
Data preprocessing
Data visualization 2024/2025

Matteo Ceccarello

2025-01-15

These notes cover a set of basic tools to import data and
manipulate it prior to visualization. Your might object
that data processing is orthogonal to data visualization,
and you would be right. However, data visualization skills
without any data to visualize are rather useless. In this
notes we will thus look at a few tools, tricks, and advice
to handle and organize our data.

File reading

There are several formats in which you can find data, which
can be broadly classified in two types:

• Textual
• Binary

Each comes with its set of strenghts and weaknesses. Tex-
tual data is:

• Human readable
• (possibly) Easy to parse
• Makes it easy to interoperate between different envi-

ronments
• Slow
• May waste space (but compression helps)

On the other hand, binary data is:

• Fast
• Compact
• May require specialized software to be read
• More difficult to access in different environments
• Obviously non human readable

Textual format: CSV

One of the simplest textual formats is the CSV format,
which stands for Comma Separated Values. Files in this
format contain a record for each line, with the first line be-
ing usually a header, as shown in the following example.

state, year, energy
DE, 2015, 8.803
IT, 2015, 9.879
DE, 2016, 8.917
IT, 2016, 10.062

1

In the above example, the fields of each record are sepa-
rated with commas (hence the name of the file format).
To read the file using R you can use the read_csv func-
tion from the tidyverse library.1 The following snippet 1 There is an older read.csv from the standard library.

While it works, the newer read_csv function is faster and
has better handling of corner cases.

provides an example.

library(tidyverse)

read_csv("data/example.csv")

The delimiter separating fields isn’t always a comma, hence
in the tidyverse library we also have functions such as
read_tsv and read_delim to handle different types of files.
There is a handy cheatsheet2 listing all the available func- 2 https://rstudio.github.io/cheatsheets/html/data-

import.htmltions. The cheatsheet also lists functions to interact with
files created by Excel.

Handling missing values in the input

Most of the times we do not have all the information for all
the records in our data. In CSV files these missing values
are encoded by either omitting the field (like in the second
line of the example below) or by using a special character
(like in the third line, where the : character denotes a
missing value).

state,year,energy
DE,2015,8.803
IT,2015,
DE,:,8.917
IT,2016,10.062

To handle these cases, the read_csv accepts the argument
na that allows to specify which strings encode missing val-
ues in the data at hand. The strings to be interpreted as
missing values are passed as a vector.

read_csv("data/example_na.csv", na=c("", ":"))

A tibble: 4 x 3
state year energy
<chr> <dbl> <dbl>

1 DE 2015 8.80
2 IT 2015 NA
3 DE NA 8.92
4 IT 2016 10.1

Note that the output contains has missing values encoded
with NA in the appropriate places.

Specifying column names manually

Sometimes files are missing the header with the column
names, like in the following example.

2

https://rstudio.github.io/cheatsheets/html/data-import.html
https://rstudio.github.io/cheatsheets/html/data-import.html
https://rstudio.github.io/cheatsheets/html/data-import.html

DE,2015,8.803
IT,2015,9.879
DE,2016,8.917
IT,2016,10.062

We can fix this situation easily by passing a vector of col-
umn names to the read_csv function by means of the
col_names argument.

read_csv(
"data/example_no_names.csv",
col_names = c(
"state",
"year",
"energy"

)
)

A tibble: 4 x 3
state year energy
<chr> <dbl> <dbl>

1 DE 2015 8.80
2 IT 2015 9.88
3 DE 2016 8.92
4 IT 2016 10.1

Data frames

A data frame is the most common way to represent tabular
data in R. You can think of it as a table in a spreadsheet pro-
gram like Excel. A data frame in fact has several columns
with names and many rows.

One of the key points is that we usually don’t manipulate
single values directly. Rather, entire columns are processed
all in one go.

The tidiverse library provides an enhanced data frame
implementation, called a tibble that provides:

• better printing
• better type handling
• better defaults for building and subsetting
• possibility to use invalid identifiers as column names

As a running example in what follows we will use a table
of all the flightrs leaving New York airports in 2013. This
data is provided in the package nycflights13 which you
can install with:

install.packages("nycflights13")

This package contains 5 datasets:

nycflights13::airlines
nycflights13::airports
nycflights13::flights
nycflights13::planes
nycflights13::weather

3

Which you can easily inspect by typing in the console the
following command:

View(nycflights13::flights)

Printing the flighs data frame provides some useful infor-
mation, like the size (19 columns and 336,776 rows), the
column names, and the data types of each column

A tibble: 336,776 x 19
year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846

10 2013 1 1 558 600 -2 753 745
i 336,766 more rows
i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
hour <dbl>, minute <dbl>, time_hour <dttm>

Data processing with dplyr

The dplyr library is part of the tidyverse and provides
a consistent set of functions to solve most data manipu-
lation problems3. When loading the tidyverse library 3 In many respects, the aim of dplyr is similar to that

of pandas for Python.with library(tidyverse), all the functions from dplyr
are loaded as well.

One of the main selling points of dplyr is the consistency
of its API4. 4 Application Programming Interface, i.e. the set of func-

tions and calling conventions that a library exposes.
The call to most dplyr functions looks like the following:

function_name(data_frame, ...other arguments...)

The first argument is a table of data, and then there are
other arguments that are specific to each function. In par-
ticular, in ...other arguments... you can easily refer
to column names of the data table in the first argument.

In what follows keep in mind this calling convention, as it
will be key part of building data processing pipelines.

In the following we will see some of the most important
functions in the package, using the nycflights13 datasets
as a working example. In particular, the following code
snippets assume that library(nycflights13) has been
called.

An important thing to know is that all the following func-
tions return a new table, rather than modifying the input
table in place.

4

https://dplyr.tidyverse.org/
https://pandas.pydata.org/

Filtering rows

Exercises

• How can we filter all the flights where the delay
was less than 10?

• How can we filter all the flights with missing
departure delay?

One of the most basic operations is to select a subset of the
rows (or observations) of a table according to some predi-
cate on the values. This is accomplished with the filter
function that takes as a first argument a table. The other
arguments are predicates over columns. In the following
example we select the rows where the month column takes
value 1, and the day column takes values larger than or
equal to 15.

filter(flights, month == 1, day >= 15)

Note that the predicates are over entire columns, and that
column names are referred to unquoted.

Sorting data

Another basic need is to arrange data according to the
values in some column. We can use the arrange function
for that. After the usual table as a first argument, it takes
the columns to sort on. The order is increasing.

arrange(flights, dep_delay)

If we want to sort in decreasing (or descending) order we
have to wrap the column name in a call to the desc func-
tion.

arrange(flights, desc(dep_delay))

Getting column names

To obtain a list of column names we can use the names
function.

names(flights)

Selecting columns

While filter slices a table horizontally, the select func-
tion selects a subset of the columns5. 5 This is very similar to the SELECT statement in SQL.

select(flights, day, tailnum, distance)

As usual, the first argument is the table, the others are
column names

A related function is rename, that returns a copy of the
table with some column names changed.

rename(flights, tail_num = tailnum)

5

Creating new columns

Exercise

How can we add a column with the logarithm of the
distance?

We can also create a copy of the table with new columns
that are the result of computations over already_existing
columns.

In the following example we create a new column speed
that reports the average speed of each flight.

speed_data <- select(flights, distance, air_time)
mutate(speed_data, speed = distance / air_time * 60)

A tibble: 336,776 x 3
distance air_time speed

<dbl> <dbl> <dbl>
1 1400 227 370.
2 1416 227 374.
3 1089 160 408.
4 1576 183 517.
5 762 116 394.
6 719 150 288.
7 1065 158 404.
8 229 53 259.
9 944 140 405.

10 733 138 319.
i 336,766 more rows

Note that, despite the name, the mutate function returns a
new data frame rather than modifying its input. Also, note
that all arguments except for the first take the following
form:

column_name = column_expression

where the column expression is any operation involving one
or more columns. The operations are vectorized, i.e. they
are applied to each individual value separately.

Conditional mutation

Sometimes we need to apply a function only to a subset
of the rows, leaving the other untouched but still retaining
them. In this case using filter would not cut it, as it
discards some rows.

For this kind of situation there is a helper function if_else
which takes three arguments: a condition and the values
to be used when the condition is false or true.

if_else(condition, value_if_true, value_if_valse)

In the followin g example we are adding to the flights
dataset a column with a label that reports whether the
flight departed with some delay.

mutate(flights,
delayed_str = if_else(dep_delay > 0, "delayed", "not_delayed"))

6

Counting

Use the count function to count how many rows are in the
table.

count(flights)

A useful variant is to count the number of entries for
each group defined by a given column (or combination of
columns).

For instance, the following snippet counts how many rows
we have for each month in the flights dataset.

count(flights, month)

Summarising and aggregating data

A more general variant of the above requires to aggregate
data, for instance computing the mean or maximum of a
column.

The function to achieve this is summarise, whose usage is
exemplified in the following where we compute the average
delay.

Note that we are passing the na.rm argument to the
function mean. This is because a single NA value in the
dep_delay column would make the entire average NA,
given that NAs propagate in computations. The na.rm
parameter allows to instruct the mean function to ignore
missing values in the computation. Other aggregation
functions (like median, max, min, quantile) have the
same parameter with the same goal.

summarise(
flights,
avg_delay = mean(dep_delay, na.rm = TRUE)

)

A tibble: 1 x 1
avg_delay

<dbl>
1 12.6

Note that the syntax is similar to that of mutate: there
are column expressions whose results are assigned to new
columns (in this example to the avg_delay column). The
difference lies in the type of column expression: for mutate
we need something that returns the same number of rows
as the input, whereas for summarise we need to coalesce
all values into one.

Exercises

• How can we get the maximum and minimum
delay by year and month?

• How can you replicate the behavior of
count(flights, month)? You can use group_by,
summarise and n() (which returns the number of
rows in a group).

• Come up with a way to compute the fraction of
delayed flights per month

Doing summarization a the table-level is useful, but even
more useful is to perform summarization by groups. To
this end we can create groups – defined by data values –
using the group_by function.

grouped_flights <- group_by(flights, year, month)

The grouped_flights variable now holds the same data
as flights but partitioned by all possible combinations
of year and month (i.e. year==2013 and month==1,
year==2013 and month==2, and so on).

Calling summarize on this dataset results in the applica-
tion of the summarization function to each group sepa-
rately:

7

summarise(grouped_flights, avg_delay = mean(dep_delay, na.rm = TRUE))

A tibble: 12 x 3
Groups: year [1]

year month avg_delay
<int> <int> <dbl>

1 2013 1 10.0
2 2013 2 10.8
3 2013 3 13.2
4 2013 4 13.9
5 2013 5 13.0
6 2013 6 20.8
7 2013 7 21.7
8 2013 8 12.6
9 2013 9 6.72

10 2013 10 6.24
11 2013 11 5.44
12 2013 12 16.6

Piping

Instead of repeatedly assigning the result of each function
to a variable that will be used just once, you can use the
|> operator.

This operator takes the result of the function on its left and
makes it the first argument of the function on its right.

flights |>
select(month, distance, air_time) |>
mutate(speed = distance / air_time * 60) |>
group_by(month) |>
summarise(avg_speed = mean(speed, na.rm=TRUE))

The above code takes the flights dataset and pipes it
into the select function to pick a subset of the columns,
then pipes the result into mutate to add a new column,
then groups by month and computes the monthly average
speed.

In the rest of the course we will make heavy use of pipes
to simplify the code.

Joining tables

Sometimes the information we need is in different data
frames and we need to join them. This is a family of
operations borrowed from the database world. The basic
idea is that we use the values taken by some columns in
one table to match rows in the other table.

Figure 1: The tables we will use for the join examples.
There are several types of joins which all share a common
idea: given two tables, we are interested in a subset of the
cartesian product of the rows. The basic setup is displayed
in Figure Figure 1. We have two tables x and y, both with
two columns. The first column, with digits, will be used
as a key column, the others will be value columns.

Figure 2: Inner join.
8

The most common join type we will use is the inner join.
In the inner join, we keep only the pairs of rows that share
the same key values. In Figure Figure 2 this means that
only the rows corresponding to rows with keys 1 and 2 are
part of the output.

Sometimes we are interest in keeping all the rows from
either of the two tables of the join. These are called outer
joins and there exist three variants:

Figure 3: Left outer join.

Figure 4: Right outer join.

Figure 5: Full outer join.

• Left outer joins, keeping all rows from the left table
(Figure Figure 3)

• Right outer joins, keeping all rows from the right
table (Figure Figure 4)

• Full outer joins, keeping all rows from both tables
(Figure Figure 5)

In all cases, rows from one table that do not have a match-
ing row in the other table have the relevant entries filled
with NA values.

The tidyverse package provides functions for all these
use cases. In particular, if key_column is the name of
the column by which we want to join then the following
computes an inner join.

inner_join(x,y, by="key")

The following three functions, instead compute a left, a
right, and a full outer join.

left_join(x,y, by="key")

right_join(x,y, by="key")

full_join(x,y, by="key")

As an example, the following snippet of code selects a sub-
set of the columns from the flights table and from the
planes tables (which contain information about the air-
planes). Both tables share the tailnum of the airplane
operating the flight. The last line joins the two datasets
by the tailnum column.

flights2 <- select(flights, year, origin, dest, tailnum)
planes2 <- select(planes, tailnum, year, manufacturer, model)
inner_join(flights2, planes2, by="tailnum")

A tibble: 284,170 x 7
year.x origin dest tailnum year.y manufacturer model
<int> <chr> <chr> <chr> <int> <chr> <chr>

1 2013 EWR IAH N14228 1999 BOEING 737-824
2 2013 LGA IAH N24211 1998 BOEING 737-824
3 2013 JFK MIA N619AA 1990 BOEING 757-223
4 2013 JFK BQN N804JB 2012 AIRBUS A320-232
5 2013 LGA ATL N668DN 1991 BOEING 757-232
6 2013 EWR ORD N39463 2012 BOEING 737-924ER
7 2013 EWR FLL N516JB 2000 AIRBUS INDUSTRIE A320-232
8 2013 LGA IAD N829AS 1998 CANADAIR CL-600-2B19
9 2013 JFK MCO N593JB 2004 AIRBUS A320-232

10 2013 JFK PBI N793JB 2011 AIRBUS A320-232
i 284,160 more rows

9

Notice that the year column is present in both datasets,
with different meanings. In flights is the year of the
flights, in planes it is the year in which the plane was
manufactured. To disabinguate, the inner_join function
automatically renames the two columns in the output.

Further information is provided in the cheatsheet at https:
//rstudio.github.io/cheatsheets/html/data-transformati
on.html.

Tidy data

Data can come in many possible arrangements, but a par-
ticularily convenient one is tidy data. In simple terms, for
data to be tidy:

• Each variable must have its own column;
• Each observation must have its own row;
• Each value must have its own cell.

Figure Figure 6 exemplifies such dataset. Tidy data is
easier to process and visualize.

Figure 6: The characteristics of a tidy dataset.

There are a couple of alarm bells that help in finding out
when data is not tidy:

• Column names that should be values
• Values that should be column names

Most datasets are not tidy, since:

• One variable might be spread across multiple
columns;

• One observation might be scattered across multiple
rows.

We mainly have two functions to fix these two problems:

• pivot_longer
• pivot_wider

For instance, the following dataset is not tidy because
column names are actually values, in particular they are
years.

table4b

A tibble: 3 x 3
country `1999` `2000`
<chr> <dbl> <dbl>

1 Afghanistan 19987071 20595360
2 Brazil 172006362 174504898
3 China 1272915272 1280428583

To fix this situation we use the pivot longer function,
which reshapes the table making the selected column
names into values of a new column.

10

https://rstudio.github.io/cheatsheets/html/data-transformation.html
https://rstudio.github.io/cheatsheets/html/data-transformation.html
https://rstudio.github.io/cheatsheets/html/data-transformation.html
https://rstudio.github.io/cheatsheets/html/data-transformation.html

pivot_longer(
table4b,
`1999`:`2000`, # selected column names
names_to = "year", # name of the new column
values_to = "population" # name of the column

that will hold the values
previously scattered
across multiple columns.

)

A tibble: 6 x 3
country year population
<chr> <chr> <dbl>

1 Afghanistan 1999 19987071
2 Afghanistan 2000 20595360
3 Brazil 1999 172006362
4 Brazil 2000 174504898
5 China 1999 1272915272
6 China 2000 1280428583

Figure 7: The effect of the pivot_longer operation.

This dataset is not tidy because the type column contains
values that should actually be column names themselves.

table2

A tibble: 12 x 4
country year type count
<chr> <dbl> <chr> <dbl>

1 Afghanistan 1999 cases 745
2 Afghanistan 1999 population 19987071
3 Afghanistan 2000 cases 2666
4 Afghanistan 2000 population 20595360
5 Brazil 1999 cases 37737
6 Brazil 1999 population 172006362
7 Brazil 2000 cases 80488
8 Brazil 2000 population 174504898
9 China 1999 cases 212258

10 China 1999 population 1272915272
11 China 2000 cases 213766
12 China 2000 population 1280428583

To fix it we use the pivot_wider function, which takes a
table as a first argument, and parameters to know from
which columns it should take names and values.

11

pivot_wider(table2, names_from=type, values_from=count)

A tibble: 6 x 4
country year cases population
<chr> <dbl> <dbl> <dbl>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

Figure 8: The effect of the pivot_wider operation.

Finally, the following table is not tidy because the values
in the rate column are compound, they should actually
be separated in two values.

table3

A tibble: 6 x 3
country year rate
<chr> <dbl> <chr>

1 Afghanistan 1999 745/19987071
2 Afghanistan 2000 2666/20595360
3 Brazil 1999 37737/172006362
4 Brazil 2000 80488/174504898
5 China 1999 212258/1272915272
6 China 2000 213766/1280428583

The fix is provided by the separate function, which, along
with the table to work on, takes the column to separate
and the names of the resulting columns. The separation
happens on any non alphanumeric character, or on the
character provided by the sep argument. Finally, provid-
ing the convert argument allows to automatically convert
the data.

12

separate(table3, rate, into = c("cases", "population"), convert = TRUE, sep="/")

A tibble: 6 x 4
country year cases population
<chr> <dbl> <int> <int>

1 Afghanistan 1999 745 19987071
2 Afghanistan 2000 2666 20595360
3 Brazil 1999 37737 172006362
4 Brazil 2000 80488 174504898
5 China 1999 212258 1272915272
6 China 2000 213766 1280428583

We close with a small data cleaning exercise using the en-
ergy productivity data6. 6 Available from http://data.europa.eu/euodp/en/data/dataset/xWiT1fbpF5q1ZCvLQc2upg

unit,geo\time 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
EUR_KGOE,AT 8.688 8.340 8.429 8.083 8.151 8.060 8.265 8.721 8.779 8.899 8.489 9.000 9.088 8.984 9.374 9.244 9.298 9.353 9.820 9.761
EUR_KGOE,BA : : : : : : : : : : : : : : 2.240 2.242 2.113 2.184 2.046 2.176
EUR_KGOE,BE 4.730 4.829 4.953 4.767 4.906 5.051 5.182 5.376 5.234 5.523 5.256 5.756 6.092 5.899 6.388 6.470 6.146 6.174 6.297 6.357
EUR_KGOE,BG 1.315 1.306 1.417 1.451 1.587 1.607 1.666 1.810 1.943 2.129 2.113 2.021 2.118 2.284 2.226 2.214 2.348 2.348 2.412 2.522
EUR_KGOE,CY 5.344 5.503 5.786 5.513 6.323 6.004 6.062 6.166 6.126 6.210 6.591 6.696 6.878 7.205 6.968 7.009 6.895 7.055 7.231 7.437
EUR_KGOE,CZ 2.793 2.805 2.811 2.788 2.850 3.068 3.203 3.389 3.545 3.598 3.473 3.684 3.687 3.668 3.879 4.084 4.227 4.261 4.380 4.548
EUR_KGOE,DE 6.833 6.754 6.889 6.820 6.850 6.930 6.981 7.548 7.528 7.591 7.520 8.239 8.206 8.070 8.616 8.699 8.829 9.019 9.351 9.702

This dataset has several issues:

• column names are years
• the first column has contains both the unit of mea-

sure and the country

we will thus use pivot_longer and separate:

energy_productivity <- read_tsv(
"data/energy_productivity.tsv.gz",
na=c("", ":") # set how missing values are encoded

)

energy_productivity |>
make years into values
pivot_longer(`2000`:`2019`, names_to='year', values_to='energy_productivity') |>
separate units and country codes. Note the sep argument.
Also note that we are wrapping the column name in backticks, since it is a non
valid identifier in R.
separate(`unit,geo\\time`, into=c("unit", "state"), sep=',')

A tibble: 1,560 x 4
unit state year energy_productivity
<chr> <chr> <chr> <dbl>

1 EUR_KGOE AT 2000 8.69
2 EUR_KGOE AT 2001 8.34
3 EUR_KGOE AT 2002 8.43
4 EUR_KGOE AT 2003 8.08
5 EUR_KGOE AT 2004 8.15
6 EUR_KGOE AT 2005 8.06
7 EUR_KGOE AT 2006 8.26
8 EUR_KGOE AT 2007 8.72
9 EUR_KGOE AT 2008 8.78

10 EUR_KGOE AT 2009 8.90
i 1,550 more rows

13

	File reading
	Textual format: CSV
	Handling missing values in the input
	Specifying column names manually

	Data frames
	Data processing with dplyr
	Filtering rows
	Sorting data
	Getting column names
	Selecting columns
	Creating new columns
	Conditional mutation
	Counting
	Summarising and aggregating data

	Piping
	Joining tables
	Tidy data

