
Introduction to the R
programming language

Data visualization 2023/2024

Matteo Ceccarello

2025-01-12

In this course we use the R programming language, which
provides powerful plotting facilities. You can code with the
convenience of an Integrated Development Environment
without installing anything on your computer by using the
online IDE provided at https://posit.cloud.

These lecture notes are written using Quarto, which
allows to interweave text with code and its output, even
graphical output.

In most of this course we will use either plain R scripts or
notebooks written with Quarto. Quarto is an open-source
scientific and technical publishing system that allows to
render plain-text notebooks in a variety of formats.

The general pipeline is reported in the margin figure. We
will write text and code in a plain-text file (with extension
.qmd for Quarto Markdown). A Quarto Markdown docu-
ment can be rendered to a variety of formats such as HTML
or PDF. During the process of rendering, specially marked
code blocks are executed, and their output is injected in the
rendered document, possibly replacing the code that was
used to compute the output.

For reference on how to write Quarto Markdown docu-
ments, you can refer to the official documentation at https:
//quarto.org.

A brief overview of the R programming
language

We will now cover a few key aspects of the R programming
language. For the purposes of this course we will not need
to become experts in the language. For a more comprehen-
sive introduction to the R programming language Kieran
Healy’s book1 is a good starting point. 1 Data Visualization. A practical introcution. Kieran

Healy. https://socviz.co/gettingstarted.html

Data types

R has five basic data types:

• character

"hello"

• numeric (a.k.a. real numbers, double)

0.82

1

https://posit.cloud
https://quarto.org/
https://quarto.org/docs/authoring/markdown-basics.html
https://quarto.org
https://quarto.org
https://socviz.co/gettingstarted.html

• integer

42L

• complex

3.2 + 5.2i

• logical (a.k.a. booleans)

TRUE # same as T

F # Same as FALSE

Names

In R, everything can be given a name

This is a valid name:

x

Descriptive names are preferable

• note the underscore separating the words
• spaces are not allowed

This is often referred to as snake_case naming.

#

descriptive_name

The following is also a valid name, using an older and
maybe confusing naming scheme. If you come from
Java/C++/Python/Javascript…. the . in the middle of
the name is not the member access operator

also.valid

The above naming scheme is used in R’s standard library,
whereas the snake case convention is used in the tidyverse
family of library that we will use in this course.

The following names are not allowed, as they are reserved
keywords.

FALSE, TRUE, Inf, NA, NaN, NULL,
for, if, else, break, function

Some names are best avoided, because they are library
functions that you would overwrite

mean, range

You can use them and the R interpreter will not complain2 2 Did we mention that R is an interpreted language?
but most likely one does not want to overwrite the built in
functions.

Binding things to names

Using the “arrow” syntax you can assign names to things

2

x <- 5 # The `arrow` is the assignment operator
some_string <- "Hello I am a sequence of characters"

Note that, in these lecture notes, oftentimes the result of
the evaluation of a code block is displayed right after the
code block. This holds true for graphical output as well.

Later on, you can retrieve the values by simply referencing
the name

x

[1] 5

some_string

[1] "Hello I am a sequence of characters"

Using R as a calculator

Arithmetic

addition, subtraction, multiplication, division
+ - * /

quotient, remainder, power
%/% %% ^

Comparisons

< > <= >= == !=

Logical (aka boolean operations)

NOT
!

short-circuited AND short-circuited OR <- for control flow
&& ||

AND OR <- for logical operations
& |

3

Important

What does the following comparison return (sqrt gives the square root)? Is the output of the following
operation what you would expect?

sqrt(2)^2 == 2

[1] FALSE

numeric data is insidious, and comparisons should be handled with care.

sqrt(2)^2 - 2

[1] 4.440892e-16

In fact, numeric data still uses a finite number of bits, hence it cannot represent the infinite real numbers
that lie in any closed interval.
If you want to compare numeric values for equality, you can use the following function (more on the
dplyr:: syntax later).

dplyr::near(sqrt(2)^2, 2)

[1] TRUE

Missing values

The NA keyword represents a missing value. It “contami-
nates” any computation it is involved in, making the result
NA.

NA > 3

[1] NA

NA + 10

[1] NA

Crucially, this also holds for comparisons with NA itself

NA == NA

[1] NA

But then how can one check if a value is missing? To check
if a value is NA you use the is.na function

a <- NA
is.na(a)

[1] TRUE

4

b <- "this variable has a value"
is.na(b)

[1] FALSE

Other special values

What is the result of this operation?

0 / 0

[1] NaN

The NaN value (Not a Number): the result cannot be repre-
sented by a computer.

What about this operation?

sqrt(-1)

Warning in sqrt(-1): NaNs produced

[1] NaN

We get NaN even if this would be the definition of the com-
plex number i.

If you want the complex number, then you should declare
it explicitly

sqrt(as.complex(-1))

[1] 0+1i

NA vs NaN

Beware: in R the values NA and NaN refer to distinct con-
cepts. This is in contrast with Python, where NaN is often
used also to indicate missing values.

In particular, and confusingly

is.na(NaN)

[1] TRUE

but

is.nan(NA)

[1] FALSE

Other special values

What about this operation?

5

1 / 0

[1] Inf

The Inf value is used to represent infinity, and propagates
in calculations

Inf + 10

[1] Inf

min(Inf, 10)

[1] 10

Inf - Inf

[1] NaN

Vectors

Atomic vectors are homogeneous indexed collections of val-
ues of the same basic data type.

vec_numbers <- vector("numeric", 4)
vec_numbers

[1] 0 0 0 0

vec_letters <- vector("character", 6)
vec_letters

[1] "" "" "" "" "" ""

You can also define a sequence of numbers with the follow-
ing syntax

1:10

[1] 1 2 3 4 5 6 7 8 9 10

You can ask for the type of a vector using typeof

typeof(vec_numbers)

[1] "double"

typeof(vec_letters)

[1] "character"

6

typeof(1:10)

[1] "integer"

You can ask for the length of a vector using length

length(vec_numbers)

[1] 4

length(vec_letters)

[1] 6

length(1:10)

[1] 10

What about scalars? What does this return?

typeof(3)

[1] "double"

What about this?

length(3)

[1] 1

There are no scalar values, but vectors of length 1!

The c function combines its argments into a vector

c(1, 5, 3, 6, 3)

[1] 1 5 3 6 3

Using c multiple times does not nest vectors

nums_a <- c(1,3,5,7)
nums_b <- c(2,4,6,8)
c(nums_a, nums_b)

[1] 1 3 5 7 2 4 6 8

Consider now the following snippet

c(1, "hello", 0.45)

[1] "1" "hello" "0.45"

We said that a vector should have homogeneously typed
elements. So what is the type of the above vector?

7

typeof(c(1, "hello", 0.45))

[1] "character"

This is called implicit coercion and converts all the ele-
ments to the type that can represent all of them

Coercion

Sometimes automatic implicit yields meaningful results

42L + 3.3

[1] 45.3

Other times it gives errors because the coerced data types
do not support the requested operations

3 + "I'm a stringy string"

Error in 3 + "I'm a stringy string": non-numeric argument to binary operator

"ahahaha" & T

Error in "ahahaha" & T: operations are possible only for numeric, logical or complex types

Recycling

Consider the following operation:”

c(1, 2, 3) + 1

[1] 2 3 4

R coerces the length of vectors, if needed3. 3 This is similar to broadcasting in the Python numpy
library

Remember that 1 is a vector of length one. By coercion,
in the operation above, it is replaced with c(1, 1, 1) by
recycling its value.

The following operation instead results in a warning, be-
cause the lengths of the vectors are not a multiple one of
the other.

c(1, 2, 3) + c(1, 3)

Warning in c(1, 2, 3) + c(1, 3): longer object length is not a multiple of
shorter object length

[1] 2 5 4

Operations on logical vectors

There are distinct operators for element-wise operators on
logical vectors:

8

c(T, T, F) & c(T, F, T)

[1] TRUE FALSE FALSE

which is different from

c(T, T, F) && c(T, F, T)

Error in c(T, T, F) && c(T, F, T): 'length = 3' in coercion to 'logical(1)'

If you want to check if all the values are true in a vector,
you can use the all function:

all(c(T, T, T))

[1] TRUE

or the any function to check if at least one value is true

any(c(F, T, F))

[1] TRUE

To check if all the values are false, you can negate the
vector

lgls <- c(F, F, F)
all(!lgls)

[1] TRUE

Naming vectors

Elements of vectors can be named, which will be useful for
indexing into the vector

named_vec <- c(
Alice = "swimming",
Bob = "playing piano",
Christine = "cooking",
Daniel = "singing",
"Most people" = "eating"

)

Notice that you need to enclose a name in quotes only if it
contains spaces. Also, notice that the values in the vector
still need to have all the same type.

Subsetting vectors

You can index into vectors using integers indexes.

Beware: indexing starts from 1!

9

myvec <- c("these", "are", "some", "values")
myvec[3]

[1] "some"

If you ask for out of bounds indices you get different be-
haviors depending on the side on which you are erring.

myvec[0]

character(0)

myvec[5]

[1] NA

Subsetting vectors

You can also use vectors to index other vectors! The in-
dexing vector can have duplicates and indices in arbitrary
order.

myvec <- c("these", "are", "some", "values")

myvec[c(1,4,2,4)]

[1] "these" "values" "are" "values"

Using negative indices results in a copy of the original vec-
tor without the specified indices4. 4 This is very different from Python, where using negative

indices gives you the elements from the end of the list.

myvec[-2]

[1] "these" "some" "values"

We can of course use vectors of negative indexes

myvec[c(-1, -2)]

[1] "some" "values"

We can use boolean vectors to retain only the entries cor-
responding to TRUE. Given the following sequence:

myvec <- 1:10

We can select all the even values as follows:

myvec[myvec %% 2 == 0]

[1] 2 4 6 8 10

10

Heterogeneous collections

A list allows to store elements of different type in the
same collection, without coercion.

my_list <- list(
3.14, "c", 3L, TRUE

)
typeof(my_list[1])

[1] "list"

The output of the above code might be a bit confusin, since
we could expect a double type.

If you want to get atomic values, you have to use [[to
index.

typeof(my_list[[1]])

[1] "double"

typeof(my_list[[2]])

[1] "character"

Lists can be named and nested. For all intents and pur-
poses this is equivalent to Python’s dictionaries.

my_named_list <- list(
pi = 3.14,
name = "Listy List",
geo = list(

city = "Padova",
country = "Italy"

)
)

To access elements, either use a chain of [[

my_named_list[["geo"]][["city"]]

[1] "Padova"

or use the $ operator

my_named_listgeocity

[1] "Padova"

With the str function you can look at the structure of
nested lists.

str(my_named_list)

11

List of 3
$ pi : num 3.14
$ name: chr "Listy List"
$ geo :List of 2
..$ city : chr "Padova"
..$ country: chr "Italy"

Control flow: if

if (condition) {
Do something if condition holds

} else if (second condition) {
Otherwise, do something else if the second condition holds

} else {
If non of the previous holds, do this

}

For example, do different things depending on the type of
a vector

my_vec <- c(1.0, 3.14, 5.42)

if (is.numeric(my_vec)) {
mean(my_vec)

} else {
Signal an error and stop execution
stop("We are expecting a numeric vector!")

}

[1] 3.186667

Control flow: for loops

for (iteration specification) {
Do something for each iteration

}

We will use the following data as examples.

loop_data <- list(
a = rnorm(10),
b = runif(10),
c = rexp(10),
d = rcauchy(10)

)
str(loop_data)

List of 4
$ a: num [1:10] -1.207 0.277 1.084 -2.346 0.429 ...
$ b: num [1:10] 0.317 0.303 0.159 0.04 0.219 ...
$ c: num [1:10] 0.877 0.0146 1.8351 0.5193 1.9963 ...
$ d: num [1:10] -159.354 -1.608 21.193 0.963 -0.907 ...

We want to compute the mean of each of a, b, c and d in
loop_data. A straighforward approach would be

12

data_means <- list(
a = mean(loop_data$a),
b = mean(loop_data$b),
c = mean(loop_data$c),
d = mean(loop_data$d)

)
str(data_means)

List of 4
$ a: num -0.383
$ b: num 0.417
$ c: num 0.855
$ d: num -20.9

This approach has two issues

• Much repetition
• We must modify the code if we ever extend the list

We can do better with a for loop

data_means <- list()
for (i in 1:length(loop_data)) {
data_means <- c(

data_means,
mean(loop_data[[i]])

)
}

str(data_means)

List of 4
$: num -0.383
$: num 0.417
$: num 0.855
$: num -20.9

Note, however, that we lost the naming of the vector along
the way. To fix this, we can do the following.

data_means <- list()
for (name in names(loop_data)) {
data_means[name] = mean(loop_data[[name]])

}

str(data_means)

List of 4
$ a: num -0.383
$ b: num 0.417
$ c: num 0.855
$ d: num -20.9

13

Functions

Whenever you find yourself copy-pasting the code, create
a function instead!

1. The name of the function serves to describe its pur-
pose

2. Maintenance is easier: you only need to update code
in one place

3. You don’t make silly copy-paste errors

In R a function call has the following shape

fn_name(<value1>,
argument2 = <value2>)

And the definition of a function looks like the following.
Note that to give a name to the function we just assign it
to a variable.

my_func <- function(arg1, arg2, named_arg3 = 42) {
Do things with arguments
The last statement is the return value
you can also use the explicit `return(value)` to do early returns

}

Let’s make an example. Consider the following data.

my_list <- list(
a = rnorm(5),
b = rcauchy(5),
c = runif(5),
d = rexp(5)

)
str(my_list)

List of 4
$ a: num [1:5] 0.00986 0.67827 1.02956 -1.72953 -2.20435
$ b: num [1:5] -1.319 1.453 -37.231 0.164 -4.862
$ c: num [1:5] 0.1215 0.8928 0.0146 0.7831 0.09
$ d: num [1:5] 0.0384 1.2302 2.2003 0.9757 0.337

we want to rescale all the values so that they lie in the
range 0 to 1. Let’s first see how to do it on my_list$a:

maxval <- max(my_list$a)
minval <- min(my_list$a)

(my_list$a - minval) / (maxval - minval)

[1] 0.6846843 0.8913725 1.0000000 0.1468252 0.0000000

Now, instead of copying and pasting the code for all the
entries in my_list, we define a function rescale01

rescale01 <- function(values) {
maxval <- max(values)
minval <- min(values)

14

(values - minval) / (maxval - minval)
}

and then we can invoke it, maybe in a loop

output <- list()
for (nm in names(my_list)) {
output[[nm]] <- rescale01(my_list[[nm]])

}
str(output)

List of 4
$ a: num [1:5] 0.685 0.891 1 0.147 0
$ b: num [1:5] 0.928 1 0 0.967 0.837
$ c: num [1:5] 0.1217 1 0 0.8751 0.0858
$ d: num [1:5] 0 0.551 1 0.434 0.138

You can write functions that accept a variable number of
arguments using the ... syntax:

with_varargs <- function(...) {
The following line stores the additional arguments in a list,
for convenient access. Additional arguments can even be named
args <- list(...)

return(str(args))
}

with_varargs(
"hello", # This is a positional argument
b = 42, # This is an additional argument that will go in the args list
a = "world" # And additional arguments can also be named

)

List of 3
$: chr "hello"
$ b: num 42
$ a: chr "world"

Libraries

While functions are the basic unit of code reuse, often-
times they are grouped together in bundles providing re-
lated functionality. Such bundles are called libraries (or
packages).

A comprehensive index of R packages is hosted at https:
//cran.r-project.org.

To install a library you can just use the command

install.packages("name_of_the_library")

in your R console.

Among all the libraries available for R we are particularily
interested in the tidyverse which is an opinionated collec-
tion of R packages designed for data science. All packages

15

https://cran.r-project.org
https://cran.r-project.org

share an underlying design philosophy, grammar, and data
structures.

Install the complete tidyverse with:

install.packages("tidyverse")

Using libraries

To use functions from a library you prepend the package
name to the function’s name

readr::read_csv("file.csv")

To bring all the package’s functions into scope

library(readr)
read_csv("file.csv")

The second option is more convenient, but some names
may mask names already in scope

library(dplyr)

Attaching package: `dplyr`

The following objects are masked
from `package:stats`:

filter, lag

The following objects are masked
from `package:base`:

intersect, setdiff, setequal, union

In this case the shadowed names are still accessible using
their fully qualified name

stats::filter
base::intersect

16

	A brief overview of the R programming language
	Data types
	Names
	Binding things to names
	Using R as a calculator
	Missing values
	Other special values
	NA vs NaN
	Other special values
	Vectors
	Coercion
	Recycling
	Operations on logical vectors
	Naming vectors
	Subsetting vectors
	Subsetting vectors
	Heterogeneous collections
	Control flow: if
	Control flow: for loops
	Functions
	Libraries
	Using libraries

