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1. [6 points] Assume the NFA N whose transition function δN is graphically represented below.
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Answer the following questions.

(a) The textbook defines the extended transition function δ̂N as

i. base: δ̂N (q, ϵ) = {q}
ii. induction: δ̂N (q, xa) = ∪p∈δ̂N (q,x) δN (p, a)

Assess whether the string abab belongs to the language L(N) by computing the value of δ̂N (q0, abab).
Report all of the intermediate steps.

(b) Transform N into an equivalent deterministic finite automaton D, with transition function δD,
by applying the subset construction together with the lazy evaluation. Depict the graphical
representation of the function δD.

Solution

(a) This amounts to tracing each step of the computation of N on the input string abab

• δ̂N (q0, ϵ) = {q0}
• δ̂N (q0, a) = ∪p∈{q0} δN (p, a) = δN (q0, a) = {q0, q1}
• δ̂N (q0, ab) = ∪p∈{q0,q1} δN (p, b) = δN (q0, b) ∪ δN (q1, b) = {q0} ∪ {q2} = {q0, q2}
• δ̂N (q0, aba) = ∪p∈{q0,q2} δN (p, a) = δN (q0, a) ∪ δN (q2, a) = {q0, q1} ∪ ∅ = {q0, q1}
• δ̂N (q0, abab) = ∪p∈{q0,q1} δN (p, b) = δN (q0, b) ∪ δN (q1, b) = {q0} ∪ {q2} = {q0, q2}

Since q2 is a final state for N , we conclude that the input string abab is accepted by N .

(b) Recall that the states of D are subsets of the states of N . In addition, the lazy evaluation
prescribes that we apply the subset construction only to those states of D that are accessible
from the initial state of D.

According to the subset construction, the initial state of D is {q0}. Starting from {q0}, the
transition function δD can be obtained as follows



• δD({q0}, a) = {q0, q1}, δD({q0}, b) = {q0}
• δD({q0, q1}, a) = {q0, q1, q2}, δD({q0, q1}, b) = {q0, q2}
• δD({q0, q2}, a) = {q0, q1}, δD({q0, q2}, b) = {q0}
• δD({q0, q1, q2}, a) = {q0, q1, q2}, δD({q0, q1, q2}, b) = {q0, q2}

The final states of D are {q0, q2} and {q0, q1, q2}. The graph representation of the function δD is
reported below
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2. [8 points] Let R represent the string reversal operator, which we extend to languages as usual.
Consider the following languages, defined over the alphabet Σ = {a, b}:

L1 = {amanbban | m,n ≥ 1}
L2 = {bamananb | m,n ≥ 1}
L3 = L2 · LR

2

For each of the above languages, state whether it belongs to REG, to CFL∖REG, or else whether it
is outside of CFL. Provide a mathematical proof for all of your answers.

Solution

(a) L1 belongs to the class CFL∖REG.

We first show that L1 is not a regular language, by applying the pumping lemma for this class.
Let N be the pumping lemma constant for L1. We choose the string w = aN+1bbaN ∈ L1 with
|w| ≥ N .

We now consider all possible factorizations of the form w = xyz satisfying the conditions |y| ≥ 1
and |xy| ≤ N of the pumping lemma. Since |xy| ≤ N , string y can only span over the occurrences
of a placed at the left of bb, therefore we need to consider only one case in our discussion.

We choose k = 0 in the pumping lemma, and obtain the new string wk=0 = xy0z = xz, which
has the form aN+1−|y|bbaN . Since |y| ≥ 1, the number of occurrences of symbol a to the left of bb
is smaller or equal to the number of occurrences of symbol a to the right of bb, thus violating the
definition of L1. We conclude that L1 does not satisfy the pumping lemma, and therefore cannot
be a regular language.

As a second part of the answer, we need to show that L1 belongs to the class CFL. Consider the
CFG G1 with productions:

S → aS | aB
B → aBa | abba

It is not too difficult to see that L(G1) = L1.



(b) L2 belongs to the class REG.

To see this, we observe that we can rewrite the definition of this language as L2 = {bama2nb |
m,n ≥ 1}. Then the regular expression R = baa∗aa(aa)∗b generates L2.

(c) L3 belongs to the class REG.

We have already proved that L2 is in REG. We know from the textbook that the class REG is
closed under the reversal operator R. Therefore LR

2 must be in REG. Finally, we know from the
textbook that the class REG is closed under concatenation. Therefore L2L

R
2 = L3 must be in

REG as well.

3. [5 points] With reference to push-down automata (PDA), answer the following questions.

(a) Provide the definition of language accepted by final state and language accepted by empty stack.

(b) Prove that if PN is a PDA accepting the language N(PN ) by empty stack, then there exists a
PDA PF accepting the language L(PF ) by final state such that L(PF ) = N(PN ).

Solution

The required construction is reported in Theorem 6.9 from Chapter 6 of the textbook.

4. [6 points] Assess whether the following statements are true or false, providing motivations for all of
your answers.

(a) Let L1 be the complement of a finite language and let L2 be a language in CFL. Then the language
L1 ∩ L2 is always in CFL.

(b) Let R represent the string reversal operator, which we extend to languages as usual. There exists
languages L1 and L2 both in REG such that L1L

R
2 is in CFL∖REG.

(c) There exists languages L1 and L2 both in CFL∖REG such that L1 ∖ L2 is in REG.

(d) The class P of languages that can be recognized in polynomial time by a TM is closed under set
difference.

Solution

(a) True. Every finite language is also in REG, and the class REG is closed under complementation.
Therefore L1 must be in REG. The statement follows from the fact that CFL is close under
intersection with REG.

(b) False. We know from the textbook that the class REG is closed under the reversal operator as
well as under the concatenation operator. Then the language L1L

R
2 is always in REG.

(c) True. Let L1 = {anbn | n ≥ 0} and let L2 = {anbn | n ≥ 1}. We know from the textbook that
both L1 and L2 are in CFL∖REG. We now have L1 ∖ L2 = {ϵ}, which is a regular language.

(d) True. Let L1 and L2 be two arbitrary languages in P. From the definition of P, there exist TMs
M1 and M2, both running in polynomial time, such that L(M1) = L1, and L(M2) = L2.

Consider the Turing machine M3 defined as follows.

• Given as input a string w, M3 simulates M1 and M2 on w;



• If M1 accepts and M2 rejects, then M3 accepts. Otherwise, M3 rejects.

It is immediate to see that L(M3) = L1 ∖ L2. Furthermore, since both M1 and M2 run in
polynomial time and are simulated only once, M3 also runs in overall polynomial time.

5. [8 points] In relation to the theory of Turing machines (TMs), answer the following questions. All
the TMs introduced below are defined over the input alphabet Σ = {0, 1}.
For a string w ∈ Σ∗ and a symbol X ∈ Σ, we write #X(w) to represent the number of occurrences of
X in w. We define Lc = {w | w ∈ Σ∗, #0(w) = #1(w)}. Consider the following property of the RE
languages

P = {L | L ∈ RE, L ⊆ Lc}

and define LP = {enc(M) | L(M) ∈ P}.

(a) Use Rice’s theorem to prove that LP is not in REC.

(b) Prove that LP is not in RE.

(c) For TMs M1,M2 and M3, we write enc(M1,M2,M3) to represent some fixed binary encoding of
these machines. Consider the language

L = {enc(M1,M2,M3) | L(M1) ⊆ L(M2) ⊆ L(M3)} .

Show that L is not in RE by establishing a reduction LP ≤m L.

Solution

(a) We need to show that the property P is not trivial, that is, P is neither empty nor equal to
RE. First, we observe that the language Lc is context-free, since a PDA can easily recognize it.
Therefore Lc is also in RE. It is immediate to see that Lc ∈ P; therefore P is not empty. Second,
consider the string w = 010, w ̸∈ Lc. The language {w} is finite and therefore also in RE. It is
immediate to see that {w} ̸∈ P; therefore P is not equal to RE. We can now apply Rice’s theorem
and conclude that, since P is not trivial, LP is not in REC.

(b) We now show that LP is not in RE. The most convenient way to do this is to consider the
complement language LP = LP , where P is the complement of the class P with respect to RE
and can be specified as

P = {L | L ∈ RE, there exists a string w ∈ L such that w ̸∈ Lc} .

We specify a nondeterministic TM N such that L(N) = LP . Since every nondeterministic TM
can be converted into a standard TM, this shows that LP is in RE. Our nondeterministic TM N
takes as input the encoding enc(M) of a TM M and performs the following steps.

• N nondeterministically guesses a string w ∈ Σ∗ and checks that w ∈ Lc by counting the
occurrences of 0 and the occurrences of 1 in w.

• N simulates M on w. If this computation terminates with a positive answer, then N accepts
and halts. If the computation terminates with a negative answer, then N does not accept
and halts. Finally, if the simulation of M on w does not halt, then N runs for ever and
therefore does not accept its input.



It is not difficult to see that L(N) = LP .

Since LP is in RE, if its complement language LP were in RE as well, then we would conclude
that both languages are in REC, from a theorem in Chapter 9 of the textbook. But we have
already shown in (a) that LP is not in REC. We must therefore conclude that LP is not in RE.

(c) Recall from the theory of TM that, in order to provide a reduction LP ≤m L, we need to establish
a mapping m from input instances of LP to output instances of L such that positive instances
are mapped to positive instances and negative instances are mapped to negative instances. From
a known theorem about reductions, since LP is not in RE then L cannot be in RE as well.

We need to map strings of the form enc(M) into strings of the form enc(M1,M2,M3). As already
observed, Lc is in CFL and therefore in RE. Then there must be some TM Mc such that L(Mc) =
Lc. Let also M∅ be some TM such that L(M∅) = ∅. We then set M1 = M∅, M2 = M , and
M3 = Mc.

To conclude the proof, we now show the desired relation between the mapped instances, by means
of the following chain of logical equivalences:

enc(M) ∈ LP iff L(M) ∈ P (definition of LP)
iff L(M) ⊆ Lc (definition of P)
iff ∅ ⊆ L(M) ⊆ Lc (from set theory)
iff L(M1) ⊆ L(M2) ⊆ L(M3) (definition of our reduction)
iff enc(M1,M2,M3) ∈ L (definition of L) .


