Master Degree in Computer Engineering

# Final Exam for Automata, Languages and Computation

January 21st, 2025

1. [6 points] Assume the NFA N whose transition function  $\delta_N$  is graphically represented below.



Answer the following questions.

- (a) The textbook defines the extended transition function  $\hat{\delta}_N$  as
  - i. base:  $\hat{\delta}_N(q, \epsilon) = \{q\}$
  - ii. induction:  $\hat{\delta}_N(q, xa) = \bigcup_{p \in \hat{\delta}_N(q, x)} \delta_N(p, a)$

Assess whether the string *abab* belongs to the language L(N) by computing the value of  $\hat{\delta}_N(q_0, abab)$ . Report all of the **intermediate steps**.

(b) Transform N into an equivalent deterministic finite automaton D, with transition function  $\delta_D$ , by applying the subset construction together with the lazy evaluation. Depict the graphical representation of the function  $\delta_D$ .

## Solution

- (a) This amounts to tracing each step of the computation of N on the input string *abab* 
  - $\hat{\delta}_N(q_0,\epsilon) = \{q_0\}$
  - $\hat{\delta}_N(q_0, a) = \bigcup_{p \in \{q_0\}} \delta_N(p, a) = \delta_N(q_0, a) = \{q_0, q_1\}$
  - $\hat{\delta}_N(q_0, ab) = \bigcup_{p \in \{q_0, q_1\}} \delta_N(p, b) = \delta_N(q_0, b) \cup \delta_N(q_1, b) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
  - $\hat{\delta}_N(q_0, aba) = \bigcup_{p \in \{q_0, q_2\}} \delta_N(p, a) = \delta_N(q_0, a) \cup \delta_N(q_2, a) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
  - $\hat{\delta}_N(q_0, abab) = \bigcup_{p \in \{q_0, q_1\}} \delta_N(p, b) = \delta_N(q_0, b) \cup \delta_N(q_1, b) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

Since  $q_2$  is a final state for N, we conclude that the input string *abab* is accepted by N.

(b) Recall that the states of D are subsets of the states of N. In addition, the lazy evaluation prescribes that we apply the subset construction only to those states of D that are accessible from the initial state of D.

According to the subset construction, the initial state of D is  $\{q_0\}$ . Starting from  $\{q_0\}$ , the transition function  $\delta_D$  can be obtained as follows

- $\delta_D(\{q_0\}, a) = \{q_0, q_1\}, \, \delta_D(\{q_0\}, b) = \{q_0\}$
- $\delta_D(\{q_0, q_1\}, a) = \{q_0, q_1, q_2\}, \, \delta_D(\{q_0, q_1\}, b) = \{q_0, q_2\}$
- $\delta_D(\{q_0, q_2\}, a) = \{q_0, q_1\}, \ \delta_D(\{q_0, q_2\}, b) = \{q_0\}$
- $\delta_D(\{q_0, q_1, q_2\}, a) = \{q_0, q_1, q_2\}, \ \delta_D(\{q_0, q_1, q_2\}, b) = \{q_0, q_2\}$

The final states of D are  $\{q_0, q_2\}$  and  $\{q_0, q_1, q_2\}$ . The graph representation of the function  $\delta_D$  is reported below



2. [8 points] Let R represent the string reversal operator, which we extend to languages as usual. Consider the following languages, defined over the alphabet  $\Sigma = \{a, b\}$ :

$$L_1 = \{a^m a^n b b a^n \mid m, n \ge 1\}$$
  

$$L_2 = \{b a^m a^n a^n b \mid m, n \ge 1\}$$
  

$$L_3 = L_2 \cdot L_2^R$$

For each of the above languages, state whether it belongs to REG, to CFL\REG, or else whether it is outside of CFL. Provide a mathematical proof for all of your answers.

#### Solution

(a)  $L_1$  belongs to the class CFL $\REG$ .

We first show that  $L_1$  is not a regular language, by applying the pumping lemma for this class. Let N be the pumping lemma constant for  $L_1$ . We choose the string  $w = a^{N+1}bba^N \in L_1$  with  $|w| \ge N$ .

We now consider all possible factorizations of the form w = xyz satisfying the conditions  $|y| \ge 1$ and  $|xy| \le N$  of the pumping lemma. Since  $|xy| \le N$ , string y can only span over the occurrences of a placed at the left of bb, therefore we need to consider only one case in our discussion.

We choose k = 0 in the pumping lemma, and obtain the new string  $w_{k=0} = xy^0 z = xz$ , which has the form  $a^{N+1-|y|}bba^N$ . Since  $|y| \ge 1$ , the number of occurrences of symbol *a* to the left of *bb* is smaller or equal to the number of occurrences of symbol *a* to the right of *bb*, thus violating the definition of  $L_1$ . We conclude that  $L_1$  does not satisfy the pumping lemma, and therefore cannot be a regular language.

As a second part of the answer, we need to show that  $L_1$  belongs to the class CFL. Consider the CFG  $G_1$  with productions:

$$S \to aS \mid aB$$
$$B \to aBa \mid abba$$

It is not too difficult to see that  $L(G_1) = L_1$ .

- (b)  $L_2$  belongs to the class REG. To see this, we observe that we can rewrite the definition of this language as  $L_2 = \{ba^m a^{2n}b \mid m, n \ge 1\}$ . Then the regular expression  $R = baa^*aa(aa)^*b$  generates  $L_2$ .
- (c)  $L_3$  belongs to the class REG. We have already proved that  $L_2$  is in REG. We know from the textbook that the class REG is closed under the reversal operator R. Therefore  $L_2^R$  must be in REG. Finally, we know from the textbook that the class REG is closed under concatenation. Therefore  $L_2L_2^R = L_3$  must be in REG as well.
- 3. [5 points] With reference to push-down automata (PDA), answer the following questions.
  - (a) Provide the definition of language accepted by final state and language accepted by empty stack.
  - (b) Prove that if  $P_N$  is a PDA accepting the language  $N(P_N)$  by empty stack, then there exists a PDA  $P_F$  accepting the language  $L(P_F)$  by final state such that  $L(P_F) = N(P_N)$ .

### Solution

The required construction is reported in Theorem 6.9 from Chapter 6 of the textbook.

- 4. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
  - (a) Let  $L_1$  be the complement of a finite language and let  $L_2$  be a language in CFL. Then the language  $L_1 \cap L_2$  is always in CFL.
  - (b) Let R represent the string reversal operator, which we extend to languages as usual. There exists languages  $L_1$  and  $L_2$  both in REG such that  $L_1L_2^R$  is in CFL\REG.
  - (c) There exists languages  $L_1$  and  $L_2$  both in CFL  $\ REG$  such that  $L_1 \ L_2$  is in REG.
  - (d) The class  $\mathcal{P}$  of languages that can be recognized in polynomial time by a TM is closed under set difference.

### Solution

- (a) True. Every finite language is also in REG, and the class REG is closed under complementation. Therefore  $L_1$  must be in REG. The statement follows from the fact that CFL is close under intersection with REG.
- (b) False. We know from the textbook that the class REG is closed under the reversal operator as well as under the concatenation operator. Then the language  $L_1 L_2^R$  is always in REG.
- (c) True. Let  $L_1 = \{a^n b^n \mid n \ge 0\}$  and let  $L_2 = \{a^n b^n \mid n \ge 1\}$ . We know from the textbook that both  $L_1$  and  $L_2$  are in CFL\REG. We now have  $L_1 \setminus L_2 = \{\epsilon\}$ , which is a regular language.
- (d) True. Let  $L_1$  and  $L_2$  be two arbitrary languages in  $\mathcal{P}$ . From the definition of  $\mathcal{P}$ , there exist TMs  $M_1$  and  $M_2$ , both running in polynomial time, such that  $L(M_1) = L_1$ , and  $L(M_2) = L_2$ . Consider the Turing machine  $M_3$  defined as follows.
  - Given as input a string w,  $M_3$  simulates  $M_1$  and  $M_2$  on w;

• If  $M_1$  accepts and  $M_2$  rejects, then  $M_3$  accepts. Otherwise,  $M_3$  rejects.

It is immediate to see that  $L(M_3) = L_1 \setminus L_2$ . Furthermore, since both  $M_1$  and  $M_2$  run in polynomial time and are simulated only once,  $M_3$  also runs in overall polynomial time.

5. [8 points] In relation to the theory of Turing machines (TMs), answer the following questions. All the TMs introduced below are defined over the input alphabet  $\Sigma = \{0, 1\}$ .

For a string  $w \in \Sigma^*$  and a symbol  $X \in \Sigma$ , we write  $\#_X(w)$  to represent the number of occurrences of X in w. We define  $L_c = \{w \mid w \in \Sigma^*, \ \#_0(w) = \#_1(w)\}$ . Consider the following property of the RE languages

$$\mathcal{P} = \{L \mid L \in \text{RE}, L \subseteq L_c\}$$

and define  $L_{\mathcal{P}} = \{ \mathsf{enc}(M) \mid L(M) \in \mathcal{P} \}.$ 

- (a) Use Rice's theorem to prove that  $L_{\mathcal{P}}$  is not in REC.
- (b) Prove that  $L_{\mathcal{P}}$  is not in RE.
- (c) For TMs  $M_1, M_2$  and  $M_3$ , we write  $enc(M_1, M_2, M_3)$  to represent some fixed binary encoding of these machines. Consider the language

$$L = \{ \mathsf{enc}(M_1, M_2, M_3) \mid L(M_1) \subseteq L(M_2) \subseteq L(M_3) \}.$$

Show that L is not in RE by establishing a reduction  $L_{\mathcal{P}} \leq_m L$ .

#### Solution

- (a) We need to show that the property  $\mathcal{P}$  is not trivial, that is,  $\mathcal{P}$  is neither empty nor equal to RE. First, we observe that the language  $L_c$  is context-free, since a PDA can easily recognize it. Therefore  $L_c$  is also in RE. It is immediate to see that  $L_c \in \mathcal{P}$ ; therefore  $\mathcal{P}$  is not empty. Second, consider the string w = 010,  $w \notin L_c$ . The language  $\{w\}$  is finite and therefore also in RE. It is immediate to see that  $\{w\} \notin \mathcal{P}$ ; therefore  $\mathcal{P}$  is not equal to RE. We can now apply Rice's theorem and conclude that, since  $\mathcal{P}$  is not trivial,  $L_{\mathcal{P}}$  is not in REC.
- (b) We now show that  $L_{\mathcal{P}}$  is not in RE. The most convenient way to do this is to consider the complement language  $\overline{L_{\mathcal{P}}} = L_{\overline{\mathcal{P}}}$ , where  $\overline{\mathcal{P}}$  is the complement of the class  $\mathcal{P}$  with respect to RE and can be specified as

 $\overline{\mathcal{P}} = \{L \mid L \in \text{RE}, \text{ there exists a string } w \in L \text{ such that } w \notin L_c \}.$ 

We specify a nondeterministic TM N such that  $L(N) = L_{\overline{\mathcal{P}}}$ . Since every nondeterministic TM can be converted into a standard TM, this shows that  $L_{\overline{\mathcal{P}}}$  is in RE. Our nondeterministic TM N takes as input the encoding enc(M) of a TM M and performs the following steps.

- N nondeterministically guesses a string  $w \in \Sigma^*$  and checks that  $w \in L_c$  by counting the occurrences of 0 and the occurrences of 1 in w.
- N simulates M on w. If this computation terminates with a positive answer, then N accepts and halts. If the computation terminates with a negative answer, then N does not accept and halts. Finally, if the simulation of M on w does not halt, then N runs for ever and therefore does not accept its input.

It is not difficult to see that  $L(N) = L_{\overline{\mathcal{P}}}$ .

Since  $L_{\overline{\mathcal{P}}}$  is in RE, if its complement language  $L_{\mathcal{P}}$  were in RE as well, then we would conclude that both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have already shown in (a) that  $L_{\mathcal{P}}$  is not in REC. We must therefore conclude that  $L_{\mathcal{P}}$  is not in RE.

(c) Recall from the theory of TM that, in order to provide a reduction  $L_{\mathcal{P}} \leq_m L$ , we need to establish a mapping *m* from input instances of  $L_{\mathcal{P}}$  to output instances of *L* such that positive instances are mapped to positive instances and negative instances are mapped to negative instances. From a known theorem about reductions, since  $L_{\mathcal{P}}$  is not in RE then *L* cannot be in RE as well.

We need to map strings of the form  $\operatorname{enc}(M)$  into strings of the form  $\operatorname{enc}(M_1, M_2, M_3)$ . As already observed,  $L_c$  is in CFL and therefore in RE. Then there must be some TM  $M_c$  such that  $L(M_c) = L_c$ . Let also  $M_{\emptyset}$  be some TM such that  $L(M_{\emptyset}) = \emptyset$ . We then set  $M_1 = M_{\emptyset}$ ,  $M_2 = M$ , and  $M_3 = M_c$ .

To conclude the proof, we now show the desired relation between the mapped instances, by means of the following chain of logical equivalences:

$$\begin{array}{lll} \mathsf{enc}(M) \in L_{\mathcal{P}} & \text{iff} & L(M) \in \mathcal{P} & (\text{definition of } L_{\mathcal{P}}) \\ & \text{iff} & L(M) \subseteq L_c & (\text{definition of } \mathcal{P}) \\ & \text{iff} & \emptyset \subseteq L(M) \subseteq L_c & (\text{from set theory}) \\ & \text{iff} & L(M_1) \subseteq L(M_2) \subseteq L(M_3) & (\text{definition of our reduction}) \\ & \text{iff} & \mathsf{enc}(M_1, M_2, M_3) \in L & (\text{definition of } L) \ . \end{array}$$