = 1(t� 2)

Z t�2

�1
x(u) cos(t� u) du+ 3x(t� 1) ;

3. the series of two filter with impulse responses g1(n) = sin(8n) and g2(n) =
an 10(n), �1 < a < 1;

4. the system with input/output relation

y(t) =

Z 2t+1

t�1
x(u) et�u du� x(t� 2) ;

5. the system with input/output relation

y(n) =

8
><

>:

n�3X

k=�10

x(k)e�(n�k) n � 0

0 n < 0;

6. the system with input/output relation

y(t) =

Z t�2

�1
e5(t�⌧) x(⌧ + 2) d⌧ + 3x(t� 7) ;

7. the system with input/output relation

y(t) =

8
<

:

0 t  2

cos(t+ 2) ·
Z t�2

�1
x(⌧)d⌧ t > 2 ;

8. the system with input/output relation

y(t) = x ⇤ g(t) , g(t) = sinc(8t) ;



9. the system with input/output relation

y(n) =

8
><

>:

n�3X

k=�1
x(k)e�(n�k) n � 0

0 n < 0;



Solutions.

1. In this case, we can substitute the extrema of the integration by a rectan-
gular function, to have

y(t) = 2

Z 1

�1
x(u) · e�(t�u) rect( 14 (t� u)) du� x ⇤ ��2(t) ,

which reveals the system as a convolutional (LTI) system with impulse
response

g(t) = e�t rect(t/4) + �(t+ 2) ,

with extension e(g) = [�2, 2], hence it is a dynamic filter (but not causal),
which is also BIBO stable since

Z 1

�1
|g(t)| dt =

Z 1

�1
g(t) dt =

Z 2

�2
e�t dt+ 1 = e2 � e�2 + 1 < 1 .

The filter is real since g(t) is real valued (and positive).

2. In this case, we can substitute the extrema of the integration by two unit
step functions, to have

y(t) = 1(t� 2)

Z 1

�1
x(u) 1(u+ 1) · cos(t� u)1(t� u� 2) du+ 3x ⇤ �1(t) ,

but the integral cannot take the form of a convolution, hence the system
is not a filter.

3. In this case, we need to evaluate the impulse response by discrete-time
convolution, that is

g(n) = g2 ⇤ g1(n)

=
1X

k=�1
ak 10(k) ·

1

2j
[ej8(n�k) � e�j8(n�k)]

=
ej8n

2j

1X

k=0

(a e�j8)k � e�j8n

2j

1X

k=0

(a ej8)k

=
1

2j

ej8n

1� a e�j8
� 1

2j

e�j8n

1� a ej8

= =


ej8n

1� a e�j8

�

By defining b = 1� a e�j8 = |b| ej'b , we have

g(n) =
1

|b| sin(8n� 'b)

which has extension e(g) = (�1,1), and it is not vanishing hence it is
not absolutely summable. The filter is therefore not BIBO stable. It is
however real, since g(n) is real-valued.



4. In this case, we can substitute the extrema of the integration by two unit
step functions, to have

y(t) =

Z 1

�1
x(u) et�u 1(u� t+ 1) 1(2t� u� 1) du� x ⇤ �2(t) ;

where the contribution 1(2t� u� 1) cannot be expressed as a function of
t� u, hence the system is not LTI.

5. In this case, we can substitute the extrema of the integration by two unit
step functions, to have

y(n) =

8
<

:

1X

k=�1
x(k) 10(k + 10) e�(n�k) 10(n� k � 3) n � 0

0 n < 0;

where the contribution 10(k+ 10) multiplying x(k) makes the system not
LTI (a product by a waveform is linear but not time-invariant).

6. In this case, we can substitute the upper extrema of the integration by
one unit step function, to have

y(t) =

Z 1

�1
x(u+ 2) e5(t�u) 1(t� u� 2) du+ 3x ⇤ �7(t)

=

Z 1

�1
x(v) e5(t�v+2) 1(t� v) dv + 3x ⇤ �7(t)

which reveals an LTI system with impulse response

g(t) = e5(t+2) 1(t) + 3 �(t� 7)

which has extension e(g) = [0,1), hence it is causal. The impulse response
is also real-valued, so the filter is real. However, the filter is not BIBO
stable since g(t) diverges for t ! 1.

7. In this case, we can substitute the extrema of the integration by two unit
step functions, to have

y(t) = cos(t+ 2) ·

8
<

:

0 , t  2Z 1

�1
x(u) 1(u+ 1) 1(t� u� 2) du , t > 2

which reveals that the system is not LTI because of the presence of a
product cos(t+2) (linear but not time-invariant), and also because of the
contribution 1(u+ 1) multiplying x(u) (linear but not time-invariant).

8. In this case the system is evidently LTI with impulse response g(t) =
sinc(8t), it is also dynamic and real (since the impulse response is real-
valued). The system is, however, not BIBO stable since the sinc function
is not absolutely integrable. In fact, we have

Lg =

Z 1

�1
|sinc(8t)| dt = 1

8

Z 1

�1
|sinc(u)| du = 1

8Lsinc



but

Lsinc = 2

Z 1

0

����
sin(⇡u)

⇡u

���� du

= 2
1X

n=0

Z n+1

n

����
sin(⇡u)

⇡u

���� du

� 2
1X

n=0

Z n+1

n

����
sin(⇡u)

⇡(n+ 1)

���� du

= 2
1X

n=0

1

⇡(n+ 1)

Z 1

0
sin(⇡u) du

=
4

⇡2

1X

n=0

1

n+ 1

= 1

where we exploited the inequality 1/u � 1/(n+ 1) for u 2 [n, n+ 1], and
where the divergence is ensured by the divergence of the harmonic series.

9. In this case, we can substitute the upper extremum of the integration by
a unit step function, to have

y(n) =

8
<

:

1X

k=�1
x(k) e�(n�k) 1(n� k � 3) n � 0

0 n < 0;

which reveals a convolution with g(n) = e�n · 1(n� 3) (casual and BIBO
stable) in the upper part, that is we have y(n) = 10(n) · x ⇤ g(n), where
the multiplication by the unit step makes the system not LTI.



FOUNDATIONS OF SIGNALS AND SYSTEMS

9.3 Solved exercises

Prof. T. Erseghe

Exercises 9.3

Solve the following MatLab problem:

1. Plot the signal s1(t) = tanh(t), as well as its time-shifted versions, s2(t) =
tanh(t � b) and s3(t) = tanh(t + b) with b = 3, in the same plot in the
time range [�10, 10].

2. Plot the one-sided exponential s(t) = e�1 1(t) in the range t 2 [�1, 10].

3. Draw the (periodic) square-wave of period Tp = 3 and duty cycle d = .3
in the interval t 2 [�4, 5].

Solution.

1. The code can be pretty simple, the fundamental aspect being that of
correctly choosing a sampling spacing su�ciently small to capture the
hyperbolic tangent shape. In the code example this is set to 0.1. The
code can then read as follows

close all
clear all
clc

t = -10:.1:10;
b = 3;
s1 = tanh(t);
s2 = tanh(t-b);
s3 = tanh(t+b);
figure
plot(t,s1 ,t,s2 ,t,s3)
grid on
xlabel('time [s]')
ylabel('signal ')
title('tanh and its shifted versions ')

% printing figure in png format
set(gcf ,'PaperUnits ','inches ','PaperPosition ' ,[0 0

4 3])
print -dpng ex9_3_1.png -r100

where the last part of the code is used to export the plot in png format.
This provides the following output



2. In this case we can use the vector t � 0 to set to 0 values at negative
times, to have the following result.

t = -1:.1:10;
s = (t>=0).*exp(-t);
figure
plot(t,s)
grid on
xlabel('time [s]')
title('one -sided exponential ')

where the last part of the code is used to export the plot in png format.
This provides the following output

3. In this case we define a function for the square wave depending on param-
eters Tp (period) and d (duty cycle). This builds on the definition of rect,
which is defined according to the absolute value |t|. In the definition of
the square wave, note how time is first reported to the period by t1 = t/Tp

(mod 1), then we exploit the fact that in the reference period the signal
behaves as rect(t/d) + rect((t� 1)/d).

t = -4:.01:5;
s = square_wave(t,3 ,.3);
figure



plot(t,s)
grid on
xlabel('time [s]')
title('square -wave')
axis([xlim -.1 1.1])

function s = square_wave(t,Tp,d)
t1 = mod(t/Tp ,1);
s = rect(t1/d) + rect((t1 -1)/d);
end

function s = rect(t)
s = (abs(t) <.5)+.5*( abs(t)==.5);
end



FOUNDATIONS OF SIGNALS AND SYSTEMS
9.4 Homework assignment

Prof. T. Erseghe

Exercises 9.4

Solve the following MatLab problems:

1. Plot the signal s(t) = tanh(t) together with its time-shifted and scaled

versions tanh(at), tanh(t/a), tanh(at � b), tanh(at + b), tanh((t � b)/a),
tanh((t+b)/a) in the same plot in the time range [�10, 10], by using a = 2

and b = 6.

2. Plot the signal x(t) = tanh(t) together with its time-reversed and shifted

versions yu(t) = x(u � t) with u an integer in the range [�9, 10]. Make

sure that each couple (x, yu) is plotted on a di↵erent area of a 4⇥ 5 grid,

and that the time span of each plot is [�10, 10]. You will need to check

how a for cycle works to solve the exercise.

3. Consider the signals

x(t) = cos(2⇡t+ ⇡
2 ) , y(t) = sin(!0t+

⇡
3 ) ,

and their sum z(t) = x(t) + y(t). Plot the three signals on two separate

subplots, one for !0 = ⇡ and one for !0 = 2. Are the signals all periodic?

Why? Use MAtLab functions cos() and sin() for defining the signals.

4. Consider the complex exponential

s(t) = 100 e(�1+j2⇡) t
1(t) ,

by representing, in four separate subplots its real and imaginary parts, its

absolute value, and its phase. Use MatLab functions real(), imag(), abs(),

and angle().



Solutions.

1. The code can mimic that of Exercise 9.3.1, as follows

t = -10:.1:10;
a = 2;
b = 6;
figure
plot(t,tanh(t),... % <-- this continues the code in

the next line
t,tanh(a*t),t,tanh(t/a),...
t,tanh(a*t-b),t,tanh(a*t+b),...
t,tanh((t-b)/a),t,tanh((t+b)/a))

grid on
xlabel('time [s]')
ylabel('signal ')
legend('tanh(t)','tanh(at)','tanh(t/a)',...

'tanh(at -b)','tanh(at+b)',...
'tanh((t-b)/a)','tanh((t+b)/a)')

title('tanh and its shifted/scaled versions ')

2. In this case, since there are many subplots active, we can skip insering

xlabel and ylabel, and we can solve the dependence on integer u through

a for cycle. Note how the subplot position is here set to u + 10, ranging

from 1 to 20. Note also how we insert the value of u in the string title

through the map num2str.

t = -10:.1:10;
figure
for u = -9:10

subplot (4,5,u+10)
plot(t,tanh(t),t,tanh(u-t))
grid on
title(['u = ' num2str(u)])

end



3. The key point of this exercise is to correctly choose the time span and the

time samples, here set to [�10, 10] and .01, respectively. We also note that

all signals are periodic except for z(t) when !0 = 2. Sinusoids are periodic

by construction, but their sum is only in case the pulsations are in rational

relation, which is true for 2⇡ and ⇡, but not for 2⇡ and 2. Observe also

how we can write !0 and ⇡ in the title by exploiting the standard LaTeX

format.

t = -10:.01:10;
x = cos(2*pi*t+pi/2);
y1 = sin(pi*t+pi/3);
y2 = sin (2*t+pi/3);
figure
subplot (2,1,1)
plot(t,x,t,y1 ,t,x+y1)
grid on
title('\omega_0 =\pi')
legend('x(t)','y(t)','z(t)')
subplot (2,1,2)
plot(t,x,t,y2 ,t,x+y2)
grid on
title('\omega_0 =2')



4. The key point of this exercise is to correctly choose the time span and the

time samples, here set to [�1, 5] and .01, respectively. We also note that

in the code we control the active area of each plot through the function

axis(), and we also force the grid in the plot of the phase to appear on

the values set by yticks() with labels set by yticklabels(). Observe how

function angle() reports the phase in the symmetric interval [�⇡,⇡].

t = -1:.01:5;
s = (t>=0).*exp(( -1+1i*2*pi)*t);
figure
subplot (2,2,1)
plot(t,real(s))
grid on
axis([-1 5 -1.1 1.1])
title('real part')
subplot (2,2,2)
plot(t,imag(s))
grid on
axis([-1 5 -1.1 1.1])
title('imaginary part')
subplot (2,2,3)
plot(t,abs(s))
grid on
axis([-1 5 -.1 1.1])
title('absolute value ')
subplot (2,2,4)
plot(t,angle(s))
grid on



yticks([-pi,-pi/2,0,pi/2,pi])
yticklabels ({'-\pi','-\pi/2','0','\pi/2','\pi'})
axis([-1 5 -3.5 3.5])
title('phase ')



FOUNDATIONS OF SIGNALS AND SYSTEMS

10.2 Solved exercises

Prof. T. Erseghe

Exercises 10.2

Prove that the following Fourier series pairs are correct by either forward or

backward relation:

1. s(t) = combTp(t) = repTp
�(t) and Sk =

1
Tp

,

2. s(t) = 1 and Sk = �(k),

3. s(t) = repTp
rect(t/dTp) and Sk = d sinc(kd), for 0 < d < 1,

4. s(t) = M sincM (Mt/Tp) =
sin(⇡Mt/Tp)
sin(⇡t/Tp)

, M = 1+2N , and Sk = rect(k/M),

5. s(t) = cos(n!0t+ '0) and Sk =
1
2e

j'0�(k � n) + 1
2e

�j'0�(k + n).

These are all fundamental Fourier pairs that must be kept in mind!!!

Solutions.

1. We evaluate the Fourier coe�cients by applying the forward relation to

the comb, to have

Sk =
1

Tp

Z t0+Tp

t0

repTp
�(t) e�jk!0t dt

=
1

Tp

Z 1
2Tp

� 1
2Tp

repTp
�(t) e�jk!0t dt

=
1

Tp

Z 1
2Tp

� 1
2Tp

�(t) e�jk!0t dt =
1

Tp
e�jk!0·0 =

1

Tp
,

where we used t0 = � 1
2Tp so that the integration range [� 1

2Tp,
1
2Tp] only

includes one delta of the comb, as illustrated in the figure below.

t

combTp(t)

Tp1
2Tp� 1

2Tp

2. In this case we evaluate the periodic signal by applying the backward

relation (Fourier series) to the Kronecker delta, to have

s(t) =
1X

k=�1
�(k) ejk!0t = ej0·!0t = 1 .



3. We evaluate the Fourier coe�cients by applying the forward relation to

the square wave, to have

Sk =
1

Tp

Z t0+Tp

t0

repTp
rect(

t
dTp

) e�jk!0t dt

=
1

Tp

Z 1
2Tp

� 1
2Tp

repTp
rect(

t
dTp

) e�jk!0t dt

=
1

Tp

Z 1
2Tp

� 1
2Tp

rect(
t

dTp
) e�jk!0t dt

=
1

Tp

Z d
2Tp

�d
2Tp

e�jk!0t dt

where we used t0 = � 1
2Tp so that the integration range [� 1

2Tp,
1
2Tp] only

includes the rectangle centred at 0, as illustrated in the figure below.

t

s(t)

Tp1
2Tp� 1

2Tp
d
2Tp� d

2Tp

By solving the integral we have

Sk =

8
>><

>>:

dTp

Tp
, k = 0

1

Tp

e�jk!0t

�jk!0

���
d
2Tp

�d
2Tp

, k 6= 0

=

8
<

:

d , k = 0

ejk!0
d
2Tp � e�jk!0

d
2Tp

jk!0Tp
=

ejkd⇡ � e�jkd⇡

2j k⇡
=

sin(kd⇡)

k⇡
, k 6= 0

where we exploited !0Tp = 2⇡. Overall, the result can be compactly

expressed as

Sk = d sinc(kd) ,

which encompasses both the cases k = 0 and k 6= 0, since by definition it

is sinc(0) = 1.



k

Sk

••
••
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

•

4. In this case we evaluate the periodic signal by applying the backward

relation (Fourier series) to

Sk = rect(
k

1+2N ) =

⇢
1 , k 2 [�N,N ]

0 , otherwise

so that

s(t) =
NX

k=�N

ejk!0t

=

2NX

m=0

ej(m�N)!0t

= e�jN!0t
2NX

m=0

(ej!0t)
m

= e�jN!0t 1� ej(1+2N)!0t

1� ej!0t

=
e�jN!0t � ej(1+N)!0t

1� ej!0t
· e

�j 1
2!0t

e�j 1
2!0t

=
e�j( 1

2+N)!0t � ej(
1
2+N)!0t

e�j 1
2!0t � ej

1
2!0t

=
sin((

1
2 +N)!0t)

sin(
1
2!0t)

=
sin(

1
2M!0t)

sin(
1
2!0t)

which is a periodic sinc function. By exploiting !0 = 2⇡/Tp, we finally

have

s(t) =
sin(⇡Mt/Tp)

sin(⇡t/Tp)
= MsincM (

Mt
Tp

) .

The signal is illustrated in the figure below for N = 10.

t

s(t)

Tp



5. We evaluate the periodic signal by applying the backward relation (Fourier

series) to have

s(t) =
1X

k=�1

h
1

2
ej'0�(k � n) +

1

2
e�j'0�(k + n)

i
ejk!0t

=
1

2
ej'0 ej(n!0t +

1

2
e�j'0 e�jn!0t

=
1

2
ejn!0t+'0) +

1

2
e�j(n!0t+'0)

= cos(n!0t+ '0)



FOUNDATIONS OF SIGNALS AND SYSTEMS
10.3 Homework assignment

Prof. T. Erseghe

Exercises 10.3

Solve the following:

1. evaluate the Fourier coe�cients of x(t) = ejm!0t,

2. evaluate the Fourier coe�cients of x(t) = repTp
�(t� t1),

3. evaluate the Fourier coe�cients of x(t) = 3�sin(2t)+4 cos(2t)+2 cos(6t�
⇡
4 ),

4. evaluate the Fourier coe�cients of x(t) = | cos(2⇡f0t)|,

5. evaluate the Fourier coe�cients of x(t) = repTp
triang(2t/Tp),

6. evaluate the Fourier coe�cients of x(t) = sin(⇡t) + cos2( 23⇡t),

7. evaluate the Fourier coe�cients of x(t) = [cos(2⇡f0t)]+, where [x]+ =
x · 1(x) is the positive part operator.



Solutions.

1. We evaluate the Fourier coe�cients by applying the forward relation, to
have

Sk =
1

Tp

Z Tp

0
ejm!0t e�jk!0t dt

=
1

Tp

Z Tp

0
ej(m�k)!0t dt

=

⇢
1
Tp

Tp , k = m

0 , k 6= m

where we exploited the fact that, for k 6= m the complex exponential
ej(m�k)!0t has period Tp/|m�k|, and its integration over [0, Tp] (i.e., over
|m� k| � 1 periods) is zero. We can equivalently write

Sk =
1

Tp
�(k �m) .

2. We evaluate the Fourier coe�cients by applying the forward relation, to
have

Sk =
1

Tp

Z t0+Tp

t0

repTp
�(t� t1) e

�jk!0t dt

=
1

Tp

Z t1+
1
2Tp

t1�
1
2Tp

repTp
�(t� t1) e

�jk!0t dt

=
1

Tp

Z t1+
1
2Tp

t1�
1
2Tp

�(t� t1) e
�jk!0t dt

=
1

Tp
e�jk!0t1 ,

where we choose the period [t1 � 1
2Tp, t1 +

1
2Tp] in such aa way that the

only active delta in the integration of repTp
�(t� t1) is �(t� t1).

3. In this case, the signal is already written in the form of a Fourier series,
as one can appreciate by expanding the sinusoids through Euler’s identity,
to have

x(t) = 3� sin(2t) + 4 cos(2t) + 2 cos(6t� ⇡

4
)

= 3 + j
2e

j2t � j
2e

�j2t + 2ej2t + 2e�j2t + ej(6t�
⇡
4 ) + e�j(6t�⇡

4 )

= 3 + (2 + j
2 ) e

j2t + (2� j
2 ) e

�j2t + 1�jp
2
ej6t + 1+jp

2
e�j6t

where the active pulsations are 0, ±2 and ±6, hence we can set !0 = 2
(that is Tp = ⇡) and write the signal as

x(t) = 3 + (2 + j
2 ) e

j!0t + (2� j
2 ) e

�j!0t + 1�jp
2
ej3!0t + 1+jp

2
e�j3!0t



so that

Xk =

8
>>>>>><

>>>>>>:

3 , k = 0
2 + j

2 , k = 1

2� j
2 , k = �1

1�jp
2

, k = 3
1+jp

2
, k = �3

0 , otherwise

4. The signal x(t) = | cos(2⇡f0t)| has period Tp = 1/(2f0), so that !0 =
2⇡/Tp = 4⇡f0. We evaluate the Fourier coe�cients by applying the for-
ward relation, and integration over the period [� 1

2Tp,
1
2Tp] where | cos(2⇡f0t)| =

cos(2⇡f0t), as illustrated in the figure below.

t

s(t) = | cos(2⇡f0t)|

Tp

Tp = 1
2|f0|

2Tp

T1 = 1
|f0|

Tp

2�Tp

2

We obtain

Sk =
1

Tp

Z 1
2Tp

� 1
2Tp

| cos(2⇡f0t)| e�jk!0t dt

=
1

Tp

Z 1
2Tp

� 1
2Tp

cos(2⇡f0t) e
�jk!0t dt

=
1

2Tp

Z 1
2Tp

� 1
2Tp

[ej2⇡f0t + e�j2⇡f0t] e�jk!0t dt

=
1

2Tp

Z 1
2Tp

� 1
2Tp

[ej(2⇡f0�k!0)t + e�j(2⇡f0+k!0)t] dt

=
ej(2⇡f0�k!0)t

j2Tp(2⇡f0 � k!0)
� e�j(2⇡f0+k!0)t

j2Tp(2⇡f0 + k!0)

����

1
2Tp

� 1
2Tp

We now solve the expression as a function of !0 by recalling that 2⇡f0 =



1
2!0 and Tp!0 = 2⇡, to have

Sk =
ej(

1
2�k)u

j4⇡( 12 � k)
� e�j( 1

2+k)u

j4⇡( 12 + k)

�����

⇡

�⇡

=
ej(

1
2�k)⇡ � e�j( 1

2�k)⇡

j4⇡( 12 � k)
� e�j( 1

2+k)⇡ � ej(
1
2+k)⇡

j4⇡( 12 + k)

=
sin(⇡( 12 � k))

2⇡( 12 � k)
+

sin(⇡( 12 + k))

2⇡( 12 + k)

= 1
2 sinc( 12 � k) + 1

2 sinc( 12 + k)

= 1
2 sinc(k � 1

2 ) +
1
2 sinc(k + 1

2 )

We can further express the signal in compact form by expanding the sinc
functions, to obtain

Sk =
sin(⇡k � ⇡

2 )

(2k � 1)⇡
+

sin(⇡k + ⇡
2 )

(2k + 1)⇡

= � cos(⇡k)

(2k � 1)⇡
+

cos(⇡k)

(2k + 1)⇡

=


� 1

(2k � 1)⇡
+

1

(2k + 1)⇡

�
(�1)k

=
2 (�1)k

(1� 4k2)⇡

The resulting signal is depicted in the picture below.

k

Sk

•••••••••

•

•

•

•••••••••

5. The signal is the periodic repetition of a triangle (with no aliasing), as
illustrated in the figure below.

t

s(t)

TpTp

2�Tp

2



Therefore, for k 6= 0 we have

Sk =
1

Tp

Z 1
2Tp

� 1
2Tp

triang(2t/Tp) e
�jk!0t dt

=
1

Tp

Z 0

� 1
2Tp

(1 + 2t
Tp

) e�jk!0t dt+
1

Tp

Z 1
2Tp

0
(1� 2t

Tp
) e�jk!0t dt

=
2

T 2
p

Z 0

� 1
2Tp

t e�jk!0t dt� 2

T 2
p

Z 1
2Tp

0
t e�jk!0t dt+

1

Tp

Z 1
2Tp

� 1
2Tp

e�jk!0t dt

=
2 (1 + jk!0t) e�jk!0t

(k!0Tp)2

����
0

� 1
2Tp

� 2 (1 + jk!0t) e�jk!0t

(k!0Tp)2

����

1
2Tp

0

+ 0

=
4� (2 + jk!0Tp) e�j k

2!0Tp � (2� jk!0Tp) ej
k
2!0Tp

(k!0Tp)2

but, since !0Tp = 2⇡, the result for k 6= 0 can be simplified in the form

Sk =
4� (2 + j2⇡k) e�jk⇡ � (2� j2⇡k) ejk⇡

(2⇡k)2

=
1� (�1)k

(⇡k)2

since e±jk⇡ = (�1)k. For k = 0 it simply is S0 = mx = 1
2 , so that

Sk =

8
<

:

1
2 , k = 0
1� (�1)k

(⇡k)2
, k 6= 0

The resulting signal is depicted in the picture below.

k

Sk

••

•• •• •• •• •• •• •• •• ••

•

6. This is another example where the signal is can be easly written in the
form of a Fourier series, that is

x(t) = sin(⇡t) + cos2( 23⇡t)

= sin(⇡t) + 1
2 + 1

2 cos(
4
3⇡t)

= 1
2j e

j⇡t � 1
2j e

�j⇡t + 1
2 + 1

2e
j
4
3⇡t + 1

2e
�j

4
3⇡t



where the active pulsations are 0, ±⇡ and ± 4
3⇡, so that !0 = ⇡

3 , that is
Tp = 6. Therefore, we have

x(t) = 1
2j e

j3!0t � 1
2j e

�j3!0t + 1
2 + 1

2e
j4!0t + 1

2e
�j4!0t

and therefore

Xk =

8
>><

>>:

1
2 , k = 0,±4

� j
2 , k = 3

j
2 , k � 3
0 , otherwise

7. The signal x(t) = [cos(2⇡f0t)]+ has period Tp = 1/f0, so that !0 =
2⇡/Tp = 2⇡f0. We evaluate the Fourier coe�cients by applying the for-
ward relation, and integration over the period [� 1

2Tp,
1
2Tp] where the signal

is active only in [� 1
4Tp,

1
4Tp] its value being cos(2⇡f0t), as illustrated in

the figure below.

t

s(t) = [cos(2⇡f0t)]+

TpTp

4�Tp

4

Therefore, by recalling that 2⇡f0 = !0 and !0Tp = 2⇡, we have

Sk =
1

Tp

Z 1
4Tp

� 1
4Tp

cos(!0t) e
�jk!0t dt

=
1

2Tp

Z 1
4Tp

� 1
4Tp

[e�j(k�1)!0t + e�j(k+1)!0t] dt

=
e�j(k�1)!0t

�j(k � 1)2!0Tp
+

e�j(k+1)!0t

�j(k + 1)2!0Tp

����

1
4Tp

� 1
4Tp

=
e�j(k�1)u

�j4(k � 1)⇡
+

e�j(k+1)u

�j4(k + 1)⇡

����

⇡
2

�⇡
2

=
sin((k � 1)⇡2 )

2(k � 1)⇡
+

sin((k + 1)⇡2 )

2(k + 1)⇡

= 1
4 sinc( 12 (k � 1)) + 1

4 sinc( 12 (k + 1))

which is also valid at k = ±1. The resulting signal is depicted in the
picture below.



k

Sk

••
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••
•



FOUNDATIONS OF SIGNALS AND SYSTEMS

10.5 Solved exercises

Prof. T. Erseghe

Exercises 10.5

Solve the following by exploiting the properties of the Fourier series:

1. prove that any real-valued continuous-time period signal of period Tp can

be expressed through the (real-valued) trigonometric series

s(t) = S0 +

1X

k=1

2|Sk| cos(k!0t+ 'k) , Sk = |Sk| ej'k ,

where Sk are its Fourier coe�cients and !0 = 2⇡/Tp;

2. evaluate the Fourier coe�cients of s(t) = ejm!0t by exploiting the Fourier

couple x(t) = 1, Xk = �(k);

3. evaluate the Fourier coe�cients of s(t) = repTp
triang(2t/Tp);

4. evaluate the Fourier coe�cients of

t

s(t)

Tp = 8T2T�2T

1
T T T

Solutions.

1. Being the signal real-valued, we exploit the Hermitian symmetry Sk = S⇤
�k

of the Fourier coe�cients, that is S�k = S⇤
k = |Sk|e�j'k which also reveals

that S0 (the mean value) is real-valued. Hence, we can write the Fourier

series in the form

s(t) =
�1X

k=�1
Sk e

jk!0t + S0 +

1X

k=1

Sk e
jk!0t

= S0 +

1X

k=1

[Sk e
jk!0t + S�k e

�jk!0t]

= S0 +

1X

k=1

|Sk|[ej'k ejk!0t + e�j'k e�jk!0t]

= S0 +

1X

k=1

|Sk|[ej(k!0t+'k) + e�j(k!0t+'k)]

= S0 +

1X

k=1

2|Sk| cos(k!0t+ 'k) .



2. Since s(t) = ejm!0t = ejm!0t · 1 = ejm!0t · x(t), we can exploit the modu-

lation property to state that Sk = Xk�m = �(k �m).

3. The signal is the periodic repetition of a triangle (with no aliasing), as

illustrated in the figure below.

t

s(t)

TpTp

2�Tp

2

Since a triangle is the convolution between two identical rectangles, we can

recognise s(t) to be the self-circular-convolution s(t) = u ⇤cir u(t) between
two square waves u(t) with duty cycle d =

1
2 (so that the duty cycle of

the triangle becomes 1). Specifically, we can set

u(t) = rep
Tp

1p
dTp

rect

✓
t

dTp

◆
, d =

1
2 ,

a choice ensuring that the triangle wave has height 1. The Fourier coe�-

cients of u(t) are, straightforwardly,

Uk =
1p
dTp

d sinc(kd) ,

and from the circular convolution property we also have

Sk = TpU
2
k = d sinc2(kd) = 1

2 sinc
2
(
k
2 ) .

This result corresponds to the outcome of Exercise 10.3.5, since

Sk =

8
><

>:

1
2 , k = 0

0 , k 6= 0 and even

2 sin2(k ⇡
2 )

(⇡k)2 =
2

(⇡k)2 , k odd

As an alternative way, we could have exploited the derivative x(t) = s0(t)
illustrated in the figure below

t

x(t) = s0(t)

TpTp

2

2
Tp

� 2
Tp



evidencing that

x(t) = s0(t) = repTp

2
Tp

rect

⇣
t+ 1

4Tp
1
2Tp

⌘
� 2

Tp
rect

⇣
t� 1

4Tp
1
2Tp

⌘

whose Fourier coe�cients are (by exploiting the result for a square wave

plus the time-shift property)

Xk =
sinc(

1
2k)

Tp

h
ejk!0

1
4Tp � e�jk!0

1
4Tp

i

=
sinc(

1
2k)

Tp

⇥
ejk

⇡
2 � e�jk ⇡

2
⇤

=
2j sin(k ⇡

2 ) sinc(
1
2k)

Tp
,

where we also exploited the fact that !0Tp = 2⇡. By then inverting the

derivative rule, we have

Sk =

8
<

:

mx =
1
2 , k = 0

Xk

jk!0
=

sin(k ⇡
2 ) sinc(

1
2k)

k⇡
=

1
2 sinc

2
(
1
2k) , k 6= 0

which, again, provides the same result. Possibly, in this specific case, the

circular convolution approach is the preferred one.

4. The signal s(t) can be recognised to be the composition of three time-

shifted square waves of duty cycle
1
8 . Specifically, by denoting the reference

square waves of duty cycle
1
8 as

u(t) = repTp
rect

⇣
t

dTp

⌘
, Uk = d sinc(kd) , d =

1
8 ,

where Tp = 8T , we can write

s(t) = u(t) + u(t� 2T ) + u(t+ 2T ) ,

so that by use of the time-shift property we obtain

Sk = Uk + Uk e
�jk!02T + Uk e

jk!02T

= Uk[1 + 2 cos(k!02T )]

= Uk[1 + 2 cos(k ⇡
2 )]

=
1
8 sinc(

k
8 ) [1 + 2 cos(k ⇡

2 )]

where we exploited !0 = 2⇡/Tp = ⇡/(4T ). The resulting signal is depicted

in the picture below.



k
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Note that s(t) is real and even, and therefore also Sk is real and even.

As an alternative solution, we could have noted that s(t) is almost a square
wave of duty cycle

1
2 and period 2T . Specifically, by denoting the square

wave of duty cycle
1
2 as

v(t) = rep2T rect
�

t
T

�
, Vk =

1
2 sinc(

k
2 ) ,

we have

s(t) = v(t)� u(t� 4T ) ,

whose Fourier coe�cients are

Sk = Ṽk � Uk e
�jk!04T , Ṽk =

⇢
Vm , k = 4m
0 , otherwise

where the Fourier coe�cients Ṽk are those relating to the period Tp = 8T ,
which is 4 times the minimum period of v(t). By recalling !0 = 2⇡/Tp =

⇡/(4T ), we further have

Sk = Ṽk � Uk (�1)
k

=
1
8 sinc(

k
8 ) (�1)

k+1
+

⇢
1
2 sinc(

k
8 ) , k = 4m

0 , otherwise

=
1
8 sinc(

k
8 ) ·

⇢
3 , k = 4m
(�1)

k+1
, otherwise

which corresponds to the result previously found. Note, however, that the

de-periodisation property might be tricky to be correctly used.



FOUNDATIONS OF SIGNALS AND SYSTEMS
10.6 Homework assignment

Prof. T. Erseghe

Exercises 10.6

Solve the following by exploiting the properties of the Fourier series:

1. evaluate the Fourier coe�cients of s(t) = repTp
�(t� t1) by exploiting the

Fourier couple x(t) = repTp
�(t), Xk =

1
Tp

;

2. evaluate the Fourier coe�cients of s(t) = [sin(2⇡f0t)]+, where [x]+ =

x · 1(x) is the positive part operator, by exploiting the product property;

3. evaluate the Fourier coe�cients of the saw-tooth waveform

t

s(t)

1

1

4. evaluate the Fourier coe�cients of s(t) = x(t) cos(10!0t) with

k

Xk

•• •• •• •• •• •• •• ••

•
•
•
•1
•2

5. evaluate mean value and power of the signal s(t) = 3
5 sin(⇡t)/ sin(

⇡
5 t);

6. identify the analytic expression of a signal s(t) which is real and odd, has

period Tp = 2, has Fourier coe�cients Sk = 0 for |k| > 1, and has power

Ps = 1;

7. identify the analytic expression of a signal s(t) which is real and even, has

period Tp = 2, has Fourier coe�cients Sk = 0 for |k| > 2, has mean value

ms = �1 and power Ps = 11, and such that the signal x(t) = s0(t) has

Fourier coe�cients for k = ±2 of the form X2 = j2⇡ and X�2 = �j2⇡;



8. which of the following signals are real, and which are even?

s1(t) =
100X

k=0

ej2⇡
k
50 t

s2(t) =
100X

k=�100

cos(k⇡) ej2⇡
k
50 t

s3(t) =
100X

k=�100

j sin(k
⇡

2
) ej2⇡

k
50 t



Solutions.

1. Since s(t) = x(t�t1) by the time-shift property we have Sk = Xk e�jk!0t1 =
1
Tp

e�jk!0t1 .

2. The signal x(t) = [sin(2⇡f0t)]+ has period Tp = 1/f0, so that !0 =

2⇡/Tp = 2⇡f0, and is illustrated in the figure below.

t

s(t) = [sin(2⇡f0t)]+

TpTp

4
Tp

2

rect
⇣

t� 1
4Tp

1
2Tp

⌘

As one can appreciate from the figure it can be written as the product

s(t) = x(t)y(t) between

x(t) = sin(!0t)

y(t) = repTp
rect

✓
t� 1

4Tp
1
2Tp

◆

Xk =
1
2j �(k � 1)� 1

2j �(k + 1)

Yk =
1
2 sinc(

k
2 )e

�jk!0
1
4Tp

=
1
2 sinc(

k
2 )e

�jk ⇡
2

=
1
2 sinc(

k
2 ) (�j)k

where we exploited the known results of the Fourier coe�cients for a si-

nusoid and the square wave, plus the time-shift rule. Hence, the Fourier

coe�cients of s(t) are straightforwardly derived by exploiting the property

that a product in time involves a convolution in the Fourier domain, to

have

Sk = Xk ⇤ Yk

=

1X

m=�1
XmYk�m

=

1X

m=�1
[
1
2j �(m� 1)� 1

2j �(m+ 1)]
1
2 sinc(

1
2 (k �m)) (�j)k�m

=
1
4j sinc(

1
2 (k � 1)) (�j)k�1 � 1

4j sinc(
1
2 (k + 1)) (�j)k+1

=
⇥
1
4 sinc(

1
2 (k � 1)) +

1
4 sinc(

1
2 (k + 1))

⇤
(�j)k

where we use the sifting property of the Kronecker delta. The resulting

signal is depicted, separately in its real and imaginary parts, in the picture

below, where we note how (thanks to the Hermitian symmetry) the real

part is even symmetric and the imaginary part odd symmetric.



k

<[Sk]

••
•• •• •• •• •• •• •• •• ••

•

k

=[Sk]

•• •• •• •• •• •• •• •• ••

•

•

•

Incidentally note that z(t) = [cos(2⇡f0t)]+ = s(t+ 1
4Tp), so that

Zk = Sk e
jk!0

1
4Tp = Sk (j)

k
=

1
4 sinc(

1
2 (k � 1)) +

1
4 sinc(

1
2 (k + 1))

which corresponds to the outcome of Exercise 10.3.7.

3. For the saw-tooth waveform, which is a linear-piecewise function, the eas-

iest approach is that of the derivative x(t) = s0(t), illustrated in the figure

below

t

x(t) = s0(t)

1

1

for which we have

x(t) = s0(t) = 1� rep
Tp

�(t) , Xk = �(k)� 1
Tp

= �(k)� 1 ,

since the period is Tp = 1 (hence !0 = 2⇡). By inverting the derivative

we find

Sk =

8
<

:

mx =
1
2 , k = 0

Xk

jk!0
=

�1

j2⇡k
=

j

2⇡k
, k 6= 0

The resulting signal is depicted, separately in its real and imaginary parts,

in the picture below, where we note how (thanks to the Hermitian sym-

metry) the real part is even symmetric and the imaginary part odd sym-

metric.

k

<[Sk]

•• •• •• •• •• •• •• •• •• ••

•

k

=[Sk]

•

•

•

•
•

•
•

•
•

•
•• •• •• •• •• •



4. In this case we can exploit the multiplication property s(t) = x(t)y(t)
giving Sk = Xk ⇤ Yk, where

y(t) = cos(10!0t) , Yk =
1
2�(k � 10) +

1
2�(k + 10) ,

so that

Sk = Xk ⇤ Yk

=

1X

m=�1
YmXk�m

=

1X

m=�1
[
1
2�(m� 10) +

1
2�(m+ 10)]Xk�m

=
1
2Xk�10 +

1
2Xk+10

providing the result displayed in the figure below.

k

Sk

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

•
•
•
•
1
2
•1 •

•
•
•
•

10

5. Evaluating mean value and power by integration is impossible since a

primitive can be hardly identified. Therefore, we proceed by inspection of

the Fourier coe�cients. We observe that the signal can be written in the

form

s(t) = 3 sinc5(t) ,

which is a signal of period Tp = 5, and from standard Fourier couples (see

also Exercise 10.2.3) it is

Sk =
3
5 rect

�
k
5

�
=

⇢
3
5 , k 2 [�2, 2]
0 , otherwise

Therefore, we have

ms = S0 =
3
5 , Ps = ES =

X

k

|Sk|2 = 5 · | 35 |
2
=

9
5 .

6. Being the signal real and odd, its Fourier coe�cients are Hermitian and

odd, that is imaginary and odd. Since it is Sk = 0 for |k| > 1, only

two coe�cients are active (it is S0 = 0 because of the odd symmetry), as

illustrated in figure where the odd and imaginary symmetry is evidenced.

k

Sk

•• •• •• •• •• •• •• •• ••
•

�jA

•
•
jA



Hence, we have

s(t) = jA ej!0t � jA e�j!0t = �2A sin(!0t) = �2A sin(⇡t) .

where we exploited the fact that the period is Tp = 2 to set !0 = 2⇡/Tp =

⇡. The value of A can be finally identified through the power, top have

Ps =
1
2 (2A)

2
= 2A2

= 1

providing A2
=

1
2 and A = ±1/

p
2, so that

s(t) = ±
p
2 sin(⇡t) .

7. Being the signal real and even, its Fourier coe�cients are Hermitian and

even, that is real and even. Since it is Sk = 0 for |k| > 2, and we also

know that S0 = mx = �1, then the Fourier coe�cients are as displayed

in the figure below.

k

Sk

•• •• •• •• •• •• •• ••

•A•B

•
�1

•A •B

The value of S2 = B can be inferred from the Fourier coe�cients of the

derivative, that is

X2 = S2 · j2!0 = j2⇡B = j2⇡ �! B = 1

where we exploited the fact that the period is Tp = 2 to set !0 = 2⇡/Tp =

⇡. The value of A can be instead inferred from the power, providing

Ps = 1 + 2B2
+ 2A2

= 3 + 2A2
= 11 ,

evidencing that A2
= 4, that is A = ±2. As a consequence, we have

s(t) = �1 +Aej⇡t +Ae�j⇡t
+B ej2⇡t +B e�j2⇡t

= �1 + 2A cos(⇡t) + 2B cos(2⇡t)

= �1± 4 cos(⇡t) + 2 cos(2⇡t)

8. Signal s1 is neither real nor even, since its Fourier coe�cients

Sk =

⇢
1 , k 2 [0, 100]
0 , otherwise



do not have any symmetry with respect to the reversal of index k. For

signal s2, instead, we have

Sk =

⇢
cos(k⇡) , k 2 [�100, 100]
0 , otherwise

where cos(k⇡) is real and even, hence the Fourier coe�cients are real and

even, and so is the signal by the properties of symmetries. For signal s3,
finally, we have

Sk =

⇢
j sin(k ⇡

2 ) , k 2 [�100, 100]
0 , otherwise

where j sin(k ⇡
2 ) is imaginary and odd, hence the Fourier coe�cients are

imaginary and odd, which corresponds to a signal that is real and odd in

the time domain. In fact real and odd in the time domain implies Her-

mitian and odd in the Fourier domain, this being equivalent to imaginary

and odd.



FOUNDATIONS OF SIGNALS AND SYSTEMS

11.2 Solved exercises

Prof. T. Erseghe

Exercises 11.2

Solve the following MatLab problems:

1. Consider the signals

x(n) =

8
>>><

>>>:

�1 n = �1
3 n = 0
�5 n = 1
2 n = 2
0 otherwise

g(n) =

8
><

>:

1 n = 0
2 n = 1
�1 n = 2
0 otherwise

Plot the signals as well as their convolution y(n) = x ⇤ g(n) in di↵erent
subplots.

2. Evaluate numerically the convolution between the signals x(t) = g(t) =
rect(t � 1) and check that the result is y(t) = x ⇤ g(t) = triang(t � 2).
Choose a very small sampling spacing T to get an accurate result.

Solutions.

1. In the code we first define samples of x and g together with their sample
time, then y is obtained by convolution and its sample times are built using
the extension of convolution by using the starting elements nx(0) + ng(0)
and the ending elements nx(end) + ng(end) of the arrays (here end is a
keyword indicating the last element).

x = [-1,3,-5,2];
nx = -1:2;
g = [1,2,-1];
ng = 0:2;
y = conv(x,g);
ny = nx(1)+ng(1):nx(end)+ng(end);

figure
subplot (2,2,1)
stem(nx,x)
grid
xlabel('n')
ylabel('x(n)')
subplot (2,2,2)
stem(ng,g)
grid
xlabel('n')



ylabel('g(n)')
subplot (2,1,2)
stem(ny ,y)
grid
xlabel('n')
ylabel('y(n)=x*g(n)')
sgtitle('discrete -time convolution ')

We also note how sgtitle draws a title for the entire figure.

2. We set T = 0.01 and the range for both x and g (which are equal) to [�1, 3].
The numerical convolution conv is multiplied by T to obtain a correct
approximation of the continuous-time convolution, and the extension of
signals is set by the rule on the extension of convolution, as in the previous
exercise. The true convolution, here named y2, is calculated via a triang
function defined at the end of the script, in a way similar to the rect
function. Note the perfect accordance in the lower plot. You can try to
modify the value of T , e.g., to T = 0.1, to see how some errors arise.

T = 0.01;
tx = -1:T:3;
x = rect(tx -1);
tg = -1:T:3;
g = rect(tg -1);
y = T*conv(x,g);
ty = tx(1)+tg(1):T:tx(end)+tg(end);
y2 = triang(ty -2);

figure
subplot (2,2,1)
plot(tx ,x)
grid
xlabel('t')
ylabel('x(t)')
subplot (2,2,2)
plot(tg ,g)



grid
xlabel('t')
ylabel('g(t)')
subplot (2,1,2)
plot(ty ,y,ty ,y2)
grid
xlabel('t')
ylabel('y(t)=x*g(t)')
legend('via MatLab ','true signal ')
sgtitle('continuous -time convolution ')

function s = triang(t)
s = (abs(t) <1).*(1-abs(t));
end

function s = rect(t)
s = (abs(t) <.5)+.5*( abs(t)==.5);
end



FOUNDATIONS OF SIGNALS AND SYSTEMS
11.3 Homework assignment

Prof. T. Erseghe

Exercises 11.3

Solve the following MatLab problems:

1. Evaluate numerically the convolution between the signals x(t) = g(t) =

sinc(t) and check that the result is y(t) = x⇤g(t) = sinc(t). Choose a very

small sampling spacing T to get an accurate result.

2. Insuline secretion rates can be measured by the hormone’s C-peptide lev-

els. Let x(t) be the C-peptide pancreatic secretion, normalized by vol-

ume and measured in [pmol/L/min], and y(t) the plasma C-peptide con-

centration, measured in [pmol/L]. These can be related through a filter

y(t) = x ⇤ g(t) with impulse response

g(t) =
�
0.76 e�at

+ 0.24 e�bt
�
1(t) ,

where a = 0.14 [min
�1

], and b = 0.02 [min
�1

]. Compute numerically

the concentrration level y(t) when the secretion is the one available in file

ex11 3 2.mat, sampled by T = 1min in the range [0, 420]min. How does

the result change for b = 0.2 and b = 0.002? Provide a multiple plot of x,
g, and y that compares the three cases.



Solutions.

1. The code can mimic that of Exercise 11.2.2, as follows, where we used the

time span [�20, 20] for the sinc.

T = 0.01;
tx = -20:T:20;
x = sinc(tx);
tg = -20:T:20;
g = sinc(tg);
y = T*conv(x,g);
ty = tx(1)+tg(1):T:tx(end)+tg(end);
y2 = sinc(ty);

figure
subplot (2,2,1)
plot(tx,x)
grid
xlabel('t')
ylabel('x(t)')
subplot (2,2,2)
plot(tg,g)
grid
xlabel('t')
ylabel('g(t)')
subplot (2,1,2)
plot(ty,y,ty ,y2)
grid
xlabel('t')
ylabel('y(t)=x*g(t)')
legend('via MatLab ','true signal ')
sgtitle('continuous -time convolution ')

Note how the result is accurate only in the range [�10, 10], due to the fact

that, although decaying, the sinc function is a slowly decaying function

which is not zero outside the considered interval.



2. This exercise repeats the standard aspects of numerical convolution, with

the usual product of conv by T . Note that we selected for g(t) the same

interval as x(t), namely [0, 420]min, and that we showed the convolution

result only in this range since, outside the range, the convolution values

assume x(t) = 0, which is not the case (the ending level of x(t) is about

50, as one can infer from the first plot).

load('ex11_3_2.mat') % defines T, x, tx
tg = 0:T:420; % we use the same range of x
g1 = .76* exp (-.14*tg)+.24* exp (-0.2*tg);
y1 = T*conv(x,g1);
ty = tx(1)+tg(1):T:tx(end)+tg(end);
g2 = .76* exp (-.14*tg)+.24* exp ( -0.02*tg);
y2 = T*conv(x,g2);
g3 = .76* exp (-.14*tg)+.24* exp ( -0.002*tg);
y3 = T*conv(x,g3);

figure
subplot (2,2,1)
plot(tx ,x)
grid
axis ([0 420 ylim])
xlabel('t [min]')
ylabel('x(t) [pmol/L/min]')
title('pancreatic secretion ')
subplot (2,2,2)
plot(tg ,g1 ,tg ,g2 ,tg ,g3)
grid
axis ([0 420 ylim])
xlabel('t')



ylabel('g(t)')
legend('b=0.2','b=0.02 ','b=0.002 ')
title('filter response ')
subplot (2,1,2)
plot(ty ,y1 ,ty ,y2 ,ty ,y3)
grid
axis ([0 420 ylim])
xlabel('t')
ylabel('y(t) [pmol/L]')
title('plasma concentration ')
sgtitle('hormone C-peptide kinetics ')



FOUNDATIONS OF SIGNALS AND SYSTEMS

11.5 Solved exercises

Prof. T. Erseghe

Exercises 11.5

Solve the following MatLab problems:

1. Consider a rectangular wave of period Tp = 5 and duty cycle d = 1
2 , and

its truncated Fourier series

sN (t) =
NX

k=�N

ak e
jk!0t , !0 =

2⇡

Tp
, ak = d sinc(kd) .

In the same plot, show how the truncated series approximates the square
wave for N = 5, 10, 20, 50, 100, 200, and observe the Gibbs phenomenon in
the range [0, 1

2Tp]. Use a very small sampling spacing T for the represen-
tation in MatLab.

2. Consider again a rectangular wave s(t) of period Tp = 5 and duty cycle
d = 1

2 and its truncated Fourier series

sN (t) =
NX

k=�N

ak e
jk!0t , !0 =

2⇡

Tp
,

where the Fourier coe�cients are now approximated via the numerical
integration

ak =
1

Tp

Z Tp

0
s(t)e�jk!0tdt ' bk =

1

Tp
· T

M�1X

n=0

s(nT ) e�jk!0nT ,

for T = Tp/M and a large M indicating the number of samples in the
period. Compare, for N = 100, the di↵erent output obtained by the
true coe�cients ak and the approximated coe�cients bk, using M =
200, 500, 1000.

Solutions.

1. In the code we first define constants and set the sampling spacing to a
very small value to fully capture the Gibbs phenomenon. The di↵erent
truncated series are obtained by a loop in N . Inside this loop, the trun-
cated series is computed by first initializing a vector to zero values, and
by then adding the contribution of each single Fourier coe�cient, which
is performed through a cycle in k. Before plotting, the imaginary part is
removed, since this only accounts for numerical errors. The plots super-
position is obtained by freezing the figure through an hold command.



Tp = 5; % period
d = .5; % duty cycle
om0 = 2*pi/Tp; % omega0
T = 0.001; % sampling spacing

t = 0:T:Tp/2;
s = square_wave(t,Tp,d);
figure
plot(t,s)
grid
axis ([0 Tp/2 -.2 1.2])
xlabel('t')
ylabel('s(t)')
hold on

for N = [5 ,10 ,20 ,50 ,100 ,200]
tfs = zeros(size(t)); % truncated Fourier

series
for k = -N:N % cicle on coefficients

ak = d*sinc(k*d); % Fourier coefficient
tfs = tfs + ak*exp(1i*k*om0*t);

end
tfs = real(tfs); % prevent numerical errors
plot(t,tfs)

end
legend('N=\ infty ','5','10','20','50','100','200')
title('truncated Fourier series ')

function s = square_wave(t,Tp,d)
t1 = mod(t/Tp ,1);
s = rect(t1/d) + rect((t1 -1)/d);
end

function s = rect(t)
s = (abs(t) <.5)+.5*( abs(t)==.5);
end



2. This exercise repeats the previous one in its first part, then re-evaluates the
coe�cients by numerical integration trough a cycle on M where samples
nT and s(nT ) are first stored, then used for calculating the approximate
coe�cients through a sum. The plot is zooming on the signal part that
better evidences details, to appreciate how only M = 1000 is able to
closely match the true result.

Tp = 5; % period
d = .5; % duty cycle
om0 = 2*pi/Tp; % omega0
T = 0.001; % sampling spacing
N = 100; % number of Fourier coefficients

t = 0:T:Tp/2;
s = square_wave(t,Tp,d);
figure
plot(t,s)
grid
axis ([1 1.3 .85 1.15])
xlabel('t')
ylabel('s(t)')
hold on

% true coefficients
tfs = zeros(size(t)); % truncated Fourier series
for k = -N:N % cicle on coefficients

ak = d*sinc(k*d); % Fourier coefficient
tfs = tfs + ak*exp(1i*k*om0*t);

end
tfs = real(tfs); % prevent numerical errors



plot(t,tfs)

% numerical coefficients
for M = [200 ,500 ,1000]

tfs = zeros(size(t)); % truncated Fourier
series

nT = (0:M-1)*Tp/M;
snT = square_wave(nT ,Tp ,d);
for k = -N:N % cicle on coefficients

bk = sum(snT.*exp(-1i*k*om0*nT))/M;
tfs = tfs + bk*exp(1i*k*om0*t);

end
tfs = real(tfs); % prevent numerical errors
plot(t,tfs)

end
legend('signal ','true coefs ','M=200','M=500','M

=1000 ')
title('approx truncated Fourier series ')

function s = square_wave(t,Tp,d)
t1 = mod(t/Tp ,1);
s = rect(t1/d) + rect((t1 -1)/d);
end

function s = rect(t)
s = (abs(t) <.5)+.5*( abs(t)==.5);
end



FOUNDATIONS OF SIGNALS AND SYSTEMS
11.6 Homework assignment

Prof. T. Erseghe

Exercises 11.6

Solve the following MatLab problems:

1. Consider the triangular wave

s(t) = rep
Tp

triang( t
dTp

) ,

period Tp = 5 and duty cycle d = 1
2 , and its truncated Fourier series

sN (t) =
NX

k=�N

ak e
jk!0t , !0 =

2⇡

Tp
, ak = d sinc2(kd) .

In the same plot, show how the truncated series approximates the square
wave for N = 5, 10, 20, 50, 100, 200 in the range [0, 1

2Tp]. Can we see
the Gibbs phenomenon? Use a very small sampling spacing T for the
representation in MatLab.

2. Consider a periodic signal of period Tp = 3, defined in a period as

s(t) =

(
t 0 < t < 1
1 1 < t < 2
0 2 < t < 3

so that in MatLab we can have

function s = signal(t)
t1 = mod(t,3);
s = t1.*(t1 <1) + (t1 >=1) .*(t1 <2);
end

Evaluate its Fourier coe�cients by resorting to numerical integration, as
in Exercise 11.5.2, with M = 103 and 104, and show the corresponding
truncated Fourier series for N = 100. Is the Gibbs phenomenon visible?
Where?



Solutions.

1. The code can mimic that of Exercise 11.5.1, but since the triangular wave
has no discontinuities, no Gibbs phenomenon can be observed.

Tp = 5; % period
d = .3; % duty cycle
om0 = 2*pi/Tp; % omega0
T = 0.001; % sampling spacing

t = 0:T:Tp/2;
s = triang_wave(t,Tp,d);
figure
plot(t,s)
grid
axis ([0 Tp/2 -.2 1.2])
xlabel('t')
ylabel('s(t)')
hold on

for N = [5 ,10 ,20 ,50 ,100 ,200]
tfs = zeros(size(t)); % truncated Fourier

series
for k = -N:N % cicle on coefficients

ak = d*sinc(k*d)^2; % Fourier coefficient
tfs = tfs + ak*exp(1i*k*om0*t);

end
tfs = real(tfs); % prevent numerical errors
plot(t,tfs)

end
legend('N=\ infty ','5','10','20','50','100','200')
title('truncated Fourier series ')

function s = triang_wave(t,Tp,d)
t1 = mod(t/Tp ,1);
s = triang(t1/d) + triang ((t1 -1)/d);
end

function s = triang(t)
s = (abs(t) <1).*(1-abs(t));
end



2. This exercise repeats tExercise 11.5.2 by substituting the signal values.
Note that with M = 103 we already obtain a very reliable result, showing
that the Gibbs phenomenon only appears at discontinuities.

Tp = 3; % period
om0 = 2*pi/Tp; % omega0
T = 0.001; % sampling spacing
N = 100; % number of Fourier coefficients

t = 0:T:Tp;
s = signal(t);
figure
plot(t,s)
grid
xlabel('t')
ylabel('s(t)')
hold on

% numerical coefficients
for M = [1e3 ,1e4]

tfs = zeros(size(t)); % truncated Fourier
series

nT = (0:M-1)*Tp/M;
snT = signal(nT);
for k = -N:N % cicle on coefficients

bk = sum(snT.*exp(-1i*k*om0*nT))/M;
tfs = tfs + bk*exp(1i*k*om0*t);

end
tfs = real(tfs); % prevent numerical errors
plot(t,tfs)



end
legend('signal ','M=1000 ','M=10000 ')
title('approx truncated Fourier series ')



FOUNDATIONS OF SIGNALS AND SYSTEMS

12.2 Solved exercises

Prof. T. Erseghe

Exercises 12.2

Prove that the following discrete Fourier transform pairs are correct by either

forward or backward relation:

1. s(n) = 1 and Sk = repN�(k),

2. s(n) = repN�(n) and Sk =
1
N ,

3. s(n) = repN rect(
n
M ), N > M = 1 + 2K, and Sk =

M
N sincM (

Mk
N ),

4. s(n) = M sincM (
M
N n) and Sk = repN rect(

k
M ), for N > M = 1 + 2K,

5. s(n) = cos(m 2⇡
N n+ '0) and

Sk =
1
2e

j'0combN (k �m) +
1
2e

�j'0combN (k +m) .

Solutions.

1. In this case we evaluate the periodic signal by applying the backward

relation (DFT series) to the comb, to have

s(n) =
N�1X

k=0

repN�(k) ejk
2⇡
N n

=

N�1X

k=0

�(k) ejk
2⇡
N n

= ej0·
2⇡
N n

= 1 ,

where we exploited the fact that the only active element of the comb in

[0, N) is �(k).

2. We evaluate the DFT coe�cients by applying the forward relation to the

comb, to have

Sk =
1

N

N�1X

n=0

repN�(n) e�jk 2⇡
N n

=
1

N

N�1X

n=0

�(n) e�jk 2⇡
N n

=
1

N
e�jk 2⇡

N ·0
=

1

N
,

where we exploited the fact that the only active element of the comb in

[0, N) is �(n).



3. We evaluate the DFT coe�cients by applying the forward relation to the

square wave. We observe that

rect(
n
M ) =

⇢
1 , n 2 [�K,K]

0, otherwise

and that, thanks to N > M = 1 + 2K there is no aliasing in the periodic

repetition, as illustrated in the figure below.

n

s(n)

•• ••• ••• ••• ••• ••• ••• ••• ••• •

•• •• •• •• •• •• ••
NK�K

Hence, we can choose the period [�K,N�1�K] as a reference, to include

only the rectangle centred at 0. We have

Sk =
1

N

N�1�KX

n=�K

repN rect
�

n
M

�
ejk

2⇡
N n

=
1

N

KX

n=�K

e�jk 2⇡
N n

=
1

N

2KX

m=0

e�jk 2⇡
N (m�K)

=
ejk

2⇡
N K

N

2KX

m=0

(e�jk 2⇡
N )

m

=
ejk

2⇡
N K

N

1� e�jk 2⇡
N (1+2K)

1� e�jk 2⇡
N

=
1

N

ejk
2⇡
N ( 1

2+K) � e�jk 2⇡
N ( 1

2+K)

ejk
2⇡
N

1
2 � e�jk 2⇡

N
1
2

=
1

N

sin(k 2⇡
N (

1
2 +K))

sin(k 2⇡
N

1
2 )

=
1

N

sin(
M
N k⇡)

sin(
1
N k⇡)

The resulting signal, which is a sampled periodic sinc of the form

Sk =
M
N sincM (

M
N k) , sincM (x) =

sin(⇡x)

M sin(⇡ x
M )

,

is illustrated in the figure below.



k

Sk
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• •• •
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• •• •
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N

4. In this case we could either evaluate the periodic signal by applying the

backward relation (DFT series), or, more simply, exploit the symmetry

rule from the result of the previous exercise that we write in the form

x(n) = N repN rect
�

n
M

�

Xk = M sincM (
M
N k)

to have

s(n) = Xn = M sincM (
M
N n)

Sk =
1

N
x(�k) = repN rect

�
k
M

�

5. We evaluate the periodic signal by applying the backward relation (DFT

series) to have

s(n) =
n0+N�1X

k=n0

h
1
2e

j'0repN�(k �m) +
1
2e

�j'0repN�(k +m)

i
ejk

2⇡
N n

=

m+N�1X

k=m

1
2e

j'0�(k �m) ejk
2⇡
N n

+

�m+N�1X

k=�m

1
2e

�j'0�(k +m)

i
ejk

2⇡
N n

=
1
2e

j'0 ejm
2⇡
N n

+
1
2e

�j'0 e�jm 2⇡
N n

= cos(m 2⇡
N n+ '0)

where we used two di↵erent values of n0, namely n0 = ±m, for the two

comb functions.



FOUNDATIONS OF SIGNALS AND SYSTEMS
12.3 Homework assignment

Prof. T. Erseghe

Exercises 12.3

Solve the following:

1. evaluate the DFT coe�cients of x(n) = ejm
2⇡
N n

,

2. evaluate the DFT coe�cients of x(n) = repN �(n� n1),

3. evaluate the DFT coe�cients of

x(n) = 3� sin(
2
5⇡n) + cos(

4
5⇡n) + 2 cos(

1
5⇡n� ⇡

4 ) ,

4. evaluate the DFT coe�cients of x(n) = | cos( 2
M ⇡n)|, with M multiple of

4, by taking care of choosing a proper period for the sum,

5. evaluate the DFT coe�cients of x(n) = cos(
2
7⇡n) + sin

2
(
3
7⇡n).



Solutions.

1. We observe that the signal is already in DFT series form, with only one

coe�cient active, the one for k = m, that is

Sk = repN�(k �m) .

2. We evaluate the DFT coe�cients by applying the forward relation, to have

Sk =
1

N

n0+N�1X

n0

repN�(n� n1) e�jk 2⇡
N n

=
1

N

n1+N�1X

n1

�(n� n1) e�jk 2⇡
N n

=
1

N
e�jk 2⇡

N n1

where we choose the period [n1, n1+N) in such a way that the only active

delta in the integration of repN�(n� n1) is �(n� n1).

3. In this case, the signal is already written in the form of a DFT series, as

one can appreciate by expanding the sinusoids through Euler’s identity,

to have

x(t) = 3� sin(
2
5⇡n) + cos(

4
5⇡n) + 2 cos(

1
5⇡n� ⇡

4 )

= 3� 1
2j e

2j 2⇡
10 n

+
1
2j e

�j2 2⇡
10 n

+
1
2e

j4 2⇡
10 n

+
1
2e

�j4 2⇡
10 n

+ ej(
2⇡
10 n�⇡

4 )
+ e�j( 2⇡

10 n�⇡
4 )

where the complex exponentials have been already written in a form that

reveals that the period is N = 10. Hence, by inspection we have

Xk =

8
>>>>>>><

>>>>>>>:

3 , k = 0 (mod N)

e�j ⇡
4 , k = 1 (mod N)

ej
⇡
4 , k = �1 (mod N)

j
2 , k = 2 (mod N)

� j
2 , k = �2 (mod N)

1
2 , k = ±4 (mod N)

0 , otherwise

where we incidentally observe the presence of an Hermitian symmetry

(since the signal is real-valued).

4. The signal x(t) = | cos( 2⇡M n)| for M even has period N =
M
2 , since this

provides a shift by ⇡. We evaluate the DFT coe�cients by applying the

forward relation, and integration over the period [
N
2 ,

N
2 ) = [

M
4 , M

4 ) where

| cos( 2⇡M n)| = cos(
2⇡
M n), as illustrated in the figure below.



n

s(n) = | cos( 2⇡M n)|

••
••
•••
•••••••••••

••
•••
•••••••••••

••
•••
•••••••••••

••
•••
•••••••••••

••
•••
••••••••••

M
2

MM
4�M

4

We obtain

Sk =
1

N

N
2 �1X

n=�N
2

| cos( 2⇡M n)| e�jk 2⇡
N n

=
1

N

N
2 �1X

n=�N
2

cos(
2⇡
M n) e�jk 2⇡

N n
=

1

N

N
2X

n=�N
2

cos(
2⇡
M n) e�jk 2⇡

N n

=
1

2N

N
2X

n=�N
2

[ej
2⇡
M n

+ e�j 2⇡
M n

] e�jk 2⇡
N n

=
1

2N

N
2X

n=�N
2

e�j(k� 1
2 )

2⇡
N n

+ e�j(k+ 1
2 )

2⇡
N n .

where in the second line we exploited the fact that cos(
2⇡
M n) is zero for n =

N
2 . We now solve the expression by resorting to the truncated geometric

series, to have

Sk =
1

2N

NX

m=0

e�j(k� 1
2 )

2⇡
N (m�N

2 )
+ e�j(k+ 1

2 )
2⇡
N (m�N

2 )

=
ej(k�

1
2 )⇡

2N

NX

m=0

[e�j(k� 1
2 )

2⇡
N ]

m
+

ej(k+
1
2 )⇡

2N

NX

m=0

[e�j(k+ 1
2 )

2⇡
N ]

m

=
ej(k�

1
2 )⇡

2N
· 1� e�j(k� 1

2 )(2⇡+
2⇡
N )

1� e�j(k� 1
2 )

2⇡
N

+
ej(k+

1
2 )⇡

2N
· 1� e�j(k+ 1

2 )(2⇡+
2⇡
N )

1� e�j(k+ 1
2 )

2⇡
N

=
sin((k � 1

2 )(⇡ +
⇡
N ))

2N sin((k � 1
2 )

⇡
N )

+
sin((k +

1
2 )(⇡ +

⇡
N ))

2N sin((k +
1
2 )

⇡
N )

The resulting signal is depicted in the picture below.
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With a little e↵ort we can show how the signal is related to the periodic

sinc function. The trick is to expand the numerator by exploiting the

trigonometric identity sin(a + b) = sin a cos b + cos a sin b, the fact that

cos((k � 1
2 )⇡) = 0, and the definition of sincN , to have

Sk =
sin((k � 1

2 )⇡) cos((k � 1
2 )

⇡
N )

2N sin((k � 1
2 )

⇡
N )

+
sin((k +

1
2 )⇡) cos((k +

1
2 )

⇡
N )

2N sin((k +
1
2 )

⇡
N )

=
1
2 sincN (k � 1

2 ) cos((k � 1
2 )

⇡
N ) +

1
2 sincN (k +

1
2 ) cos((k +

1
2 )

⇡
N )

5. This is another example where the signal is can be easly written in the

form of a Fourier series, that is

x(t) = cos(
2⇡
7 n) + sin

2
(
3⇡
7 n)

= sin(
2⇡
7 n) + 1

2 � 1
2 cos(

6⇡
7 n)

= sin(
2⇡
7 n) + 1

2 � 1
2 cos(3

2⇡
7 n)

=
1
2j e

j 2⇡
7 n � 1

2j e
�j 2⇡

7 n
+

1
2 � 1

4e
j3 2⇡

7 n � 1
4e

�j3 2⇡
7 n

which reveals that the period is N = 7 and that the DFT coe�cients are

Sk =

8
>>>><

>>>>:

1
2 , k = 0 (mod N)
1
2j , k = 1 (mod N)

� 1
2j , k = �1 (mod N)

� 1
4 , k = ±3 (mod N)

0 , otherwise



FOUNDATIONS OF SIGNALS AND SYSTEMS

12.5 Solved exercises

Prof. T. Erseghe

Exercises 12.5

Solve the following by exploiting, where useful, the properties of the DFT:

1. prove the time-shift property x(n� n1) ! Xke�jk 2⇡
N n1 ;

2. prove the circular convolution property x ⇤cir y(n) ! NXkYk;

3. prove that any real-valued discrete-time periodic signal of period N can

be expressed through the trigonometric (and real-valued) series

s(n) = S0 +

bN�1
2 cX

k=1

2|Sk| cos(k 2⇡
N n+ 'k) +

⇢
SN

2
(�1)

n
, N even

0 , N odd

where Sk = |Sk|e�j'k are its DFT coe�cients;

4. evaluate the DFT coe�cients of s(n) = ejm
2⇡
N n

by exploiting the Fourier

couple x(n) = 1, Xk = repN �(k);

5. prove, by exploiting the increment property, that the DFT coe�cients of

the sampled square wave

s(n) =

⇢
1 , n 2 [0,M) (mod N)

0 , otherwise

for N > M can be expressed in the form

Sk =
M
N sincM (

M
N k) e�j M�1

N k⇡ .

Solutions.

1. For the time-shift property, we investigate the DFT of y(n) = x(n� n1),

providing

Yk =
1

N

N�1X

n=0

x(n� n1)e
�jk 2⇡

N n

=
1

N

N�1�n1X

m=�n1

x(m)e�jk 2⇡
N (m+n1)

= Xke
�jk 2⇡

N n1

where we denoted m = n � n1 and where we note that the sum range

[�n1, N � 1� n1] is one period, hence the final result.



2. For the circular convolution property, we investigate the DFT of z(n) =
x ⇤cir y(n), providing

Zk =
1

N

N�1X

n=0

 
N�1X

`=0

x(n� `)y(`)

!
e�jk 2⇡

N n

=

N�1X

`=0

y(`)

 
1

N

N�1X

n=0

x(n� `)e�jk 2⇡
N n

!

=

N�1X

`=0

y(`)Xk e
�jk 2⇡

N `
= NXkYk

where we swapped the order of the two summations in the second equiv-

alence, and exploited the time-shift rule in the third equivalence.

3. Being the signal real-valued, we exploit the Hermitian symmetry Sk = S⇤
�k

of the DFT coe�cients, that is S�k = S⇤
k = |Sk|e�j'k which also reveals

that S0 (the mean value) is real-valued. When N is even, also SN
2
is real-

valued, since SN
2
= S�N

2
by periodicity and SN

2
= S⇤

�N
2
by the hermitian

property. Hence, for N even we can write the Fourier series in the form

s(n) =

N
2X

k=�N
2 +1

Sk e
jk 2⇡

N n

=

�1X

k=�(N
2 �1)

Sk e
jk 2⇡

N n
+ S0 +

N
2 �1X

k=1

Sk e
jk 2⇡

N n
+ SN

2
ej

N
2

2⇡
N n

= S0 + SN
2
(�1)

n
+

N
2 �1X

k=1

[Sk e
jk 2⇡

N n
+ S�k e

�jk 2⇡
N n

]

= S0 + SN
2
(�1)

n
+

N
2 �1X

k=1

|Sk|[ej'k ejk
2⇡
N n

+ e�j'k e�jk 2⇡
N n

]

= S0 + SN
2
(�1)

n
+

N
2 �1X

k=1

2|Sk| cos(k 2⇡
N n+ 'k) .



For N odd, instead, we have

s(n) =

N�1
2X

k=�N�1
2

Sk e
jk 2⇡

N n

=

�1X

k=�N�1
2

Sk e
jk 2⇡

N n
+ S0 +

N�1
2X

k=1

Sk e
jk 2⇡

N n

= S0 +

N�1
2X

k=1

[Sk e
jk 2⇡

N n
+ S�k e

�jk 2⇡
N n

]

= S0 +

N�1
2X

k=1

|Sk|[ej'k ejk
2⇡
N n

+ e�j'k e�jk 2⇡
N n

]

= S0 +

N�1
2X

k=1

2|Sk| cos(k 2⇡
N n+ 'k) .

Altogether the two results provide the result compactly expressed in the

exercise text.

4. Since s(n) = ejm
2⇡
N n

= ejm
2⇡
N n · 1 = ejm

2⇡
N n · x(t), we can exploit the

modulation property to state that Sk = Xk�m = repN �(k �m).

5. The square wave is illustrated in the figure below.

n

s(n)
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•••••••
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NM

In this case we can exploit the increment signal x(n) = s(n)� s(n� 1)

n

x(n) = s(n)� s(n� 1)

•

•

••••••• ••••••

•

•

••••••• ••••••

•

•

••••••• ••••••

•

•

••••••• ••••••
N

M



which is simply

x(n) = repN�(n)� repN�(n�M)

hence it is straightforward calculating its DFT coe�cients by standard

rules, to have

Xk =
1
N (1� e�jk 2⇡

N M
)

and by inversion of the increment rule we obtain

Sk =

(
Xk

1�e�jk 2⇡
N

, k 6= 0 (mod N)

ms , k = 0 (mod N)

=

8
<

:

1�e�jk 2⇡
N

M

N(1�e�jk 2⇡
N )

, k 6= 0 (mod N)

M
N , k = 0 (mod N)

We also observe that

1� e�jk 2⇡
N M

N(1� e�jk 2⇡
N )

· e
jk ⇡

N (M+1)

ejk
⇡
N (M+1)

=
sin(

M
N k⇡)

N sin(
1
N k⇡)

ejk
⇡
N

ejk
⇡
N M

so that the result can be written in the form given in the exercise text by

use of the periodic sinc function sincM (x).



FOUNDATIONS OF SIGNALS AND SYSTEMS

12.6 Solved exercises

Prof. T. Erseghe

Exercises 12.6

Solve the following by exploiting the properties of the Fourier series:

1. prove the modulation property x(n) ejm
2⇡
N n ! Xk�m;

2. prove the product property x(n)y(n) ! X ⇤cir Yk;

3. evaluate the DFT coe�cients of s(n) = repN �(n � n1) by exploiting the

Fourier couple x(n) = repN �(n), Xk =
1
N ;

4. evaluate the DFT coe�cients of the saw-tooth waveform

n

s(n)

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

••
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••

••
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••
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N

N � 1

by exploiting the increment property;

5. evaluate the DFT coe�cients of the triangular waveform

n

s(n)

•••• •• •• •• •• •• •• ••

•••• •• •• •• •• •• •• ••

•••• •• •• •• •• •• •• ••

•••• •• •• •• •• •• •• ••

N
2

NN
2

N
2

by exploiting the circular convolution property and the DFT pair of Ex-

ercise 12.5.5, and by considering N even;

6. evaluate the DFT coe�cients of s(n) = [sin(2⇡ n
N )]

+
, where [x]+ = x ·1(x)

is the positive part operator, by exploiting the product property and the

DFT pair of Exercise 12.5.5.



Solutions.

1. For the modulation property, we investigate the DFT coe�cients of y(n) =
x(n) ejm

2⇡
N n

, providing

Yk =
1

N

N�1X

n=0

x(n)ejm
2⇡
N ne�jk 2⇡

N n

=
1

N

N�1X

n=0

x(n)e�j(k�m) 2⇡
N n

= Xk�m .

2. For the product property, we investigate the DFT coe�cients of z(n) =

x(n) y(n), providing

Zk =
1

N

N�1X

n=0

x(n)y(n)e�jk 2⇡
N n

=
1

N

N�1X

n=0

 
N�1X

m=0

Xm ejm
2⇡
N n

!
y(n)e�jk 2⇡

N n

=

N�1X

m=0

Xm

 
1

N

N�1X

n=0

y(n) e�j(k�m) 2⇡
N n

!

=

N�1X

m=0

XmYk�m

= X ⇤circ Yk

where in the second equivalence we expressed x(n) through its DFT series,

and in the third equivalence we simply changed the order of summations.

3. Since s(n) = x(n�n1) by the time-shift property we have Sk = Xk e�jk 2⇡
N n1 =

1
N e�jk 2⇡

N n1 .

4. In a period [0, N), the saw-tooth takes the expression s(n) = n. In this

case it is easier to investigate the increment signal x(n) = s(n)� s(n� 1)

providing

n

s(n)

•••••••

•

•••••••

•

•••••••

•

•••••••

•

•••••••

•

•••••••

•

N

�(N � 1)

1



so that we can write

x(n) = 1�N repN�(n) , Xk = repN�(k)� 1 .

By inversion of the increment rule we obtain

Sk =

8
<

:

Xk

1� e�jk 2⇡
N

=
�1

1� e�jk 2⇡
N

, k 6= 0 (mod N)

ms =
N�1
2 , k = 0 (mod N)

5. The square wave of Exercise 12.5.5 for M =
N
2 assumes the form

z(n) =

⇢
1 , n 2 [0, N

2 � 1]

0 , otherwise
Zk =

1
2 sincN

2
(
1
2k) e

�j( 1
2�

1
N )k⇡

its self-circular-convolution z ⇤cir z being a triangular wave active, in the

reference period [0, N), in [0, 2(N2 � 1)] = [0, N � 2], so that we can write

s(n) = z ⇤cir z(n+
N
2 � 1)

so that by the DFT properties of circular convolution and time-shift we

obtain

Sn = N Z2
k e

jk 2⇡
N (

N
2 �1)

= N Z2
k e

jk2⇡(
1
2�

1
N )

=
N
4 sinc

2
N
2
(
1
2k)

The DFT is illustrated in the figure below for N = 16.

k

Sk

•

•••••••••••••

• •

•••••••••••••

• •

•••••••••••••
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N

6. The signal s(n) = [sin(2⇡ n
N )]

+
has period N , and is illustrated in the

figure below.

n

s(n) = [sin(2⇡ n
N )]

+

•
•
••

••
•
•••••••••

•
••

••
•
•••••••••

•
••

••
•
••••••••

NM



As one can appreciate from the figure it can be written as the product

s(n) = x(n)y(n) between the full sinusoid

x(n) = sin(2⇡ n
N ) , Xk =

1
2j repN�(k � 1)� 1

2j repN�(k + 1)

and the square wave

y(n) =

⇢
1 , n 2 [1,M ] (mod N)

0 , otherwise
, M =

⇢ N
2 � 1 , N even

N�1
2 , N odd

which, is equivalent, apart for a time-shift of n1 = 1 to the square wave

of Exercise 12.5.5, namely we have

y(n) = z(n� 1) , Zk =
M
N sincM (

M
N k) e�j M�1

N k⇡

Therefore, by the time-shift property, it has DFT coe�cients of the form

Yk = Zk e
�jk 2⇡

N =
M
N sincM (

M
N k) e�j M+1

N k⇡

Hence, the DFT coe�cients of s(n) are straightforwardly derived by ex-

ploiting the property that a product in time involves a circular convolution

in the DFT domain, to have

Sk = Xk ⇤ Yk

= [
1
2j repN�(k � 1)� 1

2j repN�(k + 1)] ⇤ Yk

=
1
2jYk�1 � 1

2jYk+1

=
M
2Nj

h
sincM (

M
N (k � 1)) e�j M+1

N (k�1)⇡ � sincM (
M
N (k + 1)) e�j M+1

N (k+1)⇡
i

where we used the sifting property of the comb. The result is illustrated

in the figure below for N = 15 and M = 7. Note the Hermitian symmetry:

even symmetric real part and odd symmetric imaginary part.

k

<[Sk]

••••••••
•

•

•
••••••••••

•

•

•
••••••••••

•

•

•
••••••••••• • •• • •

N

k

=[Sk]

••••••••• • •••••••••••• • •••••••••••• • •••••••••••

• • •

• • •

N



We add some considerations that are not required in the solution of the

exercise, but are useful to understand the structure of the DFT coe�cients.

We note that the imaginary part seems to be zero, except for k = ±1 (mod

N). This can be appreciated by extracting the even and odd signals parts,

that is

se(n) =
1
2 [s(n) + s(�n)] = 1

2 | sin(2⇡
n
N )|

so(n) =
1
2 [s(n)� s(�n)] = 1

2 sin(2⇡ n
N ) ,

whose DFT coe�cients are, respectively, Se,k = <[Sk] and So,k = j=[Sk]

thanks to symmetry properties. This reveals that the imaginary part

satisfies

=[Sk] = �jSo,k = � 1
4 repN�(k � 1) +

1
4 repN�(k + 1) ,

which is the exact e↵ect we observe in the figure. For the real part, instead,

the DFT coe�cients must, for even N , where | sin(2⇡ n
N )| is periodic of

period
N
2 (and so is se), be zero valued for odd k, as stated by the de-

periodisation property. For odd N , instead, no sub-periodisation is active,

and therefore this property does not hold (be aware that the figure is partly

misleading since the values for k odd are small but non zero, but in any

case the value at N = 15 is active!). These properties can, with some

e↵ort, be appreciated also from the (rather involved) expression of Sk, as

we explain in the following.

We first investigate the imaginary part which we write in the form

=[Sk] =
1

4N [f(k + 1)� f(k � 1)] ,

where we used function

f(x) = 2MsincM (
M
N x) cos(M+1

N x⇡) ,

for integer x. By working on the expression of f(x), we obtain

f(x) =
2 sin(

M
N x⇡) cos(M+1

N x⇡)

sin(
1
N x⇡)

=
sin(

2M+1
N x⇡)� sin(

1
N x⇡)

sin(
1
N x⇡)

=
sin(

2M+1
N x⇡)

sin(
1
N x⇡)

� 1

where we exploited the trigonometric equivalence 2 sin↵ cos� = sin(↵ +

�) + sin(↵ � �). We then distinguish between even and odd N . For odd

N we have 1 + 2M = N , hence

f(x) =
sin(x⇡)

sin(
1
N x⇡)

� 1

= �1 +

(
0 , x 6= 0 (mod N)

N cos(x⇡)
cos( 1

N x⇡)
= N , x = 0 (mod N)

= N repN�(x)� 1 ,



where for x = 0 (mod N) we first exploited de l’Hospital rule, then the

fact that N is odd. For even N , instead it is 1 + 2M = N � 1, hence

f(x) =
sin(

N�1
N x⇡)

sin(
1
N x⇡)

� 1

=
sin(x⇡) cos( 1

N x⇡)� cos(x⇡) sin( 1
N x⇡)

sin(
1
N x⇡)

� 1

= � cos(x⇡)� 1 +
sin(x⇡)

sin(
1
N x⇡)

cos(
1

N
x⇡)

= � cos(x⇡)� 1 +

(
0 , x 6= 0 (mod N)

cos(
1
N x⇡) · N cos(x⇡)

cos( 1
N x⇡)

= N , x = 0 (mod N)

= N repN�(x)� 1� cos(x⇡) ,

where we used the trigonometric identity sin(↵+�) = sin↵ cos�+cos↵ sin�,
the result previously seen for N odd, and the fact that now N is even. By

exploiting the above results, we finally have

=[Sk] =
1
4 repN�(k + 1)� 1

4 repN�(k � 1)

+

⇢
0 , N odd
1

4N cos((k � 1)⇡)� 1
4N cos((k + 1)⇡) = 0 , N even

which proves the correctness of the expression of Sk.

For the real part, instead, it is

<[Sk] =
1

4N [g(k + 1)� g(k � 1)] ,

where we used function

g(x) = 2MsincM (
M
N x) sin(M+1

N x⇡) ,

for integer x. By working on the expression of g(x), we obtain

g(x) =
2 sin(

M
N x⇡) cos(M+1

N x⇡)

sin(
1
N x⇡)

=
cos(

1
N x⇡)� cos(

2M+1
N x⇡)

sin(
1
N x⇡)

where we exploited the trigonometric equivalence 2 sin↵ sin� = cos(↵ �
�) � cos(↵ + �). We then distinguish between even and odd N . For odd

N we have 1 + 2M = N , hence

g(x) =
cos(

1
N x⇡)� cos(x⇡)

sin(
1
N x⇡)

=

(
cos( 1

N x⇡)�cos(x⇡)

sin( 1
N x⇡)

, x 6= 0 (mod N)

0 , x = 0 (mod N)



For even N , instead it is 1 + 2M = N � 1, hence

g(x) =
cos(

1
N x⇡)� cos(

N�1
N x⇡)

sin(
1
N x⇡)

=
cos(

1
N x⇡)� cos(x⇡) cos( 1

N x⇡)� sin(x⇡) sin( 1
N x⇡)

sin(
1
N x⇡)

=
cos(

1
N x⇡) [1� cos(x⇡)]

sin(
1
N x⇡)

=

8
<

:

0 , x 6= 0 (mod N), x even

2 cot(
1
N x⇡) , x 6= 0 (mod N), x odd

0 , x = 0 (mod N)

=

⇢
0 , x even

2 cot(
1
N x⇡) , x odd

where we used cos(↵ � �) = cos↵ cos� + sin↵ sin�, and the fact that N
is now even. Being g(x) = 0 for x even implies <[Sk] = 0 for k odd, as

desired.



FOUNDATIONS OF SIGNALS AND SYSTEMS

13.2 Solved exercises

Prof. T. Erseghe

Exercises 13.2

Prove that the following Fourier transform pairs are correct by either forward
or backward relation, or by the symmetry rule:

1. s(t) = �(t) and S(j!) = 1,

2. s(t) = 1 and S(j!) = 2⇡ �(!),

3. s(t) = rect(t) and S(j!) = sinc( !
2⇡ ),

4. s(t) = sinc(t) and S(j!) = rect( !
2⇡ ),

5. s(t) = cos(!1t+ '1) and

S(j!) = ⇡ ej'1�(! � !1) + ⇡ e�j'1�(! + !1) ;

6. s(t) = e�at 1(t), a > 0 and S(j!) = 1
a+j! .

Solutions.

1. In this case we apply the forward relation (Fourier transform) to the delta,
to have

S(j!) =

Z 1

�1
�(t) e�j!t dt = e�j!·0 = 1 ,

where we exploited the sifting property of the delta.

2. In this case we apply the inverse relation (inverse Fourier transform) to
the delta, to have

s(t) =
1

2⇡

Z 1

�1
2⇡ �(!) ej!t d! = ej0·t = 1

where we exploited the sifting property of the delta. Alternatively, we
could have used the symmetry rule starting from the couple x(t) = �(t)
and X(j!) = 1 of the previous exercise, to have

s(t) = X(jt) = 1 , S(j!) = 2⇡ x(�!) = 2⇡ �(!) .



3. In this case we apply the forward relation (Fourier transform) to the rect-
angle, to have

S(j!) =

Z 1

�1
rect(t) e�j!t dt

=

Z 1
2

� 1
2

e�j!t dt

=

8
><

>:

1 , ! = 0

e�j!t

�j!

����

1
2

� 1
2

=
ej

1
2! � e�j 1

2!

j!
=

2 sin( 12!)

!
, ! 6= 0

= sinc( !
2⇡ )

The Fourier couple is illustrated in the figure below.

t

s(t)
1

1
2� 1

2

!

S(j!)

2⇡

4. In this case we can apply the inverse relation (inverse Fourier transform)
to the rect, to have

s(t) =
1

2⇡

Z 1

�1
rect(

!

2⇡
) ej!t d!

=

Z 1

�1
rect(u) ej2⇡ut du

=

Z 1
2

� 1
2

ej2⇡ut du

=

8
><

>:

1 , t = 0

ej2⇡ut

j2⇡t

����

1
2

� 1
2

=
ej⇡t � e�j⇡t

j2⇡t
=

sin(⇡t)

⇡t
, t 6= 0

= sinc(t) .

Alternatively, we could have used the symmetry rule starting from the
couple x(t) = rect(t) and X(j!) = sinc( !

2⇡ ) of the previous exercise, to
have

y(t) = X(jt) = sinc( t
2⇡ ) , Y (j!) = 2⇡ rect(�!) = 2⇡ rect(!) .

and successively the scale property to obtain the correct couple

s(t) = y(2⇡ t) = sinc(t) , S(j!) = 1
2⇡ Y ( !

2⇡ ) = rect( !
2⇡ ) .



The two approaches are in practice equivalent, since the symmetry rule
is exploiting the fact that the inverse Fourier transform (although not
exactly in the same form) has already been calculated. The Fourier couple
is illustrated in the figure below.

t

s(t)

1 !

S(j!)
1

⇡�⇡

5. In this case we can apply the inverse relation (inverse Fourier transform),
to have

s(t) =
1

2⇡

Z 1

�1

h
⇡ ej'1�(! � !1) + ⇡ e�j'1�(! + !1) .

i
ej!t d!

= 1
2 e

j'1 ej!1t + 1
2 e

�j'1 e�j!1t

= 1
2 e

j(!1t+'1) + 1
2 e

�j(!1t+'1)

= cos(!1t+ '1)

where we used the sifting property of the delta.

6. In this case we apply the forward relation (Fourier transform), to obtain

S(j!) =

Z 1

�1
e�at 1(t) e�j!t dt

=

Z 1

0
e�at e�j!t dt

=

Z 1

0
e�(a+j!)t dt

=
e�(a+j!)t

�(a+ j!)

����
1

0

=
1

a+ j!

=
a� j!

a2 + !2

providing the pair illustrated in the figure below.

t

s(t)

!

S(j!)



FOUNDATIONS OF SIGNALS AND SYSTEMS
13.3 Homework assignment

Prof. T. Erseghe

Exercises 13.3

Prove that the following Fourier transform pairs are correct by either forward

or backward relation, or by the symmetry rule:

1. s(t) = �(t� t1) and S(j!) = e�j!t1 ,

2. s(t) = ej!1t and S(j!) = 2⇡ �(! � !1),

3. s(t) = triang(t) and S(j!) = sinc
2
(
!
2⇡ ),

4. s(t) = sinc
2
(t) and S(j!) = triang(

!
2⇡ ),

Then evaluate the Fourier transform of the following signals:

5. s(t) = e�a|t|
, a > 0,

6. s(t) = t rect(t),

7. s(t) = cos(!0t) rect(
!0
⇡ t),



Solutions.

1. In this case we apply the forward relation (Fourier transform) to the delta,

to have

S(j!) =

Z 1

�1
�(t� t1) e

�j!t dt = e�j!t1 = ,

where we exploited the sifting property of the delta.

2. In this case we apply the inverse relation (inverse Fourier transform) to

the delta, to have

s(t) =
1

2⇡

Z 1

�1
2⇡ �(! � !1) e

j!t d! = ej!1t

where we exploited the sifting property of the delta. Alternatively, we

could have used the symmetry rule starting from the couple x(t) = �(t�a)
and X(j!) = e�j!a

of the previous exercise, to have

s(t) = X(jt) = e�jat , S(j!) = 2⇡ x(�!) = 2⇡ �(�!�a) = 2⇡ �(!+a) .

which reveals the correct couple for a = �!1.

3. In this case we apply the forward relation (Fourier transform) to the tri-

angle, to have

S(j!) =

Z 1

�1
triang(t) e�j!t dt

=

Z 0

�1
(1 + t) e�j!t dt+

Z 1

0
(1� t) e�j!t dt

which, with a little e↵ort, can be solved through an integration by parts,

to give

S(j!) =

8
<

:

1 , ! = 0

[j � !(1 + t)] e�j!t

j!2

����
0

�1

+
[�j � !(1� t)] e�j!t

j!2

����
1

0

, ! 6= 0

=

(
1 , ! = 0

j � ! � jej! � je�j!
+ j + !

j!2
, ! 6= 0

=

(
1 , ! = 0

2(1� cos(!))

!2
=

4 sin
2
(
1
2!)

!2
, ! 6= 0

= sinc
2
(
!
2⇡ )

The Fourier couple is illustrated in the figure below.



t

s(t)

1

1�1 !

S(j!)

2⇡

4. In this case we could apply the inverse relation (inverse Fourier transform)

to the triangle, and follow an equivalent procedure to the exercise above.

Alternatively, we use the symmetry rule starting from the couple x(t) =
triang(t) and X(j!) = sinc

2
(
!
2⇡ ) of the previous exercise, to have

y(t) = X(jt) = sinc
2
(

t
2⇡ ) , Y (j!) = 2⇡ triang(�!) = 2⇡ triang(!) .

and successively the scale property to obtain the correct couple

s(t) = y(2⇡ t) = sinc
2
(t) , S(j!) = 1

2⇡ Y (
!
2⇡ ) = triang(

!
2⇡ ) .

The two approaches are in practice equivalent, since the symmetry rule

is exploiting the fact that the inverse Fourier transform (although not

exactly in the same form) has already been calculated. The Fourier couple

is illustrated in the figure below.

t

s(t)

1 !

S(j!)

2⇡�2⇡

5. In this case we apply the forward relation (Fourier transform), to obtain

S(j!) =

Z 1

�1
e�a|t| e�j!t dt

=

Z 0

�1
eat e�j!t dt+

Z 1

0
e�at e�j!t dt

=

Z 0

�1
e(a�j!)t dt+

Z 1

0
e�(a+j!)t dt

=
e(a�j!)t

(a� j!)

����
0

�1
+

e�(a+j!)t

�(a+ j!)

����
1

0

=
1

a� j!
+

1

a+ j!

=
2a

a2 + !2

providing the pair illustrated in the figure below.



t

s(t)

!

S(j!)

6. In this case we apply the forward relation (Fourier transform), to have

S(j!) =

Z 1

�1
t rect(t) e�j!t dt

=

Z 1
2

� 1
2

t e�j!t dt

which, with a little e↵ort, can be solved through an integration by parts,

to give

S(j!) =

8
><

>:

0 , ! = 0

[j � !t] e�j!t

j!2

����

1
2

� 1
2

, ! 6= 0

=

8
<

:

1 , ! = 0

[j � !
2 ]e

�j !
2 � [j + !

2 ]e
j !

2

j!2
, ! 6= 0

=

(
1 , ! = 0

j
! cos(

!
2 )� 2 sin(

!
2 )

!2
, ! 6= 0

Incidentally, if we observe that

sinc
0
(x) =

d

dx

sin(⇡x)

⇡x

=
cos(⇡x)

x
� sin(⇡x)

⇡x2
=

⇡x cos(⇡x)� sin(⇡x)

⇡x2

=
cos(⇡x)� sinc(x)

x

with sinc
0
(0) = 0 (by left and right limits), then we can compactly write

S(j!) = j 1
2⇡ sinc

0
(
!
2⇡ ) .

The Fourier couple is illustrated in the figure below.

t

s(t)

1
2

� 1
2

!

=[S(j!)]

2⇡



Note that the signal is real and odd, and therefore its transform is imagi-

nary and odd, as we expected from symmetries.

7. The signals is an arc of a cosine, as we can appreciate by setting !0 =
2⇡
Tp

and by correspondingly writing the signal in the form

s(t) = cos(2⇡ t
Tp

) rect(
t

1
2Tp

) ,

providing the result illustrated in the figure below.

t

s(t)

Tp

4
Tp�Tp

4

Hence, by applying the forward relation (Fourier transform), we obtain

S(j!) =

Z 1

�1
cos(2⇡ t

Tp
) rect(

t
1
2Tp

) e�j!t dt

=

Z 1
4Tp

� 1
4Tp

cos(2⇡ t
Tp

) e�j!t dt

=

Z 1
4Tp

� 1
4Tp

1
2 [e

j2⇡ t
Tp + e

�j2⇡ t
Tp ] e�j!t dt

=

Z 1
4Tp

� 1
4Tp

1
2 [e

j( 2⇡
Tp

�!)t
+ e

�j( 2⇡
Tp

+!)t
] dt

=
ej(!0�!)t

2j(!0 � !)
+

e�j(!0+!)t

�2j(!0 + !)

����

1
4Tp

� 1
4Tp

=
sin((!0 � !) 14Tp)

!0 � !
+

sin((!0 + !) 14Tp)

!0 + !

=
sin((! � !0)

1
4Tp)

! � !0
+

sin((! + !0)
1
4Tp)

! + !0

=
1
4Tp sinc(

!�!0
4⇡/Tp

) +
1
4Tp sinc(

!+!0
4⇡/Tp

)

=
⇡

2!0
sinc(

!�!0
2!0

) +
⇡

2!0
sinc(

!+!0
2!0

)

where we exploited !0 =
2⇡
Tp

. The Fourier transform is illustrated in the

figure below.



!

S(j!)

!0 3!0 5!0 7!0



FOUNDATIONS OF SIGNALS AND SYSTEMS

13.5 Solved exercises

Prof. T. Erseghe

Exercises 13.5

Solve the following by exploiting the properties of the Fourier transform:

1. prove that any real-valued continuous-time aperiodic signal can be ex-

pressed through the trigonometric (and real-valued) integral

s(t) =

Z 1

0

1
⇡ |S(j!)| cos(!t+ '(!)) d!

where S(j!) = |S(j!)|ej'(!)
is its Fourier transform;

2. evaluate the Fourier transform of rect(
t�t1
T );

3. evaluate the Fourier transform of x(t) cos(!0t) as a function of X(j!);

4. evaluate the Fourier transform of the signum signal sgn(t);

5. evaluate the Fourier transform of the hyperbola signal
j
⇡t ;

6. evaluate the Fourier transform of unit step function 1(t);

7. evaluate the Fourier transform of triang(t) knowing the transform pair

rect(t) ! sinc(
!
2⇡ );

8. evaluate the Fourier transform of

s(t) = 1� 3 sin(
⇡
5 t) + 5 cos(3t� ⇡

3 )� 4 cos
2
(
2⇡
3 t) ;

9. evaluate the Fourier transform of sinc
2
(t);

10. evaluate the convolution sinc ⇤ sinc(t);

11. evaluate the area and the energy of sinc(
t�t1
T ).

Solutions.

1. Being the signal real-valued, we exploit the Hermitian symmetry S(j!) =
S⇤

(�j!) of the Fourier transform, that is S(�j!) = S⇤
(j!) = |S(j!)|e�j'(!)

.



Hence, we can interpret the inverse Fourier transform as

s(t) =
1

2⇡

Z 1

�1
S(j!) ej!td!

=
1

2⇡

Z 0

�1
S(j!) ej!td! +

1

2⇡

Z 1

0
S(j!) ej!td!

=
1

2⇡

Z 1

0
S(�ju) e�jutdu+

1

2⇡

Z 1

0
S(j!) ej!td!

=
1

2⇡

Z 1

0
S⇤

(ju) e�jutdu+
1

2⇡

Z 1

0
S(j!) ej!td!

=
1

2⇡

Z 1

0
|S(ju)| e�j(ut+'(u))du+

1

2⇡

Z 1

0
|S(j!)| ej(!t+'(!))d!

=
1

⇡

Z 1

0
|S(j!)| cos(!t+ '(!))d!

Note, however, that this result is true, provided that no delta function is

present at ! = 0, and this must be treated separately.

2. We write the signal in the form

s(t) = y(t� t1) , y(t) = x(t/T ) , x(t) = rect(t)

by recalling that the expression consists of a scale operation (scale by T )
followed by a time shift (by t1). Hence, by exploiting the Fourier transform

of a rectangle, X(j!) = sinc(
!
2⇡ ), from the scale property we have

Y (j!) = TX(j!T ) = T sinc(T !
2⇡ ) = T sinc(

!
2⇡/T )

and from the time-shift property

S(j!) = Y (j!) e�j!t1 = T sinc(
!

2⇡/T ) e
�j!t1 .

3. By Euler’s identity, the signal can be written as

s(t) = x(t) cos(!0t) =
1
2 x(t) e

j!0t +
1
2 x(t) e

�j!0t

so that by application of the modulation rule we get

S(j!) = 1
2 X(j(! � !0)) +

1
2 X(j(! + !0))

whose e↵ect is depicted in the figure below.

!

X(j!)

!

S(j!)

!0�!0



4. In this case, we can resort to the derivative property, since the derivative

of s(t) = sgn(t) is

x(t) = s0(t) = 2 �(t) , X(j!) = 2 ,

where the Fourier transform is very easy to calculate. By exploiting the

inversion rule for the Fourier transform of the derivative, we obtain

S(j!) =
X(j!)

j!
+ms 2⇡ �(!) =

2

j!
=

�2j

!
,

since the sign has ms = 0 mean value. The Fourier couple is illustrated

in the figure below.

t

s(t)

!

=[S(j!)]

5. We can infer the Fourier transform of the hyperbola by applying the sym-

metry rule to the couple of the previous exercise, that is x(t) = sgn(t) and
X(j!) = �2j

! , to have

y(t) = X(jt) =
�2j

t
, Y (j!) = 2⇡ x(�!) = �2⇡ sgn(!) .

By then defining s(t) = � 1
2⇡y(t) we get

s(t) = � 1

2⇡
y(t) =

j

⇡t
, S(j!) = � 1

2⇡
Y (j!) = sgn(!) .

In oder to demonstrate that there are always many possible ways for de-

riving results, as an alternative take, we also use the product by t rule. In
this case we can write

z(t) = t s(t) =
j

⇡
, Z(j!) = jS0

(j!) =
j

⇡
· 2⇡ �(!) = 2j �(!)

revealing that

S0
(j!) = 2 �(!) .

Hence, by integration, it must be

S(j!) = 2 · 1(!) + C ,



for some complex-valued constant C. Now, from the symmetries of the

Fourier transform we know that s(t) is imaginary and odd, hence its trans-

form must be real and odd, so that C must be real-valued, and it also must

be equal to C = �1 in order to guarantee the symmetry, that is

S(j!) = 2 · 1(!)� 1 = sgn(!) .

The Fourier couple is illustrated in the figure below.

t

s(t)

!

=[S(j!)]

6. For the unit step signal we can exploit the relation

s(t) = 1(t) = 1
2 sgn(t) +

1
2

so that, by resorting to the outcome of the previous exercise, we have

S(j!) = 1
2 · �2j

!
+

1
2 · 2⇡ �(!) =

�j

!
+ ⇡ �(!) .

The same result can be obtained by the derivative property since x(t) =
s0(t) = �(t) and X(j!) = 1, so that

S(j!) =
X(j!)

j!
+ms 2⇡ �(!) =

1

j!
+

1
2 2⇡ �(!) =

�j

!
+ ⇡ �(!) ,

since the unit step has ms =
1
2 mean value.

7. For the function s(t) = triang(t) we suggest two possible solutions using

the Fourier properties. As a first go, we exploit the convolution property

by noting that s(t) = x ⇤ x(t) where x(t) = rect(t) whose known Fourier

transform is X(j!) = sinc(
!
2⇡ ), hence it is

S(j!) = X(j!)X(j!) = X2
(j!) = sinc

2
(
!
2⇡ ) ,

which is by far the fastest way. However, given that the triangle is a

piecewise-linear function, then we could exploit the derivative property

(and its inversion) to have

x(t) = s0(t) = rect(t+ 1
2 )� rect(t� 1

2 )



whose Fourier transform provides

X(j!) = sinc(
!
2⇡ ) [e

j !
2 � e�j !

2 ] = sinc(
!
2⇡ ) 2j sin(

!
2 ) .

By then inverting the derivative we have

S(j!) =
X(j!)

j!
+ms 2⇡ �(!) =

sinc(
!
2⇡ ) 2j sin(

!
2 )

j!
= sinc

2
(
!
2⇡ ) ,

since the triangle has ms = 0 mean value.

8.

9. By exploiting the product property of the Fourier transform, and the

known Fourier pair x(t) = sinc(t) and X(j!) = rect(
!
2⇡ ), we have

s(t) = x(t)x(t) , 1
2⇡X ⇤X(j!) = 1

2⇡

h
2⇡ triang(

!

2⇡
)

i
= triang(

!

2⇡
) ,

where we used the fact that the triangle obtained by the convolution of

the two rectangles X(j!) has height 2⇡ since this is the extension of each

rectangle.

10. In this case it is easier to first evaluate the convolution in the Fourier

domain, then obtain the convolution result by inverse Fourier transform.

That is, by denoting x(t) = sinc(t) and X(j!) = rect(
!
2⇡ ) we have that

s(t) = x ⇤ x(t) has a Fourier domain counterpart of the form (convolution

property)

S(j!) = X(j!)X(j!) = X2
(j!) = rect

2
(
!
2⇡ ) = rect(

!
2⇡ )

so that s(t) = sinc(t).

11. Area and energy do not change under a time-shift, so we need to identify

area and energy of x(t) = sinc(t/T ). This can be easily done in the Fourier

domain, where (by the scale property)

X(j!) = T rect(
!

2⇡/T ) ,

and we have

As = Ax = X(j0) = T , Es = Ex =
1
2⇡EX =

1
2⇡ · T 2 2⇡

T
= T ,

since in the calculation of the energy we used |X(j!)| = T 2
rect(

!
2⇡/T ),

and the fact that this is a rectangle of basis 2⇡/T .



FOUNDATIONS OF SIGNALS AND SYSTEMS
13.6 Homework assignment

Prof. T. Erseghe

Exercises 13.6

Prove the following properties of the Fourier transform

1. the time-shift property x(t� t1) ! X(j!) e�j!t1 ;

2. the modulation property x(t) ej!0t ! X(j(! � !0));

3. the product by t property t x(t) ! jX 0
(j!).

Then solve the following by exploiting the properties of the Fourier transform:

4. evaluate the Fourier transform of t rect(t);

5. evaluate the Fourier transform of cos(!0t) rect(
!0
⇡ t);

6. evaluate the Fourier transform of the signal depicted in figure

t

s(t)
1

3
2� 3

2

1
2� 1

2

7. evaluate the Fourier transform of the signal depicted in figure

t

s(t)

1
2T� 1

2T

A

8. evaluate the area of sinc
3
(t);

9. evaluate the convolution between sinc(
1
2 t) and sinc(

1
3 t);

10. evaluate the convolution between sinc(
t
T1
) and sinc(

t�t0
T2

) for T1 > T2;

11. given the signal s(t) = t5 e�4t2
which are valid symmetries for its Fourier

transform among: a) real and even, b) imaginary and odd, c) real and

odd, d) complex with no symmetries?

12. express the Fourier transform of v(t) = s(�2t+ t0) as a function of S(j!);



13. evaluate the Fourier transforms of e�a|t|
and e�a|t|

sgn(t), a > 0, knowing

the transform pair e�at
1(t) ! 1

a+j! ;

14. evaluate the Fourier transform of the signal depicted in figure

t

s(t) =

8
<

:

1
2 t

2
, 0 < t < 1

3
2 � t , 1 < t < 3

2
0 , otherwise

1 3
2

15. evaluate the Fourier transform of the raised-cosine pulse illustrated below

t

rcos(t) =

8
<

:

1 , |t| < 1�↵
2

1
2 � 1

2 sin(
⇡
↵ (|t|�

1
2 )) ,

1�↵
2  |t|  1+↵

2
0 , otherwise

1�↵
2

1+↵
2

1



Solutions.

1. For the time-shift property, we investigate the Fourier transform of y(t) =
x(t� t1), providing

Y (j!) =

Z 1

�1
x(t� t1) e

�j!t dt

=

Z 1

�1
x(u) e�j!(u+t1) du

= e�j!t1 ·
Z 1

�1
x(u) e�j!u du

= X(j!) e�j!t1

where we denoted u = t� t1.

2. For the modulation-in-time property, we investigate the Fourier transform

of y(t) = x(t) ej!1t, providing

Y (j!) =

Z 1

�1
x(t) ej!1t e�j!t dt

=

Z 1

�1
x(t) e�j(!�!1)t dt

= X(j(! � !1)) .

3. For the product-by-t property, we investigate (j times) the derivative of

the Fourier transform of x(t), providing

jX 0
(j!) = j

d

d!

✓Z 1

�1
x(t) e�j!t dt

◆

=

Z 1

�1
x(t)

d

d!

�
j e�j!t

�
dt

=

Z 1

�1
x(t) j · (�jt) e�j!t dt

=

Z 1

�1
t · x(t) e�j!t dt

where in the second equivalence we swapped derivative and integration,

and where the final result evidences a Fourier transform of t · x(t) hence

proving the result.

4. We can exploit the product-by-t property on the couple x(t) = rect(t) and
X(j!) = sinc(

!
2⇡ ), to have

s(t) = t · x(t) , S(j!) = jX 0
(j!) =

j

2⇡
sinc

0
(
!
2⇡ ) ,



which corresponds to the outcome of Exercise 13.3.6. However, we appre-

ciate the simplicity in obtaining the result by applying the properties of

the Fourier transform.

5. In this case we can expand the cosine through Euler’s identity, to have

s(t) = cos(!0t) rect(
!0
⇡ t) = 1

2e
j!0t rect(

!0
⇡ t) + 1

2e
�j!0t rect(

!0
⇡ t)

then exploit the modulation property on the couple

x(t) = rect(
!0
⇡ t) , X(j!) = ⇡

!0
sinc(

⇡
!0

!
2⇡ ) =

⇡
!0

sinc(
!

2!0
)

which we derived from the rect/sinc pair by use of the scale property. We

have

S(j!) = 1
2 X(j(! � !0)) +

1
2 X(j(! + !0))

=
⇡

2!0
sinc(

!�!0
2!0

) +
⇡

2!0
sinc(

!+!0
2!0

)

which corresponds to the outcome of Exercise 13.3.7. However, we appre-

ciate the simplicity in obtaining the result by applying the properties of

the Fourier transform.

6. There are many di↵erent ways to solve this exercise. As a first solution,

we observe that the signal can be written as the composition of triangular

pulses in (at least) two ways, that is

s(t) = triang(t� 1
2 ) + triang(t+ 1

2 ) =
3
2 triang(

t
3
2
)� 1

2 triang(
t
1
2
)

from which the Fourier transform readily follows from the triang/squared-

sinc couple and either the time-shift or scale properties. For the first

composition we have

S(j!) = sinc
2
(
!
2⇡ ) · [e

�j !
2 + e�j !

2 ]

= 2 sinc
2
(
!
2⇡ ) cos(

!
2 )

while for the second it is

S(j!) = 9
4 sinc

2
(
3!
4⇡ )�

1
4 sinc

2
(
!
4⇡ ) ,

where the equivalence between the two expression might be proved by

standard trigonometric identities. The resulting transform is illustrated

in the figure below.

!

S(j!)



An alternative solution is to recognise that the signal is a trapezoid, hence

it can be expressed as the convolution

s(t) = x ⇤ y(t) , x(t) = rect(t) , y(t) = rect(
1
2 t) .

Hence, by exploiting the convolution property we have

S(j!) = X(j!)Y (j!) = 2 sinc(
!
2⇡ ) sinc(

!
⇡ ) ,

where the equivalence with the previous results might be again proved

by standard trigonometric identities. As a final solution, given that the

signal is piecewise linear, we can easily resort to the derivative property

(and its inversion rule). The derivative is illustrated in the figure below

t

x(t) = s0(t)
1

�1

3
2

� 3
2

1
2

� 1
2

and can be written as

x(t) = s0(t) = � rect(t� 1) + rect(t+ 1) ,

whose Fourier transform is

X(j!) = sinc(
!
2⇡ ) [e

j! � e�j!
]

= 2j sinc( !
2⇡ ) sin(!)

where we used the rect/sinc couple and the time-shift property. By in-

verting the derivative rule (here we exploit the fact that the mean value

is ms = 0) we have

S(j!) =
X(j!)

j!
= sinc(

!
2⇡ )

2 sin(!)

!
= 2 sinc(

!
2⇡ ) sinc(

!
⇡ )

which perfectly corresponds to the result obtained by the convolution

property.

7. In this case we are not able to write the signal as a (simple) function of

known waveforms. Although one possibility is to express it as the product

between a rectangle and a triangle, the convolution in the Fourier domain

between a sinc and a squared-sinc is hardly solvable. However, the signal

is piecewise linear with ms = 0, hence the derivative (and its inversion) is

a reasonable and simple way to proceed. We follow this path and identify

in the figure below the signal derivative



t

x(t) = s0(t)
A
T

�A

1
2T

� 1
2T

where we note the presence of a delta in t = 1
2T due to the discontinuity.

Therefore, we have

x(t) = A
T rect(

t
T )�A�(t� 1

2T ) , X(j!) = A sinc(
!

2⇡/T )�Ae�j! T
2

and by inversion of the derivative rule it is

S(j!) =
X(j!)

j!
= A

sinc(
!

2⇡/T )� e�j! T
2

j!
.

Although this result is a complete solution, we incidentally observe that,

with a little e↵ort, it can be re-written in the form

S(j!) = A
sin(

!
2/T )

!
+ jA

cos(
!

2/T )� sinc(
!

2⇡/T )

!
=

AT
2 sinc(

!
2⇡/T ) + jAT

2⇡ sinc
0
(

!
2⇡/T )

where we exploited

sinc
0
(x) =

cos(⇡x)� sinc(x)

x
.

The resulting transform is illustrated in the figure below.

!

S(j!)

As an alternative solution, we observe that we can write the signal in the

form

s(t) = (
A
2 +

A
T t) rect(

t
T )

=
A
2 rect(

t
T ) +

A
T · t rect( t

T ) ,



which suggests use of the product-by-t property. Hence by recalling the

couple x(t) = rect(
t
T ) and X(j!) = T sinc(

T!
2⇡ ), by use of the product-by-t

property we have

S(j!) = A
2 X(j!) + jA

T X
0
(j!)

=
AT
2 sinc(

!
2⇡/T ) + jAT

2⇡ sinc
0
(

!
2⇡/T )

which perfectly corresponds to the previous solution method.

8. The area of s(t) = sinc
3
(t) is hardly derivable in the time domain, since no

closed-form primitive is known for the integral. We can therefore exploit

the Fourier relation As = S(j0), provided that we are able to evaluate

the Fourier transform at ! = 0. Now, since both the transforms of x(t) =
sinc(t) and y(t) = sinc

2
(t) are known, respectively, X(j!) = rect(

!
2⇡ ) and

Y (j!) = triang(
!
2⇡ ), then we can resort to the product property

s(t) = x(t)y(t) , S(j!) =
1

2⇡
X ⇤ Y (j!) .

Specifically, we do not need to calculate the entire form of the convolution,

since we are only interested in the value at ! = 0, that is

As = S(j0)

=
1

2⇡

Z 1

�1
X(ju)Y (j(0� u)) du

=
1

2⇡

Z 1

�1
X(ju)Y (�ju) du

=
1

2⇡

Z 1

�1
rect(

u
2⇡ ) triang(

u
2⇡ ) du

where we exploited the fact that the triangle is an even function. Hence,

the area of interest is the one illustrated in the figure below

u

rect(
u
2⇡ ) triang(

u
2⇡ )

1

2⇡⇡

so that, by simple geometric considerations we have

As =
1

2⇡

h
2⇡ · 3

4

i
=

3

4
.



9. The convolution is better understood in the Fourier domain by exploiting

the Fourier pairs

x(t) = sinc(
1
2 t) , X(j!) = 2 rect(

!
⇡ )

y(t) = sinc(
1
3 t) , Y (j!) = 3 rect(

!
2
3⇡

)

so that, by the convolution property from s(t) = x ⇤ y(t) we get

S(j!) = X(j!)Y (j!) = 6 rect(
!
⇡ ) rect(

!
2
3⇡

) = 6 rect(
!
2
3⇡

) ,

as illustrated in the figure below.

!

S(j!)

2
3

6

⇡
2

⇡
3

Since S(j!) = 2Y (j!) then we easily get s(t) = 2y(t) = 2 sinc(
1
3 t).

10. This exercise is similar to the previous one, with the addition of a time

shift. We have

x(t) = sinc(
t
T1
) , X(j!) = T1 rect(

!
2⇡/T1

)

y(t) = sinc(
t�t0
T2

) , Y (j!) = T2 rect(
!

2⇡/T2
) e�j!t0

hence s(t) = x ⇤ y(t) has Fourier transform

S(j!) = X(j!)Y (j!)

= T1T2 rect(
!

2⇡/T1
) rect(

!
2⇡/T2

) e�j!t0

= T1T2 rect(
!

2⇡/T1
) e�j!t0

= T2 X(j!) e�j!t0

where we exploited, in the third equality, the fact that T1 > T2, hence

the extension of the first rectangle (which is 2⇡/T1) is smaller than the

extension of the second rectangle (which satisfies 2⇡/T2 > 2⇡/T1). By

inversion, we readily have

s(t) = T2 x(t� t0) = T2 sinc(
t�t0
T1

) .

11. The signal s(t) = t5 e�4t2
is real valued and it also is odd, and in fact

s(�t) = (�t)5 e�4(�t)2
= �t5 e�4t2

= �s(t) .

Being real valued and odd, its Fourier transform is Hermitian and odd,

that is imaginary valued and odd. As a consequence, only b) is valid.



12. We write the signal in the form

v(t) = s�(2t� t0) = s�(
t� 1

2 t0
1
2

)

and denote x(t) = s�(t) = s(�t) with Fourier transformX(j!) = S(�j!).
Hence, from the scale and time-shift properties we have

V (j!) = 1
2 X(j !

2 ) e
�j!

t0
2 =

1
2 S(�j !

2 ) e
�j !

2 t0 .

13. In this case let s(t) = e�at
1(t), so that we can write

x(t) = e�a|t|
= s(t) + s(�t) = 2se(t)

y(t) = e�a|t|
sgn(t) = s(t)� s(�t) = 2so(t)

that is the two signals are related to the even and odd components of the

signal s(t). Therefore, by applying the Fourier transform, and the rule on

time-reversal, we have

X(j!) = S(j!) + S(�j!) = 2Se(j!) = 2<[S(j!)]
Y (j!) = S(j!)� S(�j!) = 2So(j!) = 2j=[S(j!)]

where in the last equivalences we exploited the fact that s(t) is real-valued,
hence S(j!) has the Hermitian symmetry corresponding to even real part

and odd imaginary part. Since

S(j!) =
1

a+ j!
=

a� j!

a2 + !2

then it is

X(j!) =
2a

a2 + !2
, Y (j!) =

�2j!

a2 + !2
.

14. In this case the signal is piecewise quadratic, therefore we need to apply

the derivative rule twice, to have the derivatives illustrated in figure

t

s0(t)

�1

1

3
2

t
t

x(t) = s00(t)
1

1 3
2

�2

1

that is we have

x(t) = s00(t) = rect(t� 1
2 )� 2�(t� 1) + �(t� 3

2 ) ,



with Fourier transform

X(j!) = sinc(
!
2⇡ ) e

�j !
2 � 2e�j!

+ e�j 3
2! .

By then inverting (twice) the derivative rule (we observe that the mean

value is ms = 0), we finally obtain

S(j!) =
X(j!)

(j!)2
= �X(j!)

!2
=

2e�j! � e�j 3
2! � sinc(

!
2⇡ ) e

�j !
2

!2
.

15. For the raised cosine, we apply the derivation rule (and its inverse). The

derivative of the signal has the form

x(t) = s0(t) = rcos(t) =

8
<

:

� ⇡
2↵ cos(

⇡
↵ (t�

1
2 )) , �↵

2  t� 1
2  ↵

2
+

⇡
2↵ cos(

⇡
↵ (t+

1
2 )) , �↵

2  t+ 1
2  ↵

2
0 , otherwise

that is

x(t) = � ⇡
2↵ cos(

⇡
↵ (t�

1
2 )) rect(

t� 1
2

↵ ) +
⇡
2↵ cos(

⇡
↵ (t+

1
2 )) rect(

t+ 1
2

↵ )

= y(t+ 1
2 )� y(t� 1

2 )

with

y(t) = ⇡
2↵ cos(

⇡t
↵ ) rect(

t
↵ )

as illustrated in the figure below

t

x(t) = s0(t)

1�↵
2

1+↵
2

Therefore for the Fourier transform, by the time-shift property we have

X(j!) = Y (j!) [ej
!
2 � e�j !

2 ] = 2j Y (j!) sin(!2 ) ,

and by inversion of the derivative (since the mean value is ms = 0) we

have

S(j!) =
X(j!)

j!
= Y (j!)

sin(
!
2 )

!
2

= Y (j!) sinc( !
2⇡ ) .

The Fourier transform of y(t) can be obtained by writing the signal in the

form

y(t) = z(t) cos(!0t) , z(t) = ⇡
2↵ rect(

t
↵ ) , !0 =

⇡
↵ ,

so that by modulation and scale properties we have

Y (j!) = 1
2Z(j(! � !0)) +

1
2Z(j(! + !0)) , Z(j!) = ⇡

2 sinc(
!

2⇡/↵ ) .



Hence, by combining the results we obtain

Y (j!) = ⇡
4 sinc(

!� ⇡
↵

2⇡/↵ ) +
⇡
4 sinc(

!+ ⇡
↵

2⇡/↵ )

and the transform can be written in the form

S(j!) = ircos(
!
2⇡ ) ,

with

ircos(x) = ⇡
4 sinc(x)

h
sinc(↵x� 1

2 ) + sinc(↵x+
1
2 )

i

=
sinc(x) cos(⇡↵x)

1� (2↵x)2
.

The resulting transform is illustrated in the figure below.

!

S(j!)

2⇡



FOUNDATIONS OF SIGNALS AND SYSTEMS

14.2 Solved exercises

Prof. T. Erseghe

Exercises 14.2

Solve the following by exploiting the sampling/periodic repetition link between
Fourier transforms, then compare the result to those obtained in previous exer-
cises:

1. evaluate the Fourier coe�cients of the square wave s(t) = repTp
rect( t

dTp
),

0 < d < 1 (see Exercise 10.2.3);

2. evaluate the DFT coe�cients of the square wave

s(n) =

⇢
1 , n 2 [0,M) (mod N)
0 , otherwise

for N > M (see Exercise 12.5.5).

The above provide the basic application of the concept, which is what essential in
this course. Nevertheless, an advanced use of the sampling/periodic repetition
link can provide (with some non negligible e↵ort) very interesting outcomes,
which are made available for the interested readers. As an example, in the
following we show how to derive some fundamental equivalences:

3. by exploiting the outcomes of Exercise 12.5.5 and 14.2.2 prove that

sincM (t) =
sin(⇡t)

M sin(⇡ t
M )

=

8
<

:

repM sinc(t) , M odd

rep2M sinc(t)� sinc(t�M) , M even

revealing that what we called the periodic sinc function sincM is truly a
periodic repetition (in some form) of a sinc;

4. by exploiting the outcomes of Exercise 10.2.4 prove that

repN sinc(t) = sincN (t) ·
⇢
cos( ⇡

N t) , N even
1 , N odd

providing a compact result for a periodic repetition of a sinc.

Solutions.

1. The square wave is illustrated in the figure below.

t

s(t)

Tp1
2Tp� 1

2Tp
d
2Tp� d

2Tp



In this case, we have

s(t) = repTp
x(t) , x(t) = rect( t

dTp
) ,

where from standard Fourier couples we know that

X(j!) = dTp sinc(dTp
!
2⇡ ) = dTp sinc(d!!0

) ,

where !0 = 2⇡/Tp, while from the sampling relation in the Fourier domain
it is

Sk =
1

Tp
X(jk!0) =

1

Tp
· dTp sinc(kd) = d sinc(kd) .

The result perfectly corresponds to that of Exercise 10.2.3.

2. The square wave is illustrated in the figure below.

n

s(n)

••••••••

•••••••

••••••••

•••••••

••••••••

•••••••

••••••••

•••••••
NM

x(t)

This allows writing the signal in the form

s(n) = repNx(t)
���
t=n

, x(x) = rect(
t� 1

2 (M�1)
M ) ,

where Tp = N , and where, by Fourier properties,

X(j!) = M sinc(M !
2⇡ ) e

�j !
2 (M�1) .

From the sampling/periodic repetition relation in the Fourier domain it is
(recall that Tp = N and !0 = 2⇡/Tp = 2⇡/N)

Sk = repN
1

Tp
X(jk!0)

= repN
M
N sinc(MN k) e�j⇡M�1

N k .

The comparison with Exercise 12.5.5 is fully detailed in the next exercise.

3. If we wish to compare the result of the previous exercise, namely

Sk = repN
M
N sinc(MN k) e�j⇡M�1

N k ,

with the results of Exercise 12.5.5, namely

Sk = M
N sincM (MN k) e�j M�1

N k⇡ ,



then we preliminarily need to expand the periodic repetition. We have

Sk =
1X

n=�1

M
N sinc(MN (k � nN)) e�j⇡M�1

N (k�nN)

=
1X

n=�1

M
N sinc(MN k � nM) ej⇡(M�1)n e�j⇡M�1

N k

= M
N e�j⇡M�1

N k ·

8
>>>><

>>>>:

1X

n=�1
sinc(MN k � nM) , M odd

1X

n=�1
sinc(MN k � nM) · (�1)n , M even

= M
N e�j⇡M�1

N k ·

8
<

:

repM sinc(x) , M odd

rep2M sinc(x)� sinc(x�M) , M even

������
x=

M
N k

which reveals the identity stated in the exercise text.

4. The case for N odd has already been proven in the previous exercise.
Therefore we concentrate on N even and look for the Fourier series coef-
ficients of

s(t) = repTp
x(t) , x(t) = sinc(t) , Tp = N ,

where from standard Fourier couples we know that

X(j!) = rect( !
2⇡ ) .

From the sampling/ relation in the Fourier domain it is (recall that Tp = N
and !0 = 2⇡/Tp = 2⇡/N)

Sk =
1

Tp
X(jk!0) =

1
N rect( k

N ) =

8
<

:

1
N , |k| < N

2
1

2N , |k| = N
2

0 , otherwise

since in this case the samples also include the border of the rectangular
signal. In a compact way, the resulting coe�cients can be written in the
form

Sk = 1
2N rect( k

N+1 ) +
1

2N rect( k
N�1 ) .

Now, from Exercise 10.2.4 we know the Fourier pair

x(t) = M sincM (Mt
Tp

) =
sin(⇡Mt

Tp
)

sin( ⇡tTp
)

, Xk = rect( k
M ) ,



for M odd, which we use in the present context with Tp = N and M =
N ± 1, to have

s(t) = 1
2N

"
sin(⇡(N+1)t

N )

sin(⇡tN )
+

sin(⇡(N�1)t
N )

sin(⇡tN )

#

=
sin(⇡t)

N sin(⇡tN )
cos(⇡tN )

where we exploited the trigonometric equivalence sin(↵+�)+sin(↵��) =
2 sin(↵) cos(�). This proves the result.



FOUNDATIONS OF SIGNALS AND SYSTEMS
14.3 Homework assignment

Prof. T. Erseghe

Exercises 14.3

Solve the following by exploiting the sampling/periodic repetition link between

Fourier transforms, then compare the result to those obtained in previous exer-

cises and appreciate how the approach can dramatically simplify calculations:

1. evaluate the Fourier coe�cients of the rectified sinusoid s(t) = | cos(2⇡f0t)|
(see Exercise 10.3.4);

2. evaluate the Fourier coe�cients of the triangular wave s(t) = repTp
triang(

2t
Tp

)

(see Exercise 10.3.5);

3. evaluate the Fourier coe�cients of s(t) = [cos(2⇡f0t)]+, where [x]+ =

x · 1(x) is the positive part operator (see Exercise 10.3.7);

4. evaluate the Fourier coe�cients of the saw-tooth waveform (see Exer-

cise 10.6.3)

t

s(t)

1

1

5. evaluate the Fourier coe�cients of the periodic sinc function defined as

s(t) = repTp
M sinc(

Mt
Tp

) for odd M = 1 + 2N (see Exercise 10.2.4);

6. evaluate the DFT coe�cients of s(n) = | cos( 2
M ⇡n)| (see Exercise 12.3.4);

7. evaluate the DFT coe�cients of the triangular waveform (see Exercise 12.6.5)

n

s(n)

•••• •• •• •• •• •• •• ••

•••• •• •• •• •• •• •• ••

•••• •• •• •• •• •• •• ••

•••• •• •• •• •• •• •• ••

N
2

NN
2

N
2

8. evaluate the DFT coe�cients of the saw-tooth waveform (see Exercise 12.6.4)



n

s(n)

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

••
••
••
••

N

N � 1



Solutions.

1. We consider f0 > 0, with no loss in generality. By mimicking Exer-

cise 10.3.4, the rectified sinusoid is illustrated in the figure below

t

s(t) = | cos(2⇡f0t)|

Tp

Tp =
1

2f0

2Tp

T1 =
1
f0

Tp

2�Tp

2

and allows writing the signal in the form

s(t) = repTp
x(t) , x(t) = cos(2⇡f0t) rect(

t
Tp

) , Tp =
1

2f0
.

The Fourier transform of x(t) is easily found to be, by cosine modulation

properties,

X(j!) = Tp

2 sinc(
!�2⇡f0
2⇡/Tp

) +
Tp

2 sinc(
!+2⇡f0
2⇡/Tp

)

=
Tp

2 sinc(
!
!0

� 1
2 ) +

Tp

2 sinc(
!
!0

+
1
2 )

where !0 = 2⇡/Tp, while from the sampling relation in the Fourier domain

it is

Sk =
1

Tp
X(jk!0) =

1
2 sinc(k � 1

2 ) +
1
2 sinc(k +

1
2 ) ,

which perfectly corresponds to the result of Exercise 10.3.4, although the

present derivation is by far the simplest procedure.

2. The triangular wave is illustrated in the figure below

t

s(t)

TpTp

2�Tp

2

In this case, we have

s(t) = repTp
x(t) , x(t) = triang(

t
1
2Tp

) ,



where from standard Fourier couples we know that

X(j!) = 1
2Tp sinc

2
(
1
2Tp

!
2⇡ ) =

1
2Tp sinc

2
(

!
2!0

) ,

with !0 = 2⇡/Tp, while from the sampling relation in the Fourier domain

it is

Sk =
1

Tp
X(jk!0) =

1
2 sinc

2
(
k
2 ) .

The result perfectly corresponds to that of Exercise 10.3.5 since

1
2 sinc

2
(
k
2 ) =

(
1
2 , k = 0

2 sin2(⇡
2 k)

(⇡k)2 =
1�(�1)k

(⇡k)2 , k 6= 0

3. By mimicking Exercise 10.3.7, the signal is illustrated in the figure below

t

s(t) = [cos(2⇡f0t)]+

Tp = 1
f0

Tp

4�Tp

4

and allows writing

s(t) = repTp
x(t) , x(t) = cos(2⇡f0t) rect(

t
1
2Tp

) , Tp =
1
f0

.

The Fourier transform of x(t) is easily found to be, by cosine modulation

properties,

X(j!) = Tp

4 sinc(
!�2⇡f0
4⇡/Tp

) +
Tp

4 sinc(
!+2⇡f0
4⇡/Tp

)

=
Tp

4 sinc(
!

2!0
� 1

2 ) +
Tp

4 sinc(
!

2!0
+

1
2 )

where !0 = 2⇡/Tp, while from the sampling relation in the Fourier domain

it is

Sk =
1

Tp
X(jk!0) =

1
4 sinc(

k�1
2 ) +

1
4 sinc(

k+1
2 ) ,

which perfectly corresponds to the result of Exercise 10.3.7, although the

present derivation is by far the simplest procedure.

4. We write the saw-tooth waveform as

s(t) = repTp=1x(t) , x(t) = t rect(t� 1
2 ) .



The Fourier transform of x(t) can be found, by using the product-by-t
property, to be

X(j!) = j
d

d!

�
sinc(

!
2⇡ ) e

�j !
2
�

=
1
2 sinc(

!
2⇡ ) e

�j !
2 +

j
2⇡ sinc

0
(
!
2⇡ ) e

�j !
2

while from the sampling relation in the Fourier domain it is (recall that

!0 = 2⇡ in this case)

Sk =
1

Tp
X(jk!0)

=
1
2 sinc(k) e�j⇡k

+
j
2⇡ sinc

0
(k) e�j⇡k

= [
1
2 sinc(k) + j

2⇡ sinc
0
(k)] (�1)

k

= [
1
2 �(k) +

j
2⇡ sinc

0
(k)] (�1)

k

=
1
2 �(k) +

j
2⇡ sinc

0
(k) (�1)

k ,

which corresponds to the result of Exercise 10.6.3 since

sinc
0
(k) =

cos(⇡k)� sinc(k)

k
=

⇢
0 , k = 0
1
k (�1)

k
, k 6= 0

However, in this specific case, the relation with the Fourier transform

involves a much more lengthy derivation.

5. In this case, we have

s(t) = repTp
x(t) , x(t) = M sinc(

t
1
M Tp

) ,

where

X(j!) = M · 1
M Tp rect(

1
M Tp

!
2⇡ ) = Tp rect(

!
M!0

) ,

with !0 = 2⇡/Tp. From the sampling relation in the Fourier domain it is

Sk =
1

Tp
X(jk!0) = rect(

k
M ) =

⇢
1 , |k|  N
0 , otherwise

.

We incidentally observe that,

s(t) = repTp
M sinc(

Mt
Tp

) =

1X

n=�1
M sinc(

M(t�nTp)
Tp

)

=

1X

n=�1
M sinc(

Mt
Tp

� nM) = M rep
M

sinc(t)
���
t=Mt/Tp

= MsincM (
Mt
Tp

) ,

where we used the equivalence stated in Exercise 14.2.4. Therefore, the

result perfectly corresponds to the outcomes of Exercise 10.2.4



6. We observe that, for M even, the period is N =
M
2 . Therefore we set

Tp = N and T = 1 and write

s(n) = repNx(t)
���
t=n

= repNx(n) , x(t) = cos(
2⇡
M t) rect( t

N )

where, by the properties of the Fourier transform, it is

X(j!) = N
2 sinc(

!�2⇡/M
2⇡/N ) +

N
2 sinc(

!+2⇡/M
2⇡/N )

=
N
2 sinc(

!
!0

� 1
2 ) +

N
2 sinc(

!
!0

+
1
2 )

with !0 = 2⇡/Tp = 2⇡/N . From the sampling+periodic repetition rela-

tion in the Fourier domain it straightforwardly is

Sk = repN
1
Tp

X(jk!0)

= repN
1
2 sinc(k � 1

2 ) +
1
2 sinc(k +

1
2 )

In the comparison with the outcomes of Exercise 12.3.4, stating that

Sk =
1
2 sincN (k � 1

2 ) cos((k � 1
2 )

⇡
N ) +

1
2 sincN (k +

1
2 ) cos((k +

1
2 )

⇡
N )

we observe that the two results perfectly coincide because of the equiva-

lence on the periodic repetition of a sinc stated in Exercise 14.2.4.

7. We can write the signal by setting Tp = N and T = 1 in the form

s(n) = repNx(t)
���
t=n

= repNx(n) , x(t) = N
2 triang(2t/N) ,

where, by the properties of the Fourier transform, it is

X(j!) = N2

4 sinc
2
(

!
4⇡/N ) =

N2

4 sinc
2
(

!
2!0

)

with !0 = 2⇡/Tp = 2⇡/N . From the sampling+periodic repetition rela-

tion in the Fourier domain it straightforwardly is

Sk = repN
1
Tp

X(jk!0)

=
N
4 repN sinc

2
(
1
2k)

In the comparison with the solution obtained in Exercise 12.6.5, stating

that

Sk =
N
4 sinc

2
N
2
(
1
2k) ,

we revealed yet another link between the periodic repetition of a (squared)

sinc and the sincM function.

8. We can write the signal by setting Tp = N and T = 1 in the form

s(n) = repNx(t)
���
t=n

= repNx(n) , x(t) = t rect(
t�N

2 + 1
2

N ) ,



where, by the properties of the Fourier transform, it is

X(j!) = j
d

d!

⇣
N sinc(

!
2⇡/N ) e�j!N�1

2

⌘

=

h
N(N�1)

2 sinc(
!
!0

) + jN2

2⇡ sinc
0
(
!
!0

)

i
e�j!N�1

2

with !0 = 2⇡/Tp = 2⇡/N . From the sampling+periodic repetition rela-

tion in the Fourier domain it is

Sk = repN
1
Tp

X(jk!0)

= repN

⇥
N�1
2 sinc(k) + j N

2⇡ sinc
0
(k)

⇤
e�j2⇡(1� 1

N )k

= repN

⇥
N�1
2 �(k) + j N

2⇡ sinc
0
(k)

⇤
ej

2⇡
N k

which in any case is a much more involved derivation and result than that

obtained in Exercise 12.6.4, which in this specific case is the preferred way.



FOUNDATIONS OF SIGNALS AND SYSTEMS

14.5 Solved exercises

Prof. T. Erseghe

Exercises 14.5

Solve the following filtering exercises by exploiting the Fourier transform ap-
proach:

1. We say that a filter does not distort an input x(t) if the output has the
form y(t) = Ax(t � t0), for some real valued constants A (scale) and t0

(time-shift), in which case the shape of the signal is kept. Is the filter with
transfer function

!

|H(j!)|
4

2

100⇡ 200⇡ !

'(!) = arg(H(j!))

!/
75

150⇡

2⇡

distorting the signal x(t) = cos(50⇡t) + 5 cos(120⇡t), or not?

2. The signal x(t) = A cosn(!0t) , with !0 > 0, is fed to an ideal low-pass
filter with cut-o↵ pulsation !c > 0, that is H(j!) = rect( !

2!c
). Identify, in

dependence of the value of n, the range of !0 that guarantees y(t) = x(t).

3. A filter has transfer function H(j!) = 1 + j!T . Is this a real filter?
Evaluate the filter output corresponding to the input x(t) = rect(t/T ).

4. The input and output signals of a filter are x(t) = triang( t3 ) and y(t) =
triang( t+2

3 )+2 triang( t3 )+4 triang( t�1
3 ). Evaluate the filter transfer func-

tion H(j!), its impulse response h(t), and the response to x(t) = 1(t). Is
the filter BIBO stable?

Solutions.

1. We observe that the filter is real, because the Hermitian symmetry in
the Fourier domain ensures an even absolute value and an odd phase.
Therefore, the output can be found by simple application of the property
of a sinusoid through a real filter. Specifically, we have

y(t) = |H(j50⇡)| cos(50⇡t+'(50⇡))+5 |H(j120⇡)| cos(120⇡t+'(120⇡))

where the values of interest can be inferred from the figure



!

|H(j!)|
4

2

50⇡120⇡

•

•

!

'(!) = arg(H(j!))

!/
75

50⇡120⇡

•
•2⇡

to have

y(t) = 4 cos(50⇡t+ 50⇡
75 ) + 5 · 2 cos(120⇡t+ 120⇡

75 )

= 4 cos(50⇡(t+ 1
75 )) + 10 cos(120⇡(t+ 1

75 ))

and therefore the signal is distorted since the two sinusoids are multiplied
by di↵erent factors, as one can appreciate from the figure below where the
dashed plot is signal x(t).

t

y(t)

2. In order for y(t) = x(t), given the low-pass nature of the filter with cut-
o↵ pulsation !c, it su�ces that the extension of the signal in the Fourier
domain satisfies e(X) 2 (�!c,!c). Since the signal is the power n of a ref-
erence signal s(t) = cos(!0t) with Fourier extension e(S) = [�!0,!0], then
since X(j!) is the repeated convolution of S(j!) (repeated n times), by
the rules of the extension of the convolution we have e(X) = [�n!0, n!0],
and therefore we simply need n!0 < !c.

3. The filter H(j!) = 1 + j!T has even real part and odd imaginary part,
hence it is Hermitian in the Fourier domain, and real valued in its impulse
response. Hence, the filter is real. We evaluate the filter output through
the product relation in the Fourier domain, to have

Y (j!) = X(j!)H(j!) = T sinc(
!

2⇡/T
) · [1 + j!T ]

which, however, is better written in the form

Y (j!) = X(j!) · [1 + j!T ] = X(j!) + T · j!X(j!)



since, by exploiting the derivative property of the Fourier transform, is
mapped in the time-domain signal

y(t) = x(t) + T x
0(t)

= rect( t
T ) + rect0( t

T )

= rect( t
T ) + �( t

T + 1
2 )� �( t

T � 1
2 )

= rect( t
T ) + T �(t+ T

2 )� T �(t� T
2 )

where we exploited the equivalence �(t/T ) = T �(t).

4. In this case we invert the standard filter relation Y (j!) = X(j!)H(j!)
to identify H(j!) in what is called a deconvolution. We have

H(j!) =
Y (j!)

X(j!)

=
3 sinc2( 3!2⇡ ) [e

j2! + 2 + 4e�j!]

3 sinc2( 3!2⇡ )

= e
j2! + 2 + 4e�j!

whose inverse transform is

h(t) = �(t+ 2) + 2�(t) + 4�(t� 1) .

The filter is evidently BIBO stable, since |h(t)| = h(t) and Ah = 1+2+4 =
7 is finite. The response to the unit step readily provides

y(t) = h ⇤ 1(t)
= [�(t+ 2) + 2�(t) + 4�(t� 1)] ⇤ 1(t)
= 1(t+ 2) + 2 · 1(t) + 4 · 1(t� 1) .



FOUNDATIONS OF SIGNALS AND SYSTEMS
14.6 Homework assignment

Prof. T. Erseghe

Exercises 14.6

Solve the following filtering exercises by exploiting the Fourier transform ap-

proach:

1. The base-band derivative filterH(j!) = j! rect(
!

2!c
) is fed with a sinusoid

x(t) = cos(!0t). Evaluate the impulse response of the filter, and the filter

output as a function of !0.

2. The signal x(t) = Asinc
n
(t/T ) is fed to n ideal low-pass filter with cut-o↵

pulsation !c > 0, that is H(j!) = rect(
!

2!c
). Identify, in dependence of

the value of n, the range of !0 that guarantees y(t) = x(t).

3. A filter has a transfer function of the form H(j!) = e
�!/!0 rect(

!
!0

� 1
2 ).

Is it a real filter? Evaluate its impulse response.

4. Evaluate the output of a filter H(j!) = sinc(
5!
⇡ ) when the input is x(t) =

e
�j ⇡

5 t
+ e

j ⇡
10 t.

5. Evaluate the output to the low-pass filter with impulse response h(t) =

sinc(t/T ), T > 0, to the input signals x1(t) = cos(!0t +
⇡
4 ) and x2(t) =

sinc(
!0
2⇡ (t� 5)) for both !0 =

2⇡
5T and !0 =

6⇡
T .

6. Evaluate the output to the RC filter with impulse response h(t) = a e
�at

1(t),

a > 0, to the input signal x(t) = A cos(!0t). What is the value of a that

guarantees that y(t) = B cos(!0t� ⇡
4 )?

7. Evaluate the output to the series of two identical RC filters with impulse

response h1(t) = h2(t) = a e
�at

1(t), a > 0, to the input signal x(t) =

A cos
2
(!0t), and specify the output for a = 2!0;



Solutions.

1. The filter can be written in the form

H(j!) = j!G(j!) , G(j!) = rect(
!

4⇡fc
) ,

where !c = 2⇡fc, so that the inverse transform of G(j!) is simply g(t) =

2fc sinc(2fct) by standard application of the Fourier transform properties.

By further recalling the derivative property, from the identity H(j!) =

j!G(j!) we also have

h(t) = g
0
(t) = (2fc)

2
sinc

0
(2fct) .

The filter is illustrated in the figure below.

!

=[H(j!)]

!

!c t

h(t)

For the response to the signal x(t) = cos(!0t) we can exploit the the

property of a sinusoid through a real filter, by recalling that |H(j!)| =
|!| rect( !

2!c
) and '(!) =

⇡
2 sgn(!) is almost constant. Therefore we have

y(t) = |H(j!0)| cos(!0t+ '(!0))

=

8
<

:

!0 cos(!0t+
⇡
2 ) , !0 2 (0,!c)

�!0 cos(!0t� ⇡
2 ) , !0 2 (�!c, 0)

0 , otherwise

=

⇢
�!0 sin(!0t) = x

0
(t) , !0 2 (�!c,!c)

0 , otherwise

so that, in the active band, the filter acts as a derivative.

2. The signal has the form x(t) = a s
n
(t) with s(t) = sinc(t/T ) and S(j!) =

T rect(
!

2⇡/T ), hence with Fourier domain extension e(S) = (�!T ,!T ),

!T = ⇡/T . Therefore, by considering that the n-product maps in the

Fourier domain into an n-convolution, we have e(X) = (�n!T , n!T ). The

output y(t) = x(t) is verified in case the signal extension is included inside

the filter cuto↵ frequency, that is if n!T  !c. As a function of T , we

have T � ⇡n/!c.

3. The Fourier domain respponse

H(j!) = e
�!/!0 rect(

!� 1
2!0

!0
)

is real valued but evidently not real-symmetric, as depicted in the figure

below.



!

H(j!)

!0

The impulse response can be obtained by applying the inverse Fourier

integral, to have

h(t) =
1

2⇡

Z 1

�1
H(j!) e

j!t
dt

=
1

2⇡

Z !0

0
e
�!/!0 e

j!t
dt

=
1

2⇡

e
!(jt�1/!0)

jt� 1/!0

����
!0

0

=
1

2⇡

e
j!0t�1 � 1

jt� 1/!0
=

!0

2⇡

1� 1
ee

j!0t

1� j!0t

4. By applying the rules of filters to a composition of complex exponentials,

we have

y(t) = H(�j
⇡
5 ) e

�j ⇡
5 t

+H(j
⇡
10 ) e

j ⇡
10 t

where

H(�j
⇡
5 ) = sinc(

5·�⇡
5

⇡ ) = sinc(�1) = 0

H(j
⇡
10 ) = sinc(

5· ⇡
10
⇡ ) = sinc(

1
2 ) =

sin(
⇡
2 )

⇡
2

=
2
⇡

so that y(t) =
2
⇡ e

j ⇡
10 t.

5. The filter is characterised by the couple

h(t) = sinc(
t
T ) , H(j!) = T rect(

!
2⇡/T ) .

For the input x(1), by exploiting the property of filters with sinusoidal

input, we have

y1(t) = |H(j!0)| cos(!0t+
⇡
4 + '(!0))

= |H(j!0)| cos(!0t+
⇡
4 )

= |H(j!0)|x1(t)

=

⇢
T x1(t) , |!0| < ⇡/T

0 , otherwise

where we exploited the fact that the filter has zero phase, and the fact

that the filter has two active levels, T and 0, above and below the cut

pulsation ⇡/T . Hence, for !0 =
2⇡
5T <

⇡
T the output is y1(t) = T x1(t),

while for !0 =
6⇡
T >

⇡
T the output is y1(t) = 0.



For the second input signal we need to investigate its action in the Fourier

domain, to have (here we denote T0 = 2⇡/!0)

Y2(j!) = X2(j!)H(j!)

= T0 rect(
!

2⇡/T0
) e

�j5! · T rect(
!

2⇡/T )

= T0 T e
�j5! ·

⇢
rect(

!
2⇡/T0

) , T0 > T

rect(
!

2⇡/T ) , T > T0

since, in the product, the smallest rectangle identifies the output. By

inverting to the time-domain, we obtain

y2(t) =

⇢
T x2(t) , !0 <

2⇡
T

T0 h(t� 5) , !0 >
2⇡
T

where we replaced back !0. Therefore, for !0 =
2⇡
5T <

2⇡
T the output is

y2(t) = T x2(t), while for !0 =
6⇡
T >

2⇡
T the output is y2(t) = T0 h(t� 5).

6. For the RC filter we have (see Exercise 13.2.6)

h(t) = a e
�at

1(t) , H(j!) =
1

1 + j!/a
=

1� j!/a

1 + (!/a)2

with

|H(j!)| = 1p
1 + (!/a)2

, '(!) = tan
�1

(
�!
a ) = � tan

�1
(
!
a )

where the expression of the phase was derived by solving

<[H(j!)] = |H(j!)| cos('(!)) = 1

1 + (!/a)2

=[H(j!)] = |H(j!)| sin('(!)) = �!/a

1 + (!/a)2

to have
=[H(j!)]

<[H(j!)]
= tan('(!)) =

�!

a
.

Therefore, by exploiting the filtering properties under a sinusoidal input,

we have

y(t) = A |H(j!0)| cos(!0t+ '(!0))

=
Ap

1 + (!0/a)
2
cos(!0t� tan

�1
(
!0
a ))

so that we have y(t) = B cos(!0t� ⇡
4 ) under the condition

⇡
4 = tan

�1
(
!0
a ) =) !0

a = tan(
⇡
4 ) = 1

that is for a = !0.

Remark: the name RC filter comes from the fact that the filter action is

that of an RC circuit with input voltage x(t) and output voltage y(t), as

illustrated in figure



R

C

+

�

x(t)

+

�

y(t)

If we denote with i(t) the current flowing through the resistor R and the

capacitor C, then the equations determining the link between input and

output are of the form

x(t) = y(t) +Ri(t)

i(t) = C y
0
(t)

the first considering that the voltage x(t) is the sum of voltages on the

resistance R and at the output, while the second carries the link between

the capacity voltage y(t) and the current flowing through the capacitor.

The relations are better understood in the Fourier domain, where they

map into

X(j!) = Y (j!) +R · I(j!)
I(j!) = j!C(j!)

where we used the derivative property. Hence, by substitution of the

second in the first we obtain

X(j!) = Y (j!) · (1 + j!RC) =) Y (j!) =
X(j!)

1 + j!RC

which identifies a transfer function of the form

H(j!) =
1

1 + j!RC

which is equivalent to that of the exercise by setting a = 1/RC.

7. We take the transfer function of the RC filter from the previuous exercise,

and note that, in the series of two RC filters the overall transfer function

takes the form

G(j!) = H(j!)H(j!) = H
2
(j!) = |H(j!)|2 e2'(!)

Moreover, the signal has the form

x(t) = A cos
2
(!0t) =

A
2 +

A
2 cos(2!0t)

so that the output is

y(t) =
A
2 |H(j0)|2 + A

2 |H(j2!0)|2 cos(2!0t+ 2'(2!0))

=
A

2
+

A

2(1 + (2!0/a)
2)

cos(2!0t� 2 tan
�1

(
2!0
a ))



For a = 2!0 we have

y(t) =
A
2 +

A
4 cos(2!0t� 2 tan

�1
(1))

=
A
2 +

A
4 cos(2!0t� ⇡

2 )

=
A
2 +

A
4 sin(2!0t)



FOUNDATIONS OF SIGNALS AND SYSTEMS

15.2 Solved exercises

Prof. T. Erseghe

Exercises 15.2

Solve the following by either using the forward/inverse transform or the prop-
erties of the discrete-time Fourier transform:

1. prove the correctness of Fourier pair s(n) = �(n) and S(ej✓) = 1;

2. prove the correctness of Fourier pair s(n) = 1 and S(ej✓) = 2⇡ comb2⇡(✓);

3. prove the correctness of Fourier pair s(n) = d sinc(nd), 0 < d < 1, and
S(ej✓) = rep2⇡ rect(

✓
2⇡d );

4. evaluate the discrete-time Fourier transform of s(n) = ej✓0n;

5. evaluate the discrete-time Fourier transform of s(n) = sgn(n);

6. evaluate the discrete-time Fourier transform of s(n) = 10(n);

7. evaluate the discrete-time Fourier transform of s(n) = n↵n 10(n), |↵| < 1.
For which values of ↵ the absolute value |S(ej✓)| is an even function?

Solutions.

1. We apply the forward transform, to have

S(ej✓) =
1X

n=�1
�(n) e�j✓n = 1

where we used the sifting properties of the delta.

2. In this case it is convenient to prove the result by inverse transform, to
have

s(n) =
1

2⇡

Z ⇡

�⇡
S(ej✓) ej✓n d✓

=

Z ⇡

�⇡
rep2⇡�(✓) e

j✓n d✓

=

Z ⇡

�⇡
�(✓) ej✓n d✓ = 1

where we used the range (�⇡,⇡) for the integration, in such a way to
reveal that the only contribution of S(ej✓) = 2⇡rep2⇡�(✓) which is used in
the integral is the delta centred in 0.



3. Also in this case it is convenient to proceed by inverse transform, to have

s(n) =
1

2⇡

Z ⇡

�⇡
rep2⇡ rect(

✓
2⇡d ) e

j✓n d✓

=
1

2⇡

Z ⇡d

�⇡d
ej✓n d✓

=

8
<

:

2⇡d
2⇡ = d , n = 0
ej✓n

j2⇡n

���
⇡d

�⇡d
=

ej⇡dn � e�j⇡dn

j2⇡n
=

sin(⇡dn)

⇡n
, n 6= 0

= d sinc(nd)

where, again, we used the range (�⇡,⇡) for the integration, in such a way
to reveal the only contribution which is used in the integral is the rectangle
centred in 0, ranging from �⇡d to ⇡d.

4. By using the Fourier pair of Exercise 15.2.2, namely

x(n) = 1 , X(ej✓) = 2⇡ comb2⇡(✓) ,

then the transform can be found by exploiting the modulation property
since

s(n) = ej✓0n = x(n) ej✓0n .

The resulting transform is therefore of the form

S(ej✓) = X(ej(✓�✓0)) = 2⇡ comb2⇡(✓ � ✓0) .

5. For the signum

n

s(n)

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

1

we can use the increment property. We therefore identify the increment
signal

n

s(n)� s(n� 1)

• • • • • • • • • • • • •
• •1

which we can write as

y(n) = s(n)� s(n� 1) = �(n) + �(n� 1)



with discrete-time Fourier transform

Y (ej✓) = 1 + e�j✓

obtained from the properties of deltas and the time-shift property. By
inverting the increment we obtain

S(ej✓) =
Y (ej✓)

1� e�j✓
+ 2⇡mscomb2⇡(✓) =

1 + e�j✓

1� e�j✓

since the signum hasms = 0. A more explicit result is obtained by working
on the resulting expression to have

S(ej✓) =
1 + e�j✓

1� e�j✓

ej
✓
2

ej
✓
2

=
ej

✓
2 + e�j ✓

2

ej
✓
2 � e�j ✓

2

=
2 cos( ✓2 )

2j sin( ✓2 )
= �j cot( ✓2 )

as illustrated in the figure below.

✓

=[S(ej✓)]

2⇡�2⇡ 4⇡

6. For the discrete unit step s(n) = 10(n) we can follow two equivalent paths.
If we proceed by the application of the increment we have

y(n) = s(n)� s(n� 1) = �(n) , Y (ej✓) = 1 ,

hence by reversing the increment we obtain (recall that we have ms =
1
2 )

S(ej✓) =
Y (ej✓)

1� e�j✓
+ 2⇡mscomb2⇡(✓) =

1

1� e�j✓
+ ⇡comb2⇡(✓) .

Alternatively, we can recall the link with the signum function, namely

s(n) = 10(n) =
1
2 + 1

2 sgn(n) +
1
2�(n)

whose Fourier transform reads as

S(ej✓) = ⇡comb2⇡(✓)� j 1
2 cot(

✓
2 ) +

1
2 ,

which is equivalent to the previous result since

1� j cot( ✓2 ) = 1 +
1 + e�j✓

1� e�j✓
=

2

1� e�j✓
.



7. In this case we can write the signal in the form s(n) = nx(n) with x(n) =
↵n 10(n), and exploit the product-by-n property. For the transform of
x(n) we have

X(ej✓) =
1X

n=�1
↵n 10(n) e

�j✓n

=
1X

n=0

(↵ e�j✓)n =
1

1� ↵ e�j✓
,

so that by use of the product-by-n property we obtain

S(ej✓) = j
d

d✓

✓
1

1� ↵ e�j✓

◆

= �j
j ↵ e�j✓

(1� ↵ e�j✓)2
=

↵ e�j✓

(1� ↵ e�j✓)2
.

For assessing the parity of the absolute value, we calculate

|S(ej✓)| = |↵|
|1� ↵ e�j✓|2

=
|↵|

(1� ↵ e�j✓)(1� ↵ e�j✓)⇤
=

|↵|
(1� ↵ e�j✓)(1� ↵⇤ ej✓)

=
|↵|

1� ↵ e�j✓ � ↵⇤ ej✓ + |↵|2

=
|↵|

1� |↵| e�j(✓�'↵) � |↵| ej(✓�'↵) + |↵|2

=
|↵|

1� 2|↵| cos(✓ � '↵) + |↵|2

where we used ↵ = |↵| ej'↵ . Therefore, the only possibility for having an
even function is that '↵ = 0 or ⇡ (to have ± cos(✓)), that is a real-valued
↵ (positive or negative).



FOUNDATIONS OF SIGNALS AND SYSTEMS
15.3 Homework assignment

Prof. T. Erseghe

Exercises 15.3

Prove the following properties of the discrete-time Fourier transform:

1. time-reversal property x(�n) ! X(e�j✓);

2. conjugation property x⇤(n) ! X⇤(e�j✓);

3. time-shift property x(n� n0) ! X⇤(ej✓) e�j✓n0 ;

4. modulation property x(n)ej✓0n ! X(ej(✓�✓0));

5. convolution property x ⇤ y(n) ! X(ej✓)Y (ej✓);

6. product property x(n)y(n) ! 1
2⇡X ⇤cir Y (ej✓).

7. product by n property nx(n) ! j X 0(ej✓).

Then, solve the following by either using the forward/inverse transform or the
properties of the discrete-time Fourier transform:

8. evaluate the discrete-time Fourier transform of rect( n
N ) for N = 1 + 2M ;

9. evaluate the discrete-time Fourier transform of cos(n✓0 + '0);

10. evaluate the discrete-time Fourier transform of d sinc2(nd), 0 < d < 1;

11. evaluate the signal whose discrete-time Fourier transform is 2j ej✓/(2 +
ej✓);

12. evaluate and draw the discrete-time Fourier transform of s(n) = 3
4 sin(⇡2n)+

1
4 sin( 3⇡2 n).



Solutions.

1. For the time-reversal property we have y(n) = x(�n) with direct trans-
form

Y (ej✓) =
1X

n=�1
x(�n) e�j✓n

=
1X

m=�1
x(m) e�j(�✓)m

= X(e�j✓)

2. For the conjugation property we have y(n) = x⇤(n) with direct transform

Y (ej✓) =
1X

n=�1
x⇤(n) e�j✓n

=

 1X

n=�1
x(n) e�j(�✓)n

!⇤

= X⇤(e�j✓)

where we used the equality (e�j✓n)⇤ = ej✓n = e�j(�✓)n.

3. For the time-shift property we have y(n) = x(n�n0) with direct transform

Y (ej✓) =
1X

n=�1
x(n� n0) e

�j✓n

=
1X

m=�1
x(m) e�j✓(m+n0)

= e�j✓n0

1X

m=�1
x(m) e�j✓m

= X(ej✓) e�j✓n0

where we used m = n� n0.

4. For the modulation property we have y(n) = x(n)ej✓0n with direct trans-
form

Y (ej✓) =
1X

n=�1
x(n) ej✓0n e�j✓n

=
1X

n=�1
x(n) e�j(✓�✓0)n

= X(ej(✓�✓0))



5. For the convolution property we have z(n) = x⇤y(n) with direct transform

Y (ej✓) =
1X

n=�1

 1X

m=�1
x(m)y(n�m)

!
e�j✓n

=
1X

m=�1
x(m)

 1X

n=�1
y(n�m) e�j✓n

!

=
1X

m=�1
x(m)Y (ej✓) e�j✓m

= X(ej✓)Y (ej✓)

where in the second equivalence we swapped the order of sums, and in the
third we exploited the time-shift property.

6. For the product property we have z(n) = x(n)y(n) with direct transform

Y (ej✓) =
1X

n=�1
x(n)y(n) e�j✓n

=
1X

n=�1
x(n)

✓
1

2⇡

Z 2⇡

0
Y (ejv) ejvn dv

◆
e�j✓n

=
1

2⇡

Z 2⇡

0
Y (ejv)

 1X

n=�1
x(n) e�j(✓�v)n

!
dv

=
1

2⇡

Z 2⇡

0
Y (ejv)X(ej(✓�v))

=
1

2⇡
X ⇤cir Y (ej✓)

where in the second equivalence we used the inverse transform to express
y(n), and in the third we swapped the order of sum and integral.

7. For the product-by-n property we derive the discrete-time Fourier trans-
form expression, to have

jX 0(ej✓) = j
d

d✓

 1X

n=�1
x(n) e�j✓n

!

=
1X

n=�1
x(n)

d

d✓

�
j e�j✓n

�

=
1X

n=�1
x(n) · j ·�jn e�j✓n

=
1X

n=�1
nx(n) e�j✓n



revealing it as the discrete-time Fourier transform of nx(n).

8. The signal, for N = 1 + 2M , has the form

s(n) = rect( n
N ) = rect( n

1+2M ) =

⇢
1 , |n|  M
0 , otherwise

so that its Fourier transform is

S(ej✓) =
1X

n=�1
s(n) e�j✓n =

MX

n=�M

e�j✓n

=
2MX

m=0

e�j✓(m�M) = ej✓M
2MX

m=0

(e�j✓)m

= ej✓M
1� e�j✓(1+2M)

1� e�j✓

=
ej✓M � e�j✓(1+M)

1� e�j✓
· e

j ✓
2

ej
✓
2

=
ej✓(M+ 1

2 ) � e�j✓(M+ 1
2 )

ej
✓
2 � e�j ✓

2

=
sin( ✓N2 )

sin( ✓2 )

= N sincN ( ✓N2⇡ )

9. In this case it is needed to expand the sinusoid by Euler’s identity, to have

s(n) = cos(n✓0 + '0)

= 1
2e

j'0 · ej✓0n + 1
2e

�j'0 · e�j✓0n ,

Then, by considering the Fourier transform of a complex exponential, we
obtain

S(ej✓) = ⇡ej'0 comb2⇡(✓ � ✓0) + ⇡e�j'0 comb2⇡(✓ + ✓0) .

10. In this case we can exploit the Fourier pair of Exercise 15.2.3, namely

x(n) = d sinc2(nd) , X(ej✓) = rep2⇡ rect(
✓

2⇡d )

to write the signal in the form s(n) = 1
d x(n)x(n), so that by the product

property we have

S(ej✓) = 1
2⇡d XcircX(ej✓)

= 1
2⇡d

�
2⇡d rep2⇡ triang(

✓
2⇡d )

�
= rep2⇡ triang(

✓
2⇡d )

where we exploited the properties of the circular convolution, and where
we took into account that the self convolution of a rectangle of basis 2⇡d
is a triangle of basis 4⇡d and height 2⇡d. Observe that, when d > 1

2 , the
periodic repetition is introducing aliasing.



11. In this case we cannot proceed by integration, since the primitive is not
known in this specific case. However, if we write the transform in the form

S(ej✓) =
j ej✓

1� (� 1
2e

j✓)

we can recognise that the denominator is the result of a geometric series,
that is

S(ej✓) = j ej✓
1X

k=0

(� 1
2e

j✓)k

=
1X

k=0

j(� 1
2 )

kej✓(k+1)

=
1X

m=1

j(� 1
2 )

m�1ej✓m

=
�1X

n=�1
j(� 1

2 )
�n�1e�j✓n

wherem = k+1 = �n. Now the transform is in the form of a discrete-time
Fourier transform, revealing that the signal in the time-domain is

s(n) =

⇢
j(� 1

2 )
�n�1 = �2j (�2)n , n < 0

0 , n � 0

= �2j (�2)n 10(�1� n)

12. For the signal
s(n) = 3

4 sin(⇡2n) +
1
4 sin( 3⇡2 n)

by applying the standard rule on the Fourier transform of a (sampled)
sinusoid we have

S(ej✓) = 3
8j rep2⇡�(✓ �

⇡
2 )�

3
8j rep2⇡�(✓ +

⇡
2 )

+ 1
8j rep2⇡�(✓ �

3⇡
2 )� 1

8j rep2⇡�(✓ +
3⇡
2 )

where we observe that, thanks to the periodic repetition (or the sampling,
which is equivalent), phase 3⇡

2 is equivalent to phase 3⇡
2 �⇡ = �⇡

2 , so that

S(ej✓) = 3
8j rep2⇡�(✓ �

⇡
2 )�

3
8j rep2⇡�(✓ +

⇡
2 )

+ 1
8j rep2⇡�(✓ +

⇡
2 )�

1
8j rep2⇡�(✓ �

⇡
2 )

as illustrated in the figure below where deltas in bold represent the four
delta functions prior to the periodic repetitions, the deltas in solid lines
correspond to the contribution of phase ⇡

2 , and the deltas in dashed lines
refer to the contributions of phase 3⇡

2 .



✓

S(ej✓)

3
8j

� 3
8j

1
8j

� 1
8j

3
8j

� 3
8j

1
8j

� 1
8j

3
8j

� 3
8j

1
8j

� 1
8j

3
8j

� 3
8j

1
8j

� 1
8j

3
8j

� 3
8j

1
8j

� 1
8j

2⇡
⇡
2

3⇡
2�2⇡ 4⇡

Therefore, we obtain

S(ej✓) = 1
4j rep2⇡�(✓ �

⇡
2 )�

1
4j rep2⇡�(✓ �

⇡
2 )

that is s(n) = 1
2 sin(

⇡
2n), a result that we could have easily determined

by observing that sin( 3⇡2 n) = sin(�⇡
2n) = � sin(⇡2n). The transform is

illustrated in the figure below.

✓

S(ej✓)

1
4j

� 1
4j

1
4j

� 1
4j

1
4j

� 1
4j

1
4j

� 1
4j

1
4j

� 1
4j

2⇡
⇡
2�2⇡ 4⇡



FOUNDATIONS OF SIGNALS AND SYSTEMS

15.5 Solved exercises

Prof. T. Erseghe

Exercises 15.5

Solve the following by exploiting the relation between Fourier transform and
DTFT:

1. evaluate the discrete-time Fourier transform of d sinc(nd), 0 < d < 1;

Solutions.

1. In this case we can exploit the sampling relation with T = 1 applied to
the signal couple

x(t) = d sinc(dt) , X(j!) = rect( !
2⇡d ) ,

whose Fourier transform is derived by simple application of the scale prop-
erty. Since we have s(n) = x(n), from the sampling relation with T = 1
we obtain

S(ej✓) = rep2⇡X(j✓) = rep2⇡ rect(
✓

2⇡d )

which is a square wave. The result is perfectly equivalent to that of Exer-
cise 15.2.3, although the derivation is in this case e↵ortless.



FOUNDATIONS OF SIGNALS AND SYSTEMS
15.6 Homework assignment

Prof. T. Erseghe

Exercises 15.6

Solve the following by exploiting the relation between Fourier transform and

DTFT:

1. evaluate the discrete-time Fourier transform of rect(
n
N ) for N = 1 + 2M ;

2. evaluate the discrete-time Fourier transform of d sinc2(nd), 0 < d < 1;

3. evaluate the discrete-time Fourier transform of

s(n) =

⇢
sin(n ⇡

N ) , n 2 [0, N ]

0 , otherwise



Solutions.

1. We can exploit the sampling relation with T = 1 applied to the signal

couple

x(t) = rect(
t
N ) , X(j!) = N sinc(

!
2⇡/N ) ,

whose Fourier transform is derived by simple application of the scale prop-

erty. Since we have s(n) = x(n), from the sampling relation with T = 1

we obtain

S(ej✓) = rep2⇡X(j✓)

= rep2⇡N sinc(
✓

2⇡/N )

which is a complete result. If we wish to relate this result to the periodic

repetition of a sinc, providing a periodic sinc, then we need to further

work on the outcome, to have

S(ej✓) =
1X

k=�1
N sinc(

✓�k2⇡
2⇡/N )

=

1X

k=�1
N sinc(

N✓
2⇡ � kN)

= N repN sinc(x)
���
x=N✓

2⇡

= N sincN (
N✓
2⇡ )

which is now perfectly equivalent to the solution of Exercise 15.3.8.

2. We can exploit the sampling relation with T = 1 applied to the signal

couple

x(t) = d sinc2(td) , X(j!) = triang(
!

2⇡d ) ,

whose Fourier transform is derived by simple application of the scale prop-

erty. Since we have s(n) = x(n), from the sampling relation with T = 1

we obtain

S(ej✓) = rep2⇡X(j✓)

= rep2⇡ triang(
✓

2⇡d )

which is perfectly equivalent to the solution of Exercise 15.3.10.

3. We can exploit the sampling relation with T = 1 applied to the signal

x(t) = sin(
⇡
N t) rect(

t� 1
2N
N ) ,

Now the Fourier transform of x(t) can be identified with some e↵ort from

the couple

y(t) = rect(
t� 1

2N
N ) , Y (j!) = N sinc(

!
2⇡/N ) e�j!N

2 ,



by use of the modulation property, to have

X(j!) = ⇡
j Y (j(! � ⇡

N ))� ⇡
j Y (j(! +

⇡
N ))

= N⇡
h
sinc(

!
2⇡/N � 1

2 )� sinc(
!

2⇡/N +
1
2 )

i
e�j!N

2

Since we have s(n) = x(n), from the sampling relation with T = 1 we

obtain

S(ej✓) = rep2⇡X(j✓)

= N⇡ rep2⇡

n⇥
sinc(

N✓
2⇡ � 1

2 )� sinc(
N✓
2⇡ +

1
2 )
⇤
e�j⇡N✓

2⇡

o

It is possible to relate the result to periodic sinc functions. However, we

skip this path since the derivation is troublesome.



FOUNDATIONS OF SIGNALS AND SYSTEMS

16.2 Solved exercises

Prof. T. Erseghe

Exercises 16.2

Solve the following by exploiting the Fourier transforms approach to filters:

1. Identify the class of discrete-time filters such that x(n) = e
�j ⇡

6 n and
y(n) = 1

8e
�j ⇡

6 n.

2. The signal x(n) = �(n � 1) � �(n + 1) is first filtered by an ideal low-
pass filter h(n) with cut-phase ✓c = ⇡

2 , then the output is multiplied by
v(n) = 1�e

j⇡n = 1� (�1)n to get the output y(n), as illustrated in figure

x(n)
h(n)

z(n)
⇥

v(n)

y(n)

Identify y(n).

3. Identify the impulse response of a discrete-time high-pass filter with cut-
phase ✓c 2 (0,⇡).

4. The signal

x(n) =
1X

k=�1
triang( 12 (n� 8k))� triang( 12 (n� 4� 8k)) ,

is fed to an ideal high-pass filter with cut-phase ✓c = ⇡
2 . Evaluate the

output y(n).

Solutions.

1. Obviously, the filter with h(n) = 1
6�(n) is a viable solution, but, in general,

since in this case it is y(n) = H(ej
⇡
6 )x(n), it su�ces to have H(ej

⇡
6 ) = 1

6 ,
which the only e↵ective constraint required to the class.

2. We proceed by analysing the system in the Fourier domain. For the input,
by transforming the two deltas we have

X(ej✓) = e
�j✓ � e

j✓ = �2j sin(✓) .

The filter is, by assumption, H(ej✓) = rep2⇡ rect(
✓
⇡ ) (i.e., a square wave

with duty-cycle d = 1
2 ), so that

Z(ej✓) = X(ej✓)H(ej✓)

= �2j sin(✓) · rep2⇡ rect( ✓⇡ )
= rep2⇡ � 2j sin(✓) rect( ✓⇡ )



as illustrated in the figure below

✓

=[Z(ej✓)]

⇡
2

�⇡
2 2⇡

The Fourier transform of y(n) can be inferred from the relation

y(n) = z(n) v(n) = z(n)� z(n) ej⇡n

providing, by use of the modulation property

Y (ej✓) = Z(ej✓)� Z(ej(✓�⇡))

where the contribution added is illustrated in dashed lines in the figure
below

✓

=[Z(ej✓)� Z(ej(✓�⇡))]

⇡
2

�⇡
2 2⇡

Hence, we obtain
Y (ej✓) = �2j sin(✓)

and therefore y(n) = x(n).

This exercise can also be solved in the time domain, which can be done
graphically, by observing that h(n) = 1

2 sinc(
n
2 ) and therefore z(n) =

x ⇤ h(n) = h(n� 1)� h(n+ 1), while it is

v(n) = 1� (�1)n =

⇢
2 , n odd
0 , n even

Therefore, the outcome is the one depicted in the figure below

n

h(n)

• • • • • • • • • • • • • • • • • • •
• •

• • • • • • • • • • • • • • • • • • •
•

1
2

n

z(n) = h(n� 1)� h(n+ 1)

• • • • • • • • • • • • • • • •
• •

•

•
• • •

• • • • • • • • • • • • • • ••
•
1
2

•
� 1

2



n

v(n)

• • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • ••2

n

y(n)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
•1

•
�1

From the figure we see that h(n) is zero for n even, except at n = 0, which
implies that z(n) is zero for n odd, except at n = ±1. Since v(n) is zero
for n even, the only two values that are maintained in the product y(n) =
z(n)v(n) are the ones at n = ±1, which provides the result y(n) = x(n).

3. The filter expression, in the Fourier domain is

H(ej✓) = 1� rep
2⇡

rect( ✓
2✓c

)

whose inverse Fourier transform can be obtained by separately invert-
ing the two contributions. For the constant contribution, we exploit the
Fourier couple �(n) ! 1, while for the periodic repetition of the rectan-
gle we can interpret it as a sampling operation applied to the Fourier-
transform couple

✓c
⇡ sinc( ✓c⇡ t) ! rect( !

2✓c
)

so that
h(n) = �(n)� ✓c

⇡ sinc( ✓c⇡ n) ,

where d = ✓c
⇡ is the duty-cycle of the square wave.

4. The signal, depicted in the figure below

n

x(n)

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

1 1
2

�1
� 1

2

8

is periodic of period N = 8. Its DFT can be computed by hand, and we



exploit the even symmetry by setting the range to [�3, 4], to have

Xk = 1
8

4X

n=�3

x(n) e�jk ⇡
4 n

= 1
8

⇣
1 + 1

2e
�jk ⇡

4 + 1
2e

jk ⇡
4 � 1

2e
�jk 3⇡

4 � 1
2e

jk 3⇡
4 � e

�jk⇡
⌘

= 1
8

⇣
1 + cos(⇡4 k)� cos( 3⇡4 k)� (�1)k

⌘

=

8
<

:

0 , k even
A , k = ±1 (mod 8)
�A , k = ±3 (mod 8)

A =
2 +

p
2

8
,

which reveals a discrete-time Fourier transform with even symmetry of
the form

X(ej✓) =
X

k2{±3,±1}

2⇡Xk comb2⇡(✓ � ⇡
4 k) .

as illustrated in the figure below.

✓

X(ej✓)
A

�A

2⇡⇡
4

3⇡
4

H(ej✓)

Therefore, after filtering it is

Y (ej✓) = X(ej✓) ·H(ej✓) =
X

k2{±1}

2⇡A comb2⇡(✓ � ⇡
4 k) .

or, equivalently, at the DFT level

Yk = Xk H(ej
⇡
4 k) =

⇢
A , k = ±1 (mod 8)
0 , otherwise

so that

y(n) =
X

k=±1

Ae
jk ⇡

4 n = Ae
j ⇡

4 n +Ae
�j ⇡

4 n = 2A cos(⇡4n) .



FOUNDATIONS OF SIGNALS AND SYSTEMS
16.3 Homework assignment

Prof. T. Erseghe

Exercises 16.3

Solve the following by exploiting the Fourier transforms approach to filters:

1. Identify the class of discrete-time filters such that x(n) = e
�j ⇡

6 n
and

y(n) =
1
6e

j ⇡
6 n

.

2. A discrete-time filter has transfer function H(e
j✓
) = 1 +

1
2 sin(✓). Is this

filter real? Evaluate the output when x(n) = 10(n).

3. A discrete-time filter has impulse response h(n) = 10(n) � 10(n � 3).

Evaluate the transfer function H(e
j✓
), as well as the output when the

input signal is x(n) = rep10�(n).

4. A discrete-time filter has impulse response h(n) = n e
� 5

3n 10(n). Evaluate

the transfer function H(e
j✓
), as well as the output when the input signal

is x(n) = A cos(
⇡
2n).

5. Identify the impulse response of a discrete-time band-pass filter that selects

the phases in the range [✓0 � 1
2✓b; ✓0 +

1
2✓b] ⇢ (�⇡,⇡).

6. The discrete-time signal x(n) = cos(n) + sin(3n) + e
�j6n

is filtered by an

ideal low-pass filter with cut-phase ✓c =
⇡
2 . Evaluate the filter output

y(n).



Solutions.

1. The general rule for complex exponentials is y(n) = H(e
�j ⇡

6 )x(n) =

H(e
j ⇡

6 ) e
�j ⇡

6 n
which cannot meet value

1
6 e

j ⇡
6 n

for any choice of the con-

stant H(e
�j ⇡

6 ). Hence, there exists no such filter and the class is empty.

2. For the filter to be real we need to have the Hermitian symmetry (even

real part, odd imaginary part) in the Frequency domain. However, the

Fourier transform is real but not even nor odd. The output can, in this

case, better evidenced in the time-domain. We have

H(e
j✓
) = 1 +

1
2 sin(✓) = 1 +

1
4j e

j✓ � 1
4j e

�j✓

which, by inverse transform, provides

h(n) = �(n) +
1
4j �(n+ 1)� 1

4j �(n� 1) .

Therefore, the output has the form

y(n) = x ⇤ h(n)
= 10(n) +

1
4j 10(n+ 1)� 1

4j 10(n� 1)

= 10(n) +
1
4j �(n+ 1) +

1
4j �(n) .

3. We preliminary observe that

h(n) = 10(n)� 10(n� 3) = �(n) + �(n� 1) + �(n� 2) ,

so that

H(e
j✓
) = 1 + e

�j✓
+ e

�j2✓
= (1 + 2 cos(✓)) e

�j✓
.

For x(n) = comb10(n) it is much easier to proceed in the time-domain, to

have

y(n) = x ⇤ h(n) = x(n) + x(n� 1) + x(n� 2)

= rep10�(n) + �(n� 1) + �(n� 2) .

4. In this case, given that the input is a sinusoid, the easiest approach is the

Fourier-domain approach, since it is

y(n) = A |H(e
j ⇡

2 )| cos(⇡2n+ '(
⇡
2 )) .

We therefore evaluate the Fourier transform starting from the transform

of z(n) = e
� 5

3n 10(n), that is

Z(e
j✓
) =

1X

n=0

e
� 5

3n e
�j✓n

=
1

1� e
�( 5

3+j✓)

to have, from the product-by-n property

H(e
j✓
) = jZ

0
(e

j✓
) =

e
�( 5

3+j✓)

(1� e
�( 5

3+j✓)
)2

.



At phase ✓ =
⇡
2 we further have

H(e
j ⇡

2 ) =
�je

� 5
3

(1 + je
� 5

3 )2
,

from which we obtain

|H(e
j ⇡

2 )| = e
� 5

3

1 + e
� 10

3

=
1

e
5
3 + e

� 5
3

, '(
⇡
2 ) = �⇡

2 � 2 arctan(e
� 5

3 ) .

5. In the Fourier domain, the filter reads as

H(e
j✓
) = rep2⇡ rect(

✓�✓0
✓b

) + rect(
✓+✓0
✓b

)

which we can inverse transform by applying the sampling plus modulation

rules, starting from the Fourier transform couple

✓b
2⇡ sinc(

✓b
2⇡ t) �! rect(

!
✓b
)

to have

h(n) =
✓b
⇡ sinc(

✓b
2⇡n) cos(✓0n) .

6. From the properties of the sinusoids, in the Fourier domain we have a

collection of comb functions centred at ±1, ±3 and �6.

✓

X(e
j✓
)

1 3�1�3�6 2⇡

1
1
2

1
2

1
2j� 1

2j

As illustrated in the figure above, ±1 falls inside the interval (�⇡
2 ,

⇡
2 ),

hence the cosinus is kept. Instead, ±3 falls outside the range of the filter,

hence the sinus is cancelled. For the exponential, instead, which is centred

at phase �6, we need to observe from the figure that it actually falls inside

the active filter part, and is therefore kept. As a matter of fact, the filter

response H(e
j!
) is periodic 2⇡, hence it can be interpreted as a base-band

rectangle only if the reference phase is mapped into the interval (�⇡,⇡),

in which case it is �6 (mod 2⇡) = 2⇡ � 6 ' 0.2883, which evidently falls

within the active signal part. Therefore the output is

y(n) = cos(n) + e
�j6n

.



FOUNDATIONS OF SIGNALS AND SYSTEMS
16.5 Homework assignment

Prof. T. Erseghe

Exercises 16.5

Solve the following exercises on signals, Fourier transforms, and filters:

1. The signal

x(t) =

1X

k=�1
(�1)

k
rect(t� k) ,

is fed into a low-pass filter with cut pulsation !c =
3
2⇡. Evaluate the filter

output y(t);

2. Evaluate the Fourier transform of a real-valued signal which is even and

periodic of period Tp, and which is defined as s(t) = t
2
in the interval

[0,
1
2Tp];

3. Evaluate the Fourier transform of signal s(t) = sinc(t) · sinc(2(t� 1));

4. Evaluate the area and the energy of the signals

s1(t) = rect
2
(

t
10 ) , s2(t) = sinc(

1
8 (t� 5))

s3(t) = sin(10⇡t) rect(
1
10 (t� 5)) , s4(t) = sinc

2
(t) ;

5. Evaluate the output of a continuous-time filter with impulse response

h(t) = e
�|t|

when the input is x(t) = 3 cos(2t);

6. The signal s(t) = A sinc
n
(t/T ) cos(!0t) is fed to an ideal low-pass filter

with cut pulsation !c. Identify the values of !0 (as a function of n, T and

!c) that guarantee that the output is y(t) = 0;

7. Evaluate the convolution s(t) = x ⇤ y(t) between the two signals x(t) =

sinc(t) and y(t) = sinc(
1
2 t) cos(!0t). Illustrate the result for !0 = ⇡. For

what values of !0 is the area of s(t) zero? For what values of !0 is s(t)

zero?



Solutions.

1. The signal has evidently period Tp = 2, and can be written in the more

compact form

x(t) = 2 rep2 rect(t)� 1 ,

evidencing that it is a di↵erence between a square-wave of duty cycle d =
1
2

and a constant, hence its Fourier coe�cients are

Xk = 2 · 1
2 sinc(

k
2 )� 1 = sinc(

k
2 )� 1 ,

associated to pulsations k!0 = k⇡. Being the filter a low-pass filter with

cut-pulsation !c =
3
2⇡, then only the coe�cients for k = �1, 0, 1 are kept,

that is the Fourier coe�cients of the output are

Yk =

⇢
Xk , k = 0,±1

0 , otherwise
=

⇢
sinc(

1
2 ) =

sin(⇡
2 )

⇡
2

=
2
⇡ , , k = ±1

0 , otherwise

since X0 = 0. Therefore, by inverse Fourier transform (Fourier series, in

this case) we have

y(t) =

1X

k=�1
Yk e

jk!0t =
2
⇡ e

j⇡t
+

2
⇡ e

�j⇡t
=

4
⇡ cos(⇡t) .

2. For the even-symmetric signal, we can write

s(t) = repTp
t
2
rect(

t
Tp

) ,

so that its Fourier transform can be obtained from that of the pair

x(t) = rect(
t
Tp

) �! X(j!) = Tp sinc(
!

2⇡/Tp
)

by first applying twice the product-by-t property, to have

y(t) = t
2
rect(

t
Tp

) �! Y (j!) = j
2
X

00
(j!) = � T 3

p

4⇡2 sinc
00
(

!
2⇡/Tp

)

and by then sampling at k!0, !0 =
2⇡
Tp

, to have

Sk =
1
Tp

Y (jk!0) = � T 2
p

4⇡2 sinc
00
(k) =

T 2
p

4⇡2 ·
(

⇡2

3 , k = 0

2 (�1)k

k2 , k 6= 0

where the compact result was derived with some e↵ort by expanding the

second derivative of the sinc.

3. The transform can be approach by interpreting the signal as a product

s(t) = x(t)y(t) where

x(t) = sinc(t) �! X(j!) = rect(
!
2⇡ )

y(t) = sinc(2(t� 1)) �! Y (j!) =
1
2 rect(

!
4⇡ ) e

�j!



and by successively applying the product rule, that is

S(j!) =
1

2⇡
X ⇤ Y (j!) .

The convolution between the rectangleX (of width 2⇡) and the modulated

rectangle Y (of width 4⇡) can be approached in the standard way where

Y is kept fixed and X is shifted. The resulting expressions, considering

the di↵erent regions and the overall extension [�3⇡, 3⇡], provide

S(j!) =
1

4⇡
·

8
>>><

>>>:

R !+⇡
�2⇡ e

�ju
du , ! 2 (�3⇡,�⇡)

R !+⇡
!�⇡ e

�ju
du , ! 2 (�⇡,⇡)

R 2⇡
!�⇡ e

�ju
du , ! 2 (⇡, 3⇡)

0 , otherwise

After solving the integrals, we get

S(j!) =
j

4⇡
·

8
<

:

�e
�j! � 1 , ! 2 (�3⇡,�⇡)

1 + e
�j!

, ! 2 (⇡, 3⇡)

0 , otherwise

as illustrated in the figure below, where we appreciate the Hermitian sym-

metry of S(j!).

!

S(j!)

⇡ 3⇡

4. The first signal is s1(t) = rect(
t
10 ) and its area and energy can be easily

evaluated in the time-domain, to have

A1 = 10 · 1 = 10 , E1 = 10 · 12 = 10 .

For the second signal, we need to map it to the Fourier domain, where the

shape is rectangular. We have

S2(j!) = 8 rect(
!

⇡/4 ) e
�j5!

,

so that

A2 = S2(j0) = 8 , E2 =
1
2⇡ · ⇡

4 · 82 = 8 .

For the third signal, again we need to map it into the Fourier domain, to

have

S3(j!) =
10
2j rect(

(!�10⇡)
⇡/5 ) e

�j5(!�10⇡) � 10
2j rect(

(!+10⇡)
⇡/5 ) e

�j5(!+10⇡)



with non-overlapping rectangles, so that

A3 = S3(j0) = 0 , E3 = 2 · 1
2⇡ · ⇡

5 · 52 = 5 .

For the last signal we have

S4(j!) = triang(
!
2⇡ )

so that

A4 = S4(j0) = 1 , E4 =
1
2⇡

Z 1

�1
triang

2
(
!
2⇡ ) d! =

2
3 .

5. In this case we have

y(t) = 3 |H(j2)| cos(2t+ '(2)) ,

given that the Fourier transform H(j!) is known. We evaluate it by

applying the Fourier integral, to have

H(j!) =

Z 0

�1
e
t
e
�j!t

dt+

Z 1

0
e
�t

e
�j!t

dt

=
1

1� j!
+

1

1 + j!
=

2

1 + !2

which is real-valued, even symmetric, and positive, hence '(!) = 0. We

have H(j2) =
2
5 , so that y(t) =

6
5 cos(2t).

6. From the Fourier pair sinc(t/T ) ! T rect(
!

2⇡/T ) and the fact that a prod-

uct of order n turns into a convolution of order n in the Fourier domain,

we know that signal sinc
n
(t/T ) has an extension in the Fourier domain of

the form [� ⇡
T n,

⇡
T n]. Correspondingly, the cosinus multiplication defining

s(t) further ensures that the extension of S(j!) is of the form

e(S) = [�!0 � ⇡
T n,�!0 +

⇡
T n] [ [!0 � ⇡

T n,!0 +
⇡
T n] .

A low-pass filter with cut pulsation !c, instead, has an extension in the

Fourier domain of

e(H) = [�!c,!c] ,

so that to have a zero-valued output it su�ces to have disjoint extensions,

that is,

!c < !0 � ⇡
T n =) !0 > !c +

⇡
T n .

7. The convolution is more easily approached as a product in the Fourier

domain, where

X(j!) = rect(
!
2⇡ )

Y (j!) = rect(
!�!0

⇡ ) + rect(
!+!0

⇡ )

S(j!) = X(j!)Y (j!)



where we observe that the extensions of the two transforms are

e(X) = [�⇡,⇡]

e(Y ) = [�!0 � ⇡
2 ,�!0 +

⇡
2 ] [ [!0 � ⇡

2 ,!0 +
⇡
2 ] .

Now, for the area, from the properties of the convolution we have

Ax⇤y = Ax Ay = X(j0)Y (j0) = 1 · Y (j0) =

⇢
0 , 0 < !0 � ⇡

2
2 , otherwise

since it is only a question of wether 0 2 e(Y ). The requirement therefore

is !0 >
⇡
2 . For the signal to be zero, instead, the two extensions e(X) and

e(Y ) must be disjoint, that is we must have

⇡ < !0 � ⇡
2 =) !0 >

3
2⇡ .



FOUNDATIONS OF SIGNALS AND SYSTEMS

17.3 Solved exercises

Prof. T. Erseghe

Exercises 17.3

Solve the following exercises on sampling, interpolation, and the sampling the-
orem:

1. Identify a sampling/interpolation scheme for signal s(t) = sinc3(t);

2. Consider the following sampling/interpolation system

x(t)
#

T1 = 1
3

x(nT1)
" h(·)

y(t)
#

T2 = 1
2

y(nT2)
" h(·)

z(t)

where h(t) = 2 sinc(2t) and x(t) = sinc2(2t). Identify the Fourier trans-
forms Y (j!) and Z(j!), as well as the output signal z(t).

Solutions.

1. The signal is base-band, therefore we resort to the classical sampling and
interpolation scheme

s(t)
#

T

s(nT )
" h(·)

s(t)

with h(t) = sinc(t/T ) where we only need to identify the value of T in such
a way that e(S) ⇢ [�⇡/T,⇡/T ]. Now, from the couple sinc(t) ! rect( !

2⇡ ),
and the fact that a product in time maps into a convolution in the Fourier
domain, we know that e(S) = [�3⇡, 3⇡], hence it su�ces to choose

3⇡  ⇡

T
=) T  1

3 .

With the stricter choice T = 1
3 we have

sinc3(t) =
1X

k=�1
sinc3( 13k) sinc(

t�k/3
1/3 ) =

1X

k=�1
sinc3( 13k) sinc(3t� k)

2. From the theory we know that

Y (j!) = 1
T1
H(j!) rep 2⇡

T1
X(j!)

= 3H(j!) rep6⇡X(j!)



where we exploited the fact that T1 = 1
3 . Since the Fourier transforms X

and H are of the form

X(j!) = 1
2 triang(

!
4⇡ ) , H(j!) = rect( !

4⇡ ) ,

then it is
Y (j!) = 3

2 rect( !
4⇡ ) rep6⇡triang(

!
4⇡ ) ,

where the periodic repetition is illustrated in the figure below

!

rep6⇡triang(
!
4⇡ )

4⇡
6⇡2⇡

so that the shape of Y is the one illustrated in figure

!

Y (j!)

2⇡

3
2

3
4

which we can write in the form

Y (j!) = 3H(j!)X(j!) = 3
4 rect(

!
4⇡ ) +

3
4 triang(

!
2⇡ ) .

Note that the extension in the Fourier domain is e(Y ) = [�2⇡, 2⇡].

The second sampling/interpolation system, leading to z(t) instead pro-
vides

Z(j!) = 1
T2
H(j!) rep 2⇡

T2
Y (j!)

= 2H(j!) rep4⇡Y (j!)

where we used T2 = 1
2 , and where we note that, because of the extension

e(Y ) = [�2⇡, 2⇡], there is no aliasing with a periodic repetition of 4⇡. As a
matter of fact, this is a perfect sampling-reconstruction scheme (baseband
Shannon’s like) since T2 is coherent with the bandwidth of Y . Therefore,
in the absence of aliasing, we have

Z(j!) = 2H(j!)Y (j!) = 2 rect( !
4⇡ )Y (j!) = 2Y (j!)



that is
Z(j!) = 3

2 rect(
!
4⇡ ) +

3
2 triang(

!
2⇡ ) .

By inverse transform, we finally obtain

z(t) = y(t) = 3 sinc(2t) + 3
2 sinc

2(t) .



FOUNDATIONS OF SIGNALS AND SYSTEMS
17.4 Homework assignment

Prof. T. Erseghe

Exercises 17.4

Solve the following exercises on sampling, interpolation, and the sampling the-

orem:

1. Identify a sampling/interpolation scheme for signal s(t) = sinc
7
(t);

2. Consider the following sampling/interpolation system

x(t)

⇥

cos(14⇡t)

q(t)

h1(·)
y(t)

#

T =
1
2

y(nT )

" h2(·)
z(t)

where

X(j!) = rect(
!
4⇡ )

h
1� triang(

!
2⇡ )

i

H1(j!) = 2� 2 rect(
!

28⇡ )

H2(j!) =
1
2 rect(

!
4⇡ ) .

Evaluate the output z(t).

3. Identify an e�cient sampling/interpolation scheme for the band-pass sig-

nal s(t) = sinc
2
(t) e

j 19⇡
2 t

.

4. Identify an e�cient sampling/interpolation scheme for the signal s(t) =

sinc(
t+1
3 ) cos(2t)� ⇡

12 sin(4t). How does the result change if the signal is

pre-filtered with a pass-band filter whose transfer function is H(j!) = 1

for 1 < |!| < 3 and 0 elsewhere?



Solutions.

1. We can mimic Exercise 17.3.1 to observe that the signal extension in the

Fourier domain is e(S) = [�7⇡, 7⇡], and therefore we can apply the sam-

pling theorem with

7⇡  ⇡

T
=) T  1

7 .

With the stricter choice T =
1
7 we have

sinc
7
(t) =

1X

k=�1
sinc

7
(
1
7k) sinc(

t�k/7
1/7 ) =

1X

k=�1
sinc

7
(
1
7k) sinc(7t� k) .

2. The solution can be better approached in the Fourier domain, by graph-

ically interpreting all signals. The input signal is illustrated in the figure

below

!

X(j!)

2⇡

1

For signal z(t), from the modulation property we have

Z(j!) =
1
2 X(j(! � 14⇡)) +

1
2 X(j(! + 14⇡))

so that its shape is the one in the next figure.

!

X(j!)

14⇡

1
2

2⇡

The action of the high-pass filter h1(t) is simply

Y (j!) = H1(j!)Z(j!) ,

providing the result illustrated in the figure below.

!

H1(j!)

14⇡

2

2⇡

!

Y (j!)

14⇡

1

2⇡



Finally, the action of the sampling/interpolation series has the form

Z(j!) =
1
T H2(j!) rep 2⇡

T
Y (j!)

= 2H2(j!) rep4⇡Y (j!)

providing

!

rep4⇡ Y (j!)

14⇡

1

2⇡

!

2H2(j!)

14⇡

1

2⇡

!

Z(j!)

14⇡

1

2⇡

so that

Z(j!) = triang(
!
2⇡ ) , z(t) = sinc

2
(t) .

3. In this case, the Fourier transform is

S(j!) = triang(
!� 19⇡

2
2⇡ )

with extension e(S) = [
15⇡
2 ,

23⇡
2 ]. If we adopt a base-band approach to the

sampling theorem we require that

23⇡

2
 ⇡

T
=) T  2

23 ' 0.087 .

If, instead, we approach the solution from a band-pass perspective where

we interpret the extension as e(S) =
19⇡
2 + [�2⇡, 2⇡], we require that

2⇡  ⇡

T
=) T  1

2 .,

which is a much more e�cient choice (higher value of the sampling spacing

T means less number of samples) requiring a filter of the form

1
T H(j!) = rect(

!� 19⇡
2

2⇡/T )

that is

h(t) = sinc(
t
T ) e

j 19⇡
2 t

.



The reconstruction rule is, in this case

s(t) =

1X

k=�1
s(kT )h(t� kT ) =

1X

k=�1
s(kT ) sinc(

t
T � k) e

j 19⇡
2 (t�kT )

4. We preliminarily need to identify the Fourier transform, that is

S(j!) =
3
2 rect(

!�2
2⇡/3 ) e

j(!�2)
+

3
2 rect(

!+2
2⇡/3 ) e

j(!+2)

� ⇡2

12j �(! � 4) +
⇡2

12j �(! + 4)

revealing that the extension has the form

e(S) = [�2� ⇡
3 ,�2 +

⇡
3 ] [ [2� ⇡

3 , 2 +
⇡
3 ] [ {4,�4}

⇢ [�4, 4] .

so that it is required to have

4 <
⇡

T
=) T >

⇡
4 .

If the signal is prefiltered by

H(j!) = rect(
!�2
2 ) + rect(

!+2
2 ) ,

then it is

S̃(j!) = S(j!)H(j!)

=
3
2 rect(

!�2
2 ) e

j(!�2)
+

3
2 rect(

!+2
2 ) e

j(!+2)

since 2 <
2
3⇡. The resulting extension is

e(S) = [�3,�1] [ [1, 3] ⇢ [�3, 3] ,

so that in this case it is required to have

3 <
⇡

T
=) T >

⇡
3 .



FOUNDATIONS OF SIGNALS AND SYSTEMS

18.2 Solved exercises

Prof. T. Erseghe

Exercises 18.2

Solve the following MatLab problems:

1. Evaluate numerically the Fourier transform of

x(t) = 2 e�t
cos(2⇡t) 1(t)

and compare it with its analytical expression

X(j!) =
1

1 + j(! � 2⇡)
+

1

1 + j(! + 2⇡)
.

2. The file ‘ex18 2 2.mat’ contains in vector x pancreatic secretion values

taken in the interval [0, 300]min with a sampling spacing of T = 0.1min.

Plot the signal together with its Fourier transform (absolute values only).

Solutions.

1. In the code we define a small sampling step T = 0.01 and a number of

samples N = 1000 such that the interval in which we sample the signal is

[0, 10], to ensure that the exponential outside the sampled range is small.

The derivation of the Fourier transform is standard and it is compared

with the analytical expression here called Xref. Note that the plot of the

Fourier domain only shows the absolute values, and uses a logarithmic

form (through function semilogy, which works as plot) since this is the

standard way to correctly observe the Fourier transform behaviour, allow-

ing for a correct interpretation of the result. Always use the logarithmic

form! Note that there is full accordance between the MatLab outcome and

the analytical expression up to ! = 100, then some aliasing e↵ect (due to

the 1/! nature of the Fourier transform) is visible.

T = 0.01;
N = 1000;
t = (0:N-1)*T;
x = ((t>0) +.5*(t==0)).*(2* exp(-t).*cos(2*pi*t));
X = fftshift(T*fft(x));
om = (-round((N-1) /2):round(N/2) -1) *2*pi/(N*T);
Xref = 1./(1+1j*(om -2*pi))+1./(1+1j*(om+2*pi));

figure
subplot (2,1,1)
plot(t,x)
grid



xlabel('t')
ylabel('x(t)')
title('signal ')
subplot (2,1,2)
semilogy(om,abs(X),om,abs(Xref))
grid
xlabel('\omega ')
ylabel('X(\ omega)')
legend('MatLab ','analytical ')
title('Fourier transform ')

2. In this case all the parameters are set so it it simply the case of applying

the rules for correct calculation of the Fourier transform. Note that we

restricted the Fourier plot to the positive axis, since this is symmetric by

nature, and in fact a real-valued signal implies an Hermitian symmetry in

the Fourier domain which, in turn, determines an even symmetric absolute

value.

load('ex18_2_2.mat') % defines t, x, T
N = length(x);
X = fftshift(T*fft(x));
om = (-round((N-1) /2):round(N/2) -1) *2*pi/(N*T);

figure
subplot (2,1,1)
plot(t,x)
grid
xlabel('t')
ylabel('x(t)')
title('signal ')



subplot (2,1,2)
semilogy(om,abs(X))
grid
xlabel('\omega ')
ylabel('X(\ omega)')
axis ([0 max(om) 1e-3 1e4])
title('Fourier transform ')



FOUNDATIONS OF SIGNALS AND SYSTEMS
18.3 Homework assignment

Prof. T. Erseghe

Exercises 18.3

Solve the following MatLab problems:

1. Evaluate numerically the Fourier transform of x(t) = triang(t) and com-
pare it with its analytical expression X(j!) = sinc2(!/(2⇡)).

2. The file ‘ex18 3 2.mat’ contains in vector x pancreatic secretion values
taken in the interval [0, 300]min with a sampling spacing of T = 0.1min as
well as the impulse response g (on the same time samples) mapping to the
plasma concentration y = x⇤g. Plot the signals together with their Fourier
transform (absolute values only). Then evaluate the product X ·G in the
Fourier domain and inverse-transform it by use of the inverse MatLab
functions i↵tshift and i↵t. Compare the result (which is a convolution
evaluated in the Fourier domain) with the convolution taken in the time-
domain: you should get a perfect correspondence!



Solutions.

1. The code can mimic that of Exercise 18.2.1, as follows, where we used the
time span [�2, 2] for the triangle and a sampling spacing T = 0.01. Note
that, in this case, we correct the Fourier transform for the fact that the
starting sample is not zero. Note also how we show the Fourier transform
only in the positive axis where, again, perfect correspondence is available
up to ! = 100. In this case we also display the error, showing that it is of
the order 2 · 10�5 along the entire axis, and obviously much more visible
where the absolute value of the Fourier transform gets smaller.

T = 0.01;
t = -2:T:2;
x = triang(t);
N = length(x);
om = (-round((N-1) /2):round(N/2) -1) *2*pi/(N*T);
X = fftshift(T*fft(x)).*exp(-1i*om*t(1));
Xref = sinc(om/(2*pi)).^2;

figure
subplot (2,1,1)
plot(t,x)
grid
xlabel('t')
ylabel('x(t)')
title('signal ')
subplot (2,2,3)
semilogy(om,abs(X),om,abs(Xref))
axis ([0 max(om) ylim])
grid
xlabel('\omega ')
ylabel('X(\ omega)')
legend('MatLab ','analytical ')
title('Fourier transform ')
subplot (2,2,4)
semilogy(om,abs(X-Xref))
axis ([0 max(om) ylim])
grid
xlabel('\omega ')
title('Difference ')

function s = triang(t)
s = (1-abs(t)).*(abs(t) <1);
end



2. In this exercise we first evaluate the Fourier transforms of x and g sep-
arately (by using the standard approach), then make a product via the
pointwise product operator. The inverse transform is calculated by apply-
ing the inverse function i↵t and i↵tshift in reverse order, to get the correct
result. Note the perfect correspondence with the convolution calculated in
the time-domain (which is truncated to the same range as x). Incidentally,
one could observe that the compact expression “y=T*i↵t(↵t(x).*↵t(g))”
holds, where we neglected any use of ! or of the i↵tshift operator. This is
actually how MatLab calculates convolutions!!!

load('ex18_3_2.mat') % defines t, x, g, T
N = length(x);
X = fftshift(T*fft(x));
G = fftshift(T*fft(g));
om = (-round((N-1) /2):round(N/2) -1) *2*pi/(N*T);
Y = X.*G;
y = ifft(ifftshift(Y)/T);
y2 = T*conv(x,g);
y2 = y2(1: length(x));

figure (1)
subplot (2,2,1)
plot(t,x)
grid
xlabel('t')
ylabel('x(t)')
title('pancreatic secretion ')
subplot (2,2,2)
plot(t,g)
grid



xlabel('t')
ylabel('g(t)')
title('impulse response ')
subplot (2,1,2)
plot(t,y,t,y2)
grid
xlabel('t')
ylabel('y(t)')
legend('via fft','via conv')
title('plasma concentration ')
sgtitle('time domain ')

figure (2)
subplot (2,2,1)
semilogy(om,abs(X))
grid
xlabel('\omega ')
ylabel('X(\ omega)')
title('pancreatic secretion ')
subplot (2,2,2)
semilogy(om,abs(G))
grid
xlabel('\omega ')
ylabel('G(\ omega)')
title('transfer function ')
subplot (2,1,2)
semilogy(om,abs(Y))
grid
xlabel('\omega ')
ylabel('Y(\ omega)')
title('plasma concentration ')
sgtitle('Fourier domain ')





FOUNDATIONS OF SIGNALS AND SYSTEMS
18.5 Homework assignment

Prof. T. Erseghe

Exercises 18.5

Solve the following MatLab problems:

1. The file ‘ex18 5 1.mat’ contains in vector x some ECG samples taken with
spacing T = 1/125 s. After removing the signal average value (use the
mean MatLab function), plot the signal as well as its Fourier transform
in absolute value, and determine the position !0 > 0 of the first peak. By
resorting to the expression !0 = 2⇡/Tp, identify the ECG period Tp =
2⇡/!0. You can use the MatLab function “[maxval,pos] = max(abs(X))”
for this.

2. The file ‘ex18 5 2.mat’ contains in vector x some ECG samples taken with
spacing T = 1/125 s and corrupted by a sinusoidal noise. After removing
the signal average value (use the mean MatLab function), plot the signal
as well as its Fourier transform in absolute value. Then, filter the signal
with an high-pass filter that rejects all pulsations in the range |!| < ⇡,
by applying a selection in the Fourier domain and then by applying an
inverse transform. The sinusoidal noise should be absent in the filtered
signal.



Solutions.

1. In the code we first subtract the average value, then use a trick to increase
the definition in the Fourier domain (i.e., to increase the value of N),
namely that of adding zero-valued contributions at the end of the signal.
The search for the maximum is restricted in the range [4, 8] since this is
the range we can identify by looking at the plots. We also display the
estimated period which turns out to be Tp = 1.3151.

load('ex18_5_1.mat') % defines t, x, T
x = x - mean(x);
x = [x, zeros (1,2* length(x))]; % trick to tighthen

Fourier sampling
N = length(x);
t = (0:N-1)*T;
X = fftshift(T*fft(x));
om = (-round((N-1) /2):round(N/2) -1) *2*pi/(N*T);

% find max: range [4,8] set by looking at the plot
[maxval ,pos] = max(abs(X).*(om >4).*(om <8));
om0 = om(pos); % estimated omega0
disp(['estimated Tp = 2 pi/omega0 = ' num2str (2*pi

/om0)])

figure (1)
subplot (2,1,1)
plot(t,x)
grid
xlabel('t')
ylabel('x(t)')
title('ECG signal in time')
axis ([0 20 ylim])
subplot (2,2,3)
semilogy(om,abs(X))
grid
xlabel('\omega ')
ylabel('X(\ omega)')
title('Fourier domain ')
subplot (2,2,4)
semilogy(om,abs(X))
hold on
semilogy(om0 ,maxval ,'ro')
grid
xlabel('\omega ')
ylabel('X(\ omega)')
axis ([0 20 1e1 3e3])
title('zoom')



2. We apply the same tricks as in the previous exercise. The high-pass filter
is implemented by multyplying entrywise the Fourier coe�cients X by a
selection of the pulsation values “abs(om)>pi” which is active (i.e., equal
to one) only for |!| > ⇡. The filtered signal is then obtained by inverse
transform.

load('ex18_5_2.mat') % defines t, x, T
x = x - mean(x);
x = [x, zeros (1,2* length(x))]; % trick to tighthen

Fourier sampling
N = length(x);
t = (0:N-1)*T;
X = fftshift(T*fft(x));
om = (-round((N-1) /2):round(N/2) -1) *2*pi/(N*T);
Y = X.*(abs(om)>pi); % filter signal
y = ifft(ifftshift(Y)/T); % filtered signal in

time

figure (1)
subplot (2,2,1)
plot(t,x)
grid
xlabel('t')
ylabel('x(t)')
title('time domain - distorted ')
axis ([0 20 ylim])
subplot (2,2,2)
plot(t,y)
grid
xlabel('t')



ylabel('y(t)')
title('time domain - filtered ')
axis ([0 20 ylim])
subplot (2,2,3)
semilogy(om,abs(X))
axis([xlim 5e-2 5e3])
grid
xlabel('\omega ')
ylabel('X(\ omega)')
axis ([0 20 1e1 1e4])
title('Fourier domain - distorted ')
subplot (2,2,4)
semilogy(om,abs(Y))
grid
xlabel('\omega ')
ylabel('Y(\ omega)')
axis ([0 20 1e1 1e4])
title('Fourier domain - filtered ')
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19.2 Solved exercises

Prof. T. Erseghe

Exercises 19.2

Evaluate the following Laplace transforms, by either applying the forward rela-

tion or the Laplace properties to known Laplace pairs, and identify their regions

of convergence:

1. Evaluate the Laplace transform of the unit step x(t) = 1(t);

2. Evaluate the Laplace transform of the Dirac delta x(t) = �(t);

3. Evaluate the Laplace transform of the one-sided exponential x(t) = ep1t (t);

4. Evaluate the Laplace transform of the one-sided exponential x(t) = �ep1t 1(�t);

5. Evaluate the Laplace transform of the ramp x(t) = t 1(t);

6. Evaluate the Laplace transform of x(t) = cos(!0t) 1(t);

Solutions.

1. For the unit-step, we apply the forward rule, to have

X(s) =

Z 1

�1
1(t) e�st dt

=

Z 1

0
e�st dt =

e�st

�s

���
1

0

=
0� 1

�s
=

1

s

where the integral converges only if |e�s| = e�<[s] < 1, that is <[s] > 0,

which sets the region of convergence. Correctly, the signal is causal, and

the ROC is the region on the right of the rightmost pole (the pole here is

s = 0).

2. For the delta, we apply the forward rule, to have

X(s) =

Z 1

�1
�(t) e�st dt = e�s·0

= 1

where we used the sifting property of the delta. Note that the integral

converges for any s, hence the region of convergence is the entire complex

plane.



3. For the one-sided complex exponential, we apply the forward rule, to have

X(s) =

Z 1

�1
1(t) ep1t e�st dt

=

Z 1

0
e�(s�p1)t dt =

e�(s�p1)t

�(s� p1)

���
1

0

=
0� 1

�(s� p1)
=

1

s� p1

where the integral converges only if |e�(s�p1)| = e�<[s�p1] < 1, that is

<[s � p1] > 0, which sets the region of convergence to <[s] > <[p1].
Correctly, the signal is causal, and the ROC is the region on the right of

the rightmost pole (the pole here is s = p1).

The result could also have been derived from the couple 1(t) ! 1
s of

Exercise 19.2.1, by applying the modulation rule, providing a shift in the

Laplace domain. The definition of the ROC, in this case, can be obtained

by identifying the poles in the analytical expression
1

s�p1
, and by recalling

that the considered signal is causal.

4. For this one-sided complex exponential, we apply the forward rule, to have

X(s) =

Z 1

�1
�1(�t) ep1t e�st dt

=

Z 0

�1
�e�(s�p1)t dt =

e�(s�p1)t

s� p1

���
0

�1

=
1� 0

s� p1
=

1

s� p1

where in this case the integral converges only if |es�p1 | = e<[s�p1] < 1,

that is <[s�p1] < 0, which sets the region of convergence to <[s] < <[p1].
Correctly, the signal is anti-causal, and the ROC is the region on the left

of the leftmost pole (the only pole here is s = p1). Nicely, note that the

analytical expression we obtain is identical to the one of Exercise 19.2.3,

but with a di↵erent (complementary) region of convergence, thus correctly

establishing that the signal information in the Laplace transform is kept

by the couple “transform plus ROC.”

5. For the ramp we can follow at least two di↵erent paths, exploiting the

Laplace properties. As a first go we exploit the product-by-t property

starting from the pair of Exercise 19.2.1, namely, y(t) = 1(t) and Y (s) =
1/s, to have

x(t) = t y(t) �! X(s) = �Y 0
(s) = � d

ds

✓
1

s

◆
=

1

s2
.

Alternatively, we can observe that

x(t) = 1 ⇤ 1(t) =
Z 1

�1
1(u)1(t� u) du =

⇢
0 , t < 0R t
0 1 du = t , t > 0



so that by the convolution rule we have

X(s) =
1

s
· 1
s
=

1

s2
.

The only pole in the analytical expression is s = 0, therefore, given that

the considered signal is causal, the region of convergence must be <[s] > 0.

6. For the cosinus, we can exploit Euler’s identity to write

x(t) = 1
2 e

j!0t +
1
2 e

�j!0t

and then apply the Laplace couple of Exercise 19.2.3, namely y(t) =

ep1t 1(t) and Y (s) = 1
s�p1

, with p1 = ±j!0. By linearity we obtain

X(s) = 1
2

1

s� j!0
+

1
2

1

s+ j!0
=

s

(s� j!0)(s+ j!0)
=

s

s2 � !2
0

which is an analytic expression containing the poles in s = ±j!0, hence

the region of convergence is <[s] > 0.



FOUNDATIONS OF SIGNALS AND SYSTEMS
19.3 Homework assignment

Prof. T. Erseghe

Exercises 19.3

Evaluate the following Laplace transforms, by either applying the forward rela-
tion or the Laplace properties to known Laplace pairs, and identify their regions
of convergence:

1. Evaluate the Laplace transform of the shifted Dirac delta x(t) = �(t� t0);

2. Evaluate the Laplace transform of the ramp xk(t) =
tk

k! 1(t) (can be done
through the convolution property, by induction);

3. Evaluate the Laplace transform of the exponential ramp xk(t) =
tk

k! e
p1t 1(t);

4. Evaluate the Laplace transform of x(t) = sin(!0t) 1(t);

5. Evaluate the Laplace transform of x(t) = ep1t (t) + ep2t 1(�t);

6. Evaluate the Laplace transform of the rectangle x(t) = rect(t);

7. Evaluate the Laplace transform of the triangle x(t) = triang(t);

8. Evaluate the Laplace transform of the kth derivative of the delta x(t) =
�(k)(t).



Solutions.

1. For the shifted delta, we apply the forward rule, to have

X(s) =

Z 1

�1
�(t� t0) e

�st dt = e�st0

where we used the sifting property of the delta. Note that the integral
converges for any s, hence the region of convergence is the entire complex
plane. Incidentally, the same result can be found by applying the time-
shift rule to the Laplace pair of Exercise 19.2.2.

2. We prove the result by induction, by observing that

xk+1(t) = xk ⇤ 1(t) =
Z 1

�1

uk

k!
1(u)1(t� u) du

=

⇢
0 , t < 0R t
0

uk

k! du = tk+1

(k+1)! , t > 0

Hence by the convolution property we have

Xk+1(s) =
Xk(s)

s

where from Exercise 19.2.1 we know that X0 = 1
s . Therefore, it must be

Xk(s) =
1

sk+1

with a (k + 1)th-order pole at s = 0, hence the corresponding region of
convergence is <[s] > 0.

3. In this case, the easiest way is to apply the complex exponential rule to
the pair of Exercise 19.3.2, namely

yk(t) =
tk

k!
1(t) Yk(s) =

1

sk+1
,

to have

xk(t) = yk(t) e
p1t Xk(s) = Yk(s� p1) =

1

(s� p1)k+1
.

The result has a (k + 1)th-order pole at s = p1, hence the corresponding
region of convergence is <[s] > <[p1].

4. For the sinus, we can exploit Euler’s identity to write

x(t) = 1
2j e

j!0t � 1
2j e

�j!0t



and then apply the Laplace couple of Exercise 19.2.3, namely y(t) =
ep1t 1(t) and Y (s) = 1

s�p1
, with p1 = ±j!0. By linearity we obtain

X(s) = 1
2j

1

s� j!0
� 1

2j

1

s+ j!0
=

!0

(s� j!0)(s+ j!0)
=

!0

s2 � !2
0

which is an analytic expression containing the poles in s = ±j!0, hence
the region of convergence is <[s] > 0.

5. In this case we can directly exploit the outcomes of Exercises 19.2.3 and
4, to have

X(s) =
1

s� p1
� 1

s� p2
where the ROC is such that both integrals converge, that is <[p1] < <[s] <
<[p2]. We observe that under the condition <[p1] < <[p2] we have an
active ROC, while for <[p1] � <[p2] the ROC is the empty set, since in
this case no complex exponential can guarantee the damping e↵ect that
allows both integrals to converge.

6. For the rectangle, we apply the forward rule, to have

X(s) =

Z 1

�1
rect(t) e�st dt

=

Z 1
2

� 1
2

e�st dt =
e�st

�s

���
1
2

� 1
2

=
e�

1
2 s � e

1
2 s

�s
=

e
1
2 s � e�

1
2 s

s
=

sinh( s2 )
s
2

where apparently there is a pole at s = 0, but actually the hyperbolic sine
has a Taylor series starting at s, and it’s a continuous function providing
X(0) = 1. Hence the region of convergence is the entire complex plane.

7. For the triangle we can exploit the convolution rule, to have

x(t) = rect ⇤ rect(t) , X(s) =

✓
sinh( s2 )

s
2

◆2

,

where we exploited the outcomes of Exercise 19.3.6, and where the region
of convergence is the entire complex plane.

8. For the derivatives of the ideal impulse, we can resort to the derivative
property applied k-times to the couple of Exercise 19.2.2, namely

y(t) = �(t) , Y (s) = 1 ,

to have

x(t) = y(k)(t) = �(k)(t) , X(s) = sk Y (s) = sk ,

where the region of convergence is the entire complex plane since there
are no poles.



FOUNDATIONS OF SIGNALS AND SYSTEMS

19.5 Solved exercises

Prof. T. Erseghe

Exercises 19.5

Evaluate the inverse unilateral Laplace transform for the following rational func-

tions:

1. H(s) =
s�3
s+2 ;

2. H(s) =
1

s3+s2�6s ;

3. H(s) =
4s�1

2s2(s�1) .

Solutions.

1. The fraction is not proper, therefore, we first need to map it into a proper

function by polynomial division. We have

x� 3 x+ 2

1� x� 2

� 5

so that

H(s) =
s� 3

s+ 2
= 1� 5

s+ 2

whose inverse transform readily provides

h(t) = �(t)� 5 e
�2t

1(t) .

2. The fraction is proper, therefore we do not need to divide it. We have

H(s) =
1

s(s2 + s� 6)

with poles (solutions) in the quadratic equation of the form

p1,2 =
�1±

p
1 + 24

2
�! p1 = 2 , p2 = �3 .

All the poles are distinct. Hence, we can write

H(s) =
1

s(s� 2)(s+ 3)
=

R0

s
+

R1

s� 2
+

R2

s+ 3



with residues given by

R0 = H(s) · s
���
s=0

=
1

(s� 2)(s+ 3)

���
s=0

= � 1
6

R1 = H(s) · (s� 2)

���
s=2

=
1

s(s+ 3)

���
s=2

=
1
10

R2 = H(s) · (s+ 3)

���
s=�3

=
1

s(s� 2)

���
s=�3

=
1
15

By putting the result together, we find

H(s) = � 1
6

1

s
+

1
10

1

s� 2
+

1
15

1

s+ 3

with inverse transform

h(t) = � 1
6 1(t) +

1
10 e

2t
1(t) +

1
15 e

�3t
1(t) .

3. The fraction is proper, therefore we do not need to divide it. However, in

this case there is a pole of multiplicity 2, hence we can write

H(s) =
4s� 1

2s2(s� 1)
=

R0

s2
+

R1

s
+

R2

s� 1

with residues given by

R0 = H(s) · s2
���
s=0

=
4s� 1

2(s� 1)

���
s=0

=
1
2

R1 =
d

ds

⇣
H(s) · (s� 2)

⌘���
s=0

=
d

ds

⇣
4s� 1

2(s� 1)

⌘���
s=0

=
4

2(s� 1)
� 4s� 1

2(s� 1)2

���
s=0

= �2 +
1
2 = � 3

2

R2 = H(s) · (s� 3)

���
s=1

=
4s� 1

2s2

���
s=1

=
3
2

where we observe that for the pole s = 0 with multiplicity 2, the residue

R1 needs a derivative. By putting together the results, we obtain

H(s) =
1
2

1

s2
� 3

2

1

s
+

3
2

1

s� 1
.

By inverse transform we finally have

h(t) =
1
2 t 1(t)�

3
2 1(t) +

3
2 e

t
1(t) .
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19.6 Homework assignment

Prof. T. Erseghe

Exercises 19.6

Evaluate the inverse unilateral Laplace transform for the following rational func-
tions:

1. H(s) = s+3
(s�j)(s2+1) ;

2. H(s) = 1�s
s2+5s+6 ;

3. H(s) = s2�s
s2+1 ;

4. H(s) = 2s�1
(s2+1)(s2+4) ;

5. H(s) = s2(s+4)
(s+1)(s+2) .



Solutions.

1. The fraction is proper, therefore we do not need to divide it. Furthermore,
we have

H(s) =
s+ 3

(s� j)2(s+ j)
=

A

(s� j)2
+

B

s� j
+

C

s+ j

where

A =
s+ 3

s+ j

���
s=j

=
1� 3j

2

B =
d

ds

⇣
s+ 3

s+ j

⌘���
s=j

=
3� j

4

C =
s+ 3

(s� j)2

���
s=�j

=
j � 3

4
= �B

providing

h(t) =
h
A t e

jt +B e
jt �B e

�jt
i
1(t)

=
h
( 12 � j

3
2 ) t e

jt + ( 12 + j
3
2 ) sin(t)

i
1(t) .

2. The fraction is proper, therefore we do not need to divide it. Furthermore,
we have

H(s) =
1� s

s2 + 5s+ 6
=

1� s

(s+ 3)(s+ 2)
=

A

s+ 2
+

B

s+ 3

where

A =
1� s

s+ 3

���
s=�2

= 3

B =
1� s

s+ 2

���
s=�3

= �4

and therefore
h(t) = 3 e�2t 1(t)� 4 e�3t 1(t) .

3. The fraction is not proper, therefore we need to divide it, obtaining

H(s) =
s
2 � s

s2 + 1
= 1� s+ 1

s2 + 1

which is already in an invertible form involving sinusoids, that is

h(t) = �(t)� cos(t)1(t)� sin(t)1(t) .

4. The fraction is proper, therefore we do not need to divide it. Further-
more, we note that the denominator is a function of s2, with poles of the
form p1,2 = ±j and p3,4 = ±2j, which reveals the presence of sinusoids.
Although we can proceed with the four poles, and identify four residues



(complex valued, but the final result will be real valued because of real-
valued coe�cients), we can exploit a residue mapping in x = s

2 of the
form

1

(x+ 1)(x+ 4)
=

R1

x+ 1
+

R2

x+ 4

where

R0 =
1

x+ 4

���
x=�1

= 1
3

R1 =
1

x+ 1

���
x=�4

= � 1
3

to write

H(s) =
2s� 1

(s2 + 1)(s2 + 4)
=

2
3s�

1
3

s2 + 1
+

� 2
3s+

1
3

s2 + 4

which is already in an invertible form, since it is the linear combination
of sinusoids, providing

h(t) =
h
2
3 cos(t)�

1
3 sin(t)�

2
3 cos(2t) +

1
6 sin(2t)

i
1(t) .

5. The fraction is not proper, therefore we need to divide it. By expanding

H(s) =
s
2(s+ 4)

(s+ 1)(s+ 2)
=

s
3 + 4s2

s2 + 3s+ 2

we have a polynomial division of the form

x
3 + 4x2

x
2 + 3x+ 2

x+ 1� x
3 � 3x2 � 2x

x
2 � 2x

� x
2 � 3x� 2

� 5x� 2

so that

H(s) = s+ 1� 5s+ 2

(s+ 1)(s+ 2)
= s+ 1� A

s+ 1
� B

s+ 2

where

A =
5s+ 2

s+ 2

���
s=�1

= �3

B =
5s+ 2

s+ 1

���
s=�2

= 8

By inversion we finally obtain

h(t) = �
0(t) + �(t) + 3 e�t 1(t)� 8 e�2t 1(t) .
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20.2 Solved exercises

Prof. T. Erseghe

Exercises 20.2

Solve the following problems on di↵erential equations:

1. Consider an RC filter driven by the di↵erential equation

y(t) +RCy
0(t) = x(t) ,

for input voltage x(t) = A and initial condition on the output voltage
y(0�) = V0. Evaluate the output response y(t) for t > 0, and the steady
state condition on y.

2. Consider the di↵erential equation

y
00(t)� y

0(t)� 6y(t) = x
0(t)� 3x(t) ,

for which it is required to evaluate the transfer function H(s) and its
BIBO stability properties, as well as the forced response for x(t) = 1(t);
then consider zero initial conditions and an input x(t) = A cos(!0t + '0)
and identify for which values of !0 the output at steady state assumes the
form y(t) = 1

5x(t� t0).

3. Consider the spring-mass system system described by the di↵erential equa-
tion

x(t) = ky(t) +my
00(t) ,

where the input force is set to x(t) = F0 cos(!0t) and the initial conditions
are y(0�) = y0 and y

0(0�) = v0. Identify the output y(t) for t > 0.

Solutions.

1. If we map the RC filter equation in the (unilateral) Laplace domain, we
have

Y (s) +RC (sY (s)� V0) = X(s)

so that

Y (s) =
1

1 +RC s
X(s) +

RC V0

1 +RC s
=

�

s+ �
X(s) +

V0

s+ �
,

where � = 1
RC

is the key constant of the RC filter. Incidentally, the
impulse response provides

H(s) =
�

s+ �
=) h(t) = �e

��t 1(t) ,



while from the unilateral transform of x(t), namely, X(s) = A/s, we have

Y (s) =
A�

s(s+ �)
+

V0

s+ �
=

A

s
� A

s+ �
+

V0

s+ �

and therefore

y(t) = A (1� e
��t) 1(t)| {z }
yf

+V0 e
��t 1(t)| {z }
yn

.

At steady state, t � 0, the exponential goes to zero and we have y(t) = A,
as depicted in figure.

t

yf (t)

A

t

yn(t)

V0

t

y(t)

V0

A

2. From the di↵erential equation we can straightforwardly identify the trans-
fer function

H(s) =
s� 3

s2 � s� 6
=

s� 3

(s� 3)(s+ 2)
=

1

s+ 2
=) h(t) = e

�2t 1(t)

which is evidently BIBO stable since the pole p1 = �2 has negative real
part. The forced response to the unit step, for which X(s) = 1/s, is simply

Yf (s) = H(s)X(s) =
1

s(s+ 2)
= 1

2

1

s
� 1

2

1

s+ 2

so that
yf (t) =

1
2 (1� e

�2t) 1(t) .



At steady state, instead, the system action on x(t) = A cos(!0t + '0) is
simply that of filter h(t), and from the properties of the Fourier transform
we have

y(t) = |H(j!0)|A cos(!0t+ '0 + arg(H(j!0)))

where

H(j!0) =
1

s+ 2

���
s=j!0

=
1

2 + j!0
.

Hence, it is

y(t) = |H(j!0)|x(t� t0) , t0 = �arg(H(j!0))

!0

the request thus being equivalent to

|H(j!0)| = 1
5 =) 25 = !

2
0 + 4

so that it must be !0 = ±
p
21.

3. By mapping the di↵erential equation in the (unilateral) Laplace domain
we have

X(s) = kY (s) +m(s2Y (s)� sy0 � v0) ,

so that

Y (s) =
X(s) +my0s+mv0

ms2 + k

=

H(s)
z }| {
1
m

1

s2 + !
2
1

X(s)

| {z }
Yf (s)

+ y0
s

s2 + !
2
1

+ v0
!1

!1

s2 + !
2
1| {z }

Yn(s)

, !1 =

r
k

m

where

X(s) =
F0s

s2 + !
2
0

Now, in case !0 6= !1, we have

Yf (s) =
F0s

m

1

(s2 + !
2
0)(s

2 + !
2
1)

= F0s

m


A

s2 + !
2
0

+
B

s2 + !
2
1

�

where

B = �A , A =
1

!
2
1 � !

2
0

so that

Y (s) = F0

m(!2
1�!

2
0)


s

s2 + !
2
0

� s

s2 + !
2
1

�
+ y0

s

s2 + !
2
1

+ v0
!1

!1

s2 + !
2
1



and therefore

y(t) = F0

m(!2
1�!

2
0)

[cos(!0t)� cos(!1t)]
| {z }

forced

+ y0 cos(!1t) +
v0
!1

sin(!1t)
| {z }

natural

for t > 0. Note that the natural response is sinusoidal, i,e, it does not
vanish for large t, and in fact the transfer function here is not BIBO
stable.

In case !0 = !1, instead, it is

Yf (s) =
F0
m

s

(s2 + !
2
0)

2
= F0

2!0m

2!0s

(s2 + !
2
0)

2

where we note that, by the multiplication by t rule, we have

t sin(!0t) =) � d

ds

✓
!0

s2 + !
2
0

◆
=

2!0s

(s2 + !
2
0)

2

and therefore

y(t) = F0
2!0m

t sin(!0t)
| {z }

forced

+ y0 cos(!0t) +
v0
!0

sin(!0t)
| {z }

natural

which diverges for large t since the system is not BIBO stable.
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20.3 Homework assignment

Prof. T. Erseghe

Exercises 20.3

Solve the following problems on di↵erential equations:

1. The input to a system described by di↵erential equation is x(t) = �(t) +

2 e
�t

1(t), and the forced response has, in the unilateral Laplace domain,

the form

Yf (s) =
1

s(s+ a)
,

with steady-state condition yf (t) = 1 for t � 0. We wish to: a) identify

the value of the real parameter a; b) identify the transfer function H(s) as

well as the di↵erential equation to which it relates; c) identify the BIBO

stability properties of the system; d) identify the natural response under

the initial conditions y(0�) = y
0
(0�) = 0 and y

00
(0�) = 1.

2. Consider the system described by the di↵erential equation

y
000
(t) + 2y

00
(t)� 19y

0
(t)� 20y(t) = x

00
(t) + x

0
(t) ,

where we know that p1 = 1 is a pole. We want to: a) determine the transfer

function; b) determine wether the system is BIBO stable; c) determine

the system output with input x(t) = 1(t) and zero initial conditions; d)

identify the transfer function H2(s) of a system that, in cascade with the

given system, makes the cascade BIBO stable.



Solutions.

1. To identify the value of a, we transform the forced response to the time

domain, to have

Yf (s) =
1

s(s+ a)
=

1/a

s
� 1/a

s+ a
,

so that

yf (t) =
1

a

⇣
1� e

�at
⌘
1(t) .

In order to have yf (t) = 1 for t � 0, it needs to be a > 0, so that

yf (t) = 1/a for t � 0, and therefore we have a = 1. The transfer function

is then obtained by exploiting the relation

Yf (s) = H(s)X(s) =
1

s(s+ 1)
X(s) , X(s) = 1 +

2

s+ 1
=

s+ 3

s+ 1
,

so that

H(s) =
Yf (s)

X(s)
=

s+ 1

s(s+ 1)(s+ 3)
=

1

s(s+ 3)
=

1

s2 + 3s
.

with poles p1 = 0 and p2 = �3, which identify a system which is not

BIBO stable. The di↵erential equation follows from H(s) to have

x(t) = y
00
(t) + 3y

0
(t) .

The natural response for y(0�) = y
0
(0�) = 0 is identified by zero valued

initial conditions (the value y
00
(0�) = 1 is not part of the initial conditions)

and therefore yn(t) = 0.

2. The transfer function follows directly from the di↵erential equation, to

have

H(s) =
s
2
+ s

s3 + 2s2 � 19s� 20
=

s(s+ 1)

(s+ 1)(s+ 5)(s� 4)
=

s

(s+ 5)(s� 4)
,

with active poles p2 = �5 and p3 = 4. The system is not BIBO stable since

p3 = 4 has positive real part. The output, which in this case corresponds

to the forced response, is given by

Yf (s) = H(s)X(s) =
s

(s+ 5)(s� 4)
· 1
s
=

1

(s+ 5)(s� 4)

= � 1
9

1

(s+ 5)
+

1
9

1

(s� 4)

to have

yf (t) = � 1
9e

�5t
1(t) +

1
9e

4t
1(t) ,



which diverges, thus confirming that the system is not BIBO stable. To

overcome BIBO stability we need to cancel the pole p3 = 4, for example

using the BIBO stable system

H2(s) =
s� 4

s+ a

with <[a] > 0, to have

H(s)H2(s) =
s

(s+ 5)(s� 4)
· s� 4

s+ a
=

s

(s+ 5)(s+ a)
.
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20.5 Solved exercises

Prof. T. Erseghe

Exercises 20.5

Evaluate the unilateral Z transform, or its inverse, for the following signals:

1. the discrete-time unit-step x(n) = 10(n);

2. the discrete-ramp signals

xk(n) =
1

k!
(n+ k) . . . (n+ 2)(n+ 1) 10(n) ,

with x0(n) = 10(n), to obtain Xk(z) = (1� z
�1)�(k+1);

3. the shifted delta x(n) = �(n� n0) for n0 � 0;

4. the one-sided exponential x(n) = p
n+1
0 10(n);

5. the modulated ramp

xk(n) =
1

k!
(n+ k) . . . (n+ 2)(n+ 1) pn+k+1

0 10(n) ;

6. the sinusoid x(n) = cos(✓0n) 10(n).

Then solve the following di↵erence equations system:

7. Consider the discrete-time system described by equation

x(n) = y(n� 2) + y(n� 1)� 6y(n) ,

where x(n) = A, y(�1) = k1, and y(�2) = k2. Identify the system impulse
response h(n) and the output y(n).

Solutions.

1. For the unit step, we have

X(z) =
1X

n=�1
10(n) z

�n =
1X

n=0

z
�n =

1

1� z�1

valid in the region where |z�1| < 1, that is for |z| > 1.

2. We observe that, starting from x0(n) = 10(n), with transform X0(z) =
1/(1 � z

�1), as we have already seen, signals are defined through the
recursion

xk(n) =
1
k (n+ 1)xk�1(n+ 1)

= 1
k! (n+ k) . . . (n+ 2)(n+ 1) 10(n+ 1)

= 1
k! (n+ k) . . . (n+ 2)(n+ 1) 10(n)



where we replaced 10(n + 1) with 10(n) since in n = �1 the factor n + 1
guarantees that the signal value is zero. The validity of this recursion
suggests proving the result by induction. We therefore assume that the
transform is correct at index k � 1, and want to prove its correctness at
index k. From the recursion, to obtain xk(n) from xk�1(n) we need to: 1)
multiply by n and by the constant factor 1

k , and 2) time-shift by �1, to
have

xk(n) = u(n+ 1) , u(n) = 1
k nxk�1(n) .

Now, from the multiplication-by-n rule, we easily identify the Z transform
of u(n) as

U(z) = � 1
k z

dXk�1(z)

dz

= � 1
k z

d

dz

✓
1

(1� z�1)k

◆

= � 1
k z ·�k

1

(1� z�1)k+1
· z�2 =

z
�1

(1� z�1)k+1

while it is easy to see that

Xk(z) =
1X

n=0

u(n+ 1) z�n

=
1X

m=1

u(m) z�(m�1) =
1X

m=0

u(m) z�(m�1)

= z U(z) =
1

(1� z�1)k+1
,

where m = n+ 1, and where in the second row we exploited the fact that
u(0) = 0 by construction. This proves the result.

3. In this case we simply apply the forward transform

X(z) =
1X

n=0

�(n� n0) z
�n = z

�n0

which is valid for |z| > 0

4. In this case we simply apply the forward transform

X(z) =
1X

n=0

p
n+1
0 z

�n = p0

1X

n=0

(p0z
�1)n =

p0

1� p0z
�1

=
1

p
�1
0 � z�1

with associated ROC of the form |p0z�1| < 1, that is |z| > |p0|.



5. For the modulated ramp we have

xk(n) = p
n+k+1
0 yk(n) , yk(n) =

1

k!
(n+ k) . . . (n+ 2)(n+ 1) 10(n) ;

so that, by the multiplication rule we have

Xn(z) = p
k+1
0 Yn(z/p0) , Yn(z) =

1

(1� z�1)k+1

where we used the result from Exercise 20.5.2. Hence, it is

Xn(z) =
1

(p�1
0 � z�1)k+1

with associated ROC of the form |z| > |p0|.

6. For the sinusoid we simply apply the forward transform

X(z) =
1X

n=0

1
2e

j✓0n z
�n +

1X

n=0

1
2e

�j✓0n z
�n

= 1
2

1

1� ej✓0z�1
+ 1

2

1

1� e�j✓0z�1

= 1
2

2� e
�j✓0z�1 � e

j✓0z�1

(1� ej✓0z�1)(1� e�j✓0z�1)

=
1� cos(✓0)z�1

1� 2 cos(✓0)z�1 + z�2

7. The impulse response can be identified by simply looking at the equation
to get the transfer function

H(z) =
1

z�2 + z�1 � 6
=

1

(z�1 + 3)(z�1 � 2)
=

1
5

z�1 � 2
�

1
5

z�1 + 3

where all the polynomials are in z
�1 (you can replace x = z

�1 if this is
less confusing). Note that the equation is in z

�1, so that the poles are
not 2 and �3, but are p1 = 1

2 and p2 = 1
�3 = � 1

3 , which make the system
BIBO stable. From standard Z couples, we then have

h(n) =
1

5

⇣
p
n+1
2 � p

n+1
1

⌘
10(n) =

1

5

⇣
(� 1

3 )
n+1 � ( 12 )

n+1
⌘
10(n)

In order to identify the full output y(n), we preliminarily need to map the
equation in the unilateral Z domain, to have

X(z) = z
�2

Y (z) + z
�1

y(�1) + y(�2) + z
�1

Y (z) + y(�1)� 6Y (z)

so that

Y (z) =
X(z)

z�2 + z�1 � 6
� k1z

�1 + k1 + k2

z�2 + z�1 � 6
, X(z) =

A

1� z�1
,



where X(z) is the unilateral transform. Hence, for the forced response we
have

Yf (z) =
�A

(z�1 + 3)(z�1 � 2)(z�1 � 1)
=

� A
20

z�1 + 3
+

�A
5

z�1 � 2
+

A
4

z�1 � 1
,

where we used the standard residues method in z
�1 to get the result,

which guarantees that

yf (n) = A

⇣
1
20 (�

1
3 )

n+1 + 1
5 (

1
2 )

n+1 � 1
4

⌘
10(n) .

For the natural response, instead, we have

Yn(z) = � k1z
�1 + k1 + k2

(z�1 + 3)(z�1 � 2)
= �2k1 � k2

5

1

z�1 + 3
� 3k1 + k2

5

1

z�1 � 2

so that
yn(n) =

⇣
2k1�k2

5 (� 1
3 )

n+1 + 3k1+k2
5 ( 12 )

n+1
⌘
10(n) .



FOUNDATIONS OF SIGNALS AND SYSTEMS
20.6 Homework assignment

Prof. T. Erseghe

Exercises 20.6

Solve the following problems on di↵erence equations:

1. Consider a discrete-time system with transfer function

H(z) =
1

(z�1 + 1)(z�1 + 3)
.

We want to know: a) which are the poles; b) whether the system is BIBO

stable or not, and in case it is not identify a limited input signal that

provides an unlimited output; c) the input signal if the output is y(n) =

�(� 1
3 )

n+1
10(n) with zero initial conditions.

2. Consider a discrete-time system with impulse response and input

h(n) = (1 + 2n) (�1)
n
10(n) +

1
2 (�

1
2 )

n
10(n) , x(n) =

1
3 (�

1
3 )

n
10(n) ,

and with zero initial conditions y(n) = 0 for n < 0. We want to know: a)

if the system is BIBO stable; b) the di↵erence equation that describes the

system; and c) the natural and forced responses.



Solutions.

1. By inspection the poles are p1 =
1
�1 = �1 and p2 =

1
�3 . Since P � 1

lays in the unit circle, the system is not BIBO stable. A limited input

providing an unlimited output is one that stimulates the unstable pole,

for example

x(n) = �(n)� 2(�1)
n+1

1(n) =) X(z) = 1 +
2

z�1 + 1
=

z
�1

+ 3

z�1 + 1

to have a forced response of the form

Yf (z) = H(z)X(z) =
1

(z�1 + 1)2

that is

yf (n) = (n+ 1) (�1)
n+2

1(n) .

In the case the initial conditions are zero, then the output is the forced

response, that is we have

Y (z) = Yf (z) = H(z)X(z) =
X(z)

(z�1 + 1)(z�1 + 3)
=

1

z�1 + 3
.

By solving on X we get X(z) = z
�1

+ 1 , that is x(n) = �(n) + �(n� 1).

2. By inspection of the impulse response, we see that it is diverging for large

n, hence the system is not BIBO stable. The di↵erence equation can be

easily obtained from the transfer function, that is the Z transform of h(n).

To this end, we recall the Z pairs

g1(n) = �(�1)
n+1

10(n) =) 1

z�1 + 1

g2(n) = (n+ 1) (�1)
n+2

10(n) =) 1

(z�1 + 1)2

g3(n) = �(� 1
2 )

n+1
10(n) =) 1

z�1 + 2

which allow writing h(n) = �g1(n) + 2g2(n) + g3(n) so that

H(z) = � 1

z�1 + 1
+

2

(z�1 + 1)2
+

1

z�1 + 2

=
z
�1

+ 3

(z�1 + 1)2(z�1 + 2)
=

z
�1

+ 3

z�3 + 4z�2 + 5z�1 + 2

and the equation is

x(n� 1) + 3x(n) = y(n� 3) + 4y(n� 2) + 5y(n� 1) + 2y(n) .



Because of zero initial conditions on y(n) and x(n), the natural response is

yn(n) = 0. For the forced response, instead we can work in the (unilateral)

Z domain to have

Yf (z) = H(z)X(z) =
z
�1

+ 3

(z�1 + 1)2(z�1 + 2)
X(z) , X(z) =

1

z�1 + 3

that is

Yf (z) =
1

(z�1 + 1)2(z�1 + 2)
= � 1

z�1 + 1
+

1

(z�1 + 1)2
+

1

z�1 + 2

so that

yf (n) = �g1(n) + g2(n) + g3(n)

= (2 + n) (�1)
n
10(n) +

1
2 (�

1
2 )

n
10(n) .


