Natural Language Processing

Course Administration & Presentation

Master Degree in Computer Engineering
University of Padua
Lecturer: Giorgio Satta

https://stem.elearning.unipd.it/course/view.php?id=7937

Lecturer

Giorgio Satta

satta@dei.unipd.it

http://www.dei.unipd.it/~satta/

Class hours

Wed 12:30–14:30, under email appointment

Building: DEI/G, fourth floor

Zoom meeting: https://unipd.zoom.us/j/82934199797

Schedule

	Mon	Tue	Wed
12:30-13:30			class hours
13:30–14:30			class hours
14:30–15:30			
15:30–16:30			
16:30–17:30	room Ce		room Ce
17:30–18:30	room Ce		room Ce

Content outline

LECTURE	WEEK	TOPIC	BOOK & CHAPTERS			
PRELIMINARIES						
1	1	Natural language processing: Introduction	Introduction to Natural Language Processing, Eisenstein, Chapter 1			
2	1	Essentials of linguistics	Slides from the lecture			
3	2	Text normalization	Speech and Language Processing, Jurafsky and Martin, Chapter 2			
LARGE LANGUAGE MODELS						
4	2, 3	Word embeddings	Speech and Language Processing, Jurafsky and Martin, Chapter 6 Introduction to Natural Language Processing, Eisenstein, Chapter 14			
5	3, 4	Language models	Speech and Language Processing, Jurafsky and Martin, Chapters 3, 7,			
6	4, 5	Large language models	Speech and Language Processing, Jurafsky and Martin, Chapters 10, 11			
7	5, 6	ChatBots	Speech and Language Processing, Jurafsky and Martin, Chapter 12 Slides from the lecture			
		STRUCURI	ED PREDICTION			
8	6	Part-of-Speech Tagging	Speech and Language Processing, Jurafsky and Martin, Chapter 17 Introduction to Natural Language Processing, Eisenstein, Chapter 7			
9	7	Phrase-Structure Parsing	Speech and Language Processing, Jurafsky and Martin, Chapter 18			
10	7, 8	Dependency Parsing	Speech and Language Processing, Jurafsky and Martin, Chapter 19			
11	9	Semantic Parsing	Speech and Language Processing, Jurafsky and Martin, Chapter 21			
END-TO-END APPLICATIONS						
12	9, 10	Machine Translation	Speech and Language Processing, Jurafsky and Martin, Chapter 13			
13	11	Question Answering	Speech and Language Processing, Jurafsky and Martin, Chapter 14 Introduction to Natural Language Processing, Eisenstein, Chapter 17			
14	11, 12	Dialogue Systems	Speech and Language Processing, Jurafsky and Martin, Chapter 15			
CONCLUSIONS						
15	12	Wrap-up	Slides from the lecture			

Lab sessions

SESSION	WEEK	TASK	MODEL
1	4	Word embedding	Skip-gram
2	5	Fine-tuning	BERT
3	8	Retrieval augmented generation	chatBot

Course requirements

Students should have basic knowledge of the following subjects

- calculus + linear algebra
- machine learning + deep learning
- ullet probability theory + information theory
- computer algorithms + dynamic programming
- automata theory + rewriting grammars + formal languages
- \bullet Python + NumPy + PyTorch

The class also uses basic knowledge from **linguistics**: all of the working notions in linguistics will be properly introduced.

Textbook

Speech and Language Processing (3rd ed., draft)

Dan Jurafsky and James H. Martin January 12th, 2025

https://web.stanford.edu/~jurafsky/slp3/

Several chapters about machine learning, these will be given for granted.

Textbook

Additional textbooks, for **consultation only**:

Introduction to Natural Language Processing

Jacob Eisenstein MIT Press, October 2019

Natural Language Processing A Machine Learning Perspective

Yue Zhang and Zhiyang Teng Cambridge University Press, January 2021

Additional resources

Additional material and resources available through moodle page of the class

- slides, videos and notebooks
- three forums for class, lab, and project discussion

Project

Paper presentation:

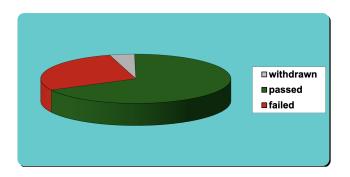
- choose a scientific article from a given list of 2024 NLP conferences
- read, understand, and record a short video presentation

NLP system:

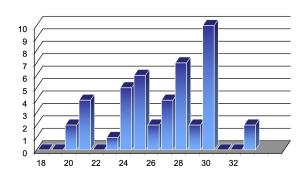
- for the announced task/dataset, provide
 - exploratory data analysis
 - baseline
 - neural approach
 - result comparison with state-of-the-art (SotA) and discussion
- report your project in a notebook

Coursework

Written test	70%
Project	
 NLP system 	25%
2. article presentation	05%
	100%

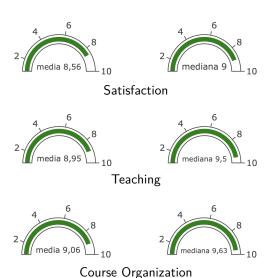

Hard rules

Project groups of maximum two people.


Project must be presented **before** earliest written test of the students in the group.

To pass the final exam you need to score 18/30 or above for both the written test and the project.

Academic year 2023-24



Academic year 2023-24

Evaluation

Academic year 2023-24

