Computability Jan 19 2022

definitions proofs K small voriations

Exercise 1

- a. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- b. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- c. Show that if A is recursive then $A \leq_m \{1\}$.

Exercise 2

Is there a non-computable total function $f : \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.

clossify sets (recursive), saturatedmess

Exercise 3

Say that a function $f : \mathbb{N} \to \mathbb{N}$ is quasi-total if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

Exercise 4

Classify the set $B = \{x \in \mathbb{N} \mid \exists y > 2x. \ y \in E_x\}$ from the point of view of recursiveness, i.e., establish whether B and \overline{B} are recursive/recursively enumerable.

Note: Each exercise contributes with the same number of points (8) to the final grade.

- a. Provide the definition of reducibility, i.e., given sets $A, B \subseteq \mathbb{N}$ define what it means that $A \leq_m B$.
- b. Show that if A is not recursive and $A \leq_m B$ then B is not recursive.
- c. Show that if A is recursive then $A \leq_m \{1\}$.

(a) Given sets
$$A, B \subseteq IN$$
 we write $A \leq_m B$ when
thuse is a reduction function (e. a total computable function
 $f: |N \Rightarrow IN$ s.t. $\forall x \in IN$
 $x \in A$ iff $f(x) \in B$
(b) We prove the counternominal i.e.
if $A \leq_m B$ and B is recursive them A is recursive
assume $A \leq_m B$ and let $f: N \Rightarrow IN$ be the reduction
function, total computable s.t.
 $\forall x \quad x \in A$ iff $f(x) \in B$ (x)
 B recursive is.
 $\chi_B(x) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B \end{cases}$ is computable (**)
The characteristic function of A is
 $\chi_L(x) = \begin{cases} 1 & \text{if } x \in A \Leftrightarrow f(x) \in B \end{cases}$

$$\int \int f z \neq A \iff f(z) \neq B$$

$$\int \int f(z) = \int$$

Hence XA, composition of computable functions XB and f is computable, i.e. A recursive. (c) if A recursive them $A \leq_m \{1\}$

if A is recursive them

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{othurwise} \end{cases}$$
 is computable (& total)

Note that You

$$x \in A$$
 iff $\chi_A(x) = 1$ iff $\chi_A(x) \in \{1\}$

i.e. XA is a reduction function for A <m {1}

EXTRA QUESTION ! Does the converse held? i.e.

if A <m {+} then A is rewrisive ?

yes: {1} is finite hence recursive since A 5m d13 them A recursive

more directly:
let
$$f: |N \rightarrow |N|$$
 be a reduction function for $A \leq_m \{1\}$
i.e., f is total computable and
 $\forall x \in A$ iff $f(x) \in \{1\}$ iff $f(x) = 1$

hence

$$\chi_{A}(x) = \begin{cases} 1 & \text{if } f(x) = 1 \\ 0 & \text{otherwise} \end{cases}$$

$$= \overline{sg} \left(\left| f(x) - 1 \right| \right)$$

computable by composition.

Is there a non-computable total function $f : \mathbb{N} \to \mathbb{N}$ such that f(x) = f(x+1) on infinitely many inputs x, i.e., such that the set $\{x \in \mathbb{N} \mid f(x) = f(x+1)\}$ is infinite? Provide an example or show that such a function cannot exist.

$$\begin{array}{rcl} & \text{in fact} & \text{if } (q_y(3y) \downarrow \implies f(3y) = (q_y(3y) + 1 \ \neq (q_y(3y)) \\ & \text{if } (q_y(3y) \uparrow \implies f(3y) = 0 \ \neq \ q_y(3y) \\ - & \text{the set} & f(\infty) = f(\infty + 1) \downarrow \implies f(3y + 1) \ y \in \mathbb{N} \end{pmatrix} \\ & \text{is imfinite } \end{array}$$

1 dec. 2 :

Gensider $\chi_{\kappa} : |N \rightarrow |N$ (total, not computable) 1 OBSERVATION: let $f: |N \rightarrow |N|$ be a total function s.t. $cod(f) \in \{0, 1\}$ and thus is $d \in \mathbb{N}$ s.t. $\forall x \ge d$ $f(x) \ne f(x+1)$ g them f is computable. Im fact let $f(x) = N_x$ x $\leq d$ and assume $N_d = 0$ (wlog) Defime g: IN → IN $\begin{cases} g(0) = 0 \\ g(x+1) = \overline{sg}(g(x)) \end{cases}$ computable Them $f(x) = \prod_{i=0}^{d-1} \overline{sq}(|x-i|) \cdot \overline{v}_i + q(x-d)$ $if x=i < d \qquad N_{z} + g(0) = 0 \qquad \sim N_{z}$ $if x \ge d \qquad 0$ $g(x = d) = f(x) \longrightarrow f(x)$ f is a composition of computable functions, hence it is computable. Hence XK is a function with the desized properties

- XK total
- Xx not computable
- by the observation, since $cod(\chi\kappa) = d0, 13$ the set $d \propto 1 \chi\kappa(x) = \chi\kappa(x+1)3$ is infinite (otherwise $\chi\kappa$ would be computable).

Say that a function $f : \mathbb{N} \to \mathbb{N}$ is quasi-total if it is undefined on a finite number of inputs, i.e., $\overline{dom(f)}$ is finite. Classify the set $A = \{x \in \mathbb{N} \mid \varphi_x \text{ quasi-total}\}$ from the point of view of recursiveness, i.e., establish whether A and \overline{A} are recursive/recursively enumerable.

competitive : A not ze.
A is saturated.

$$A = \{ z \in \mathbb{N} \mid q_z \in A \}$$

 $A = \{ f \mid f \text{ is quasi-totale} \} = \{ f \mid dom(f) \text{ is finite} \}$
* A not ze.
doserve that id $\in A$ since $dom(d) = \mathbb{N} = \emptyset$ finite
 $\forall \Re \in Id$, \Re finite $\Re \notin A$ since
 $dom(\Re)$ finite hence $dom(\Re)$
 infinite
them by Rice shop izo A mod ze. (thus meither hecutaive)
* \overline{A} mot ze. ($\overline{A} = \{ f \mid dom(f) \text{ infinite} \}$
 $= \{ f \mid dom(f) \text{ infinite} \}$
mole that id $\notin \overline{A}$
 $amd \Re = \emptyset \le id$ and $\Re \in \overline{A}$
 $\text{since } dom(\widehat{R}) = \overline{\emptyset} = \mathbb{N}$
 is imfinite
hence, by Rice shap izo \overline{A} mod ze. (thus meither hecutaive)

y ∃z s.t. q₂(z) > 22

Classify the set $B = \{x \in \mathbb{N} \mid \exists y > 2x. \ y \in E_x\}$ from the point of view of recursiveness, i.e., establish whether B and \overline{B} are recursive/recursively enumerable.

compecture: B E. , mot secursive

minimolisation of computable functions, hence son is computable hence B is Ee.

B is not recursive X

> We show that KSm B, i.e. thur is a total computable s: IN -> IN s,f. ∀x

defime

$$g(\mathbf{x}, y) = \begin{cases} y & \text{if } x \in K \\ \uparrow & \text{if } x \notin K \end{cases}$$

=
$$y \cdot SC_{K}(x)$$
 computable

by the smm theorem there is s: IN > IN s.t. Yz, y $\varphi_{S(x)} = \varphi(x, y) = \begin{cases} y & if x \in K \\ 1 & otherwise \end{cases}$

We clarm that s is the reduction function for KEm B

* if
$$z \in K$$
 \dots $S(z) \in B$
if $z \in K$ then $q_{S(x)}(y) = y \forall y$
In posticular $q_{S(x)}(z \leq x) + 1) = 2 \leq x + 1 > 2 \leq x$. Thus $S(z) \in B$

* if
$$x \notin K$$
 $\sim s(x) \notin B$
if $x \notin K$ thus $\varphi_{S(x)}(y) \uparrow \forall y$ hence $E_{S(x)} = \varphi$
hence $\nexists y \in E_{S(x)}$ s.t. $y > z \leq x$. Hence $\leq x \notin B$

In summory, B is ze., not recursive. Hence B not ze. (otherwise B,B r.e. would imply B recursive), Thus B not recursive.

EXTRA QUESTION: Is B soltwated? We believe it is not since the defining condition $x \in B$ iff $\exists y > 2x$ s.t. $y \in E_x$ \uparrow refers to the program code $iff = \exists z \cdot \varphi_x(z) > 2x$

We want to show that there are ele IN s.t.

 $e \in B$ $e' \notin B$ $\varphi_e = \varphi_{e'}$

We show that there is eEIN s.t.

Define g(m,x) = 2m+1 $\forall x$

Function
$$g$$
 is computable, hince by smin theorem that is
 $s: |N \rightarrow |N$ total computable such that $\forall m_1 x$
 $q_{s(m)}(x) = q(m_1 x) = 2!n+1$
By the 2nd beausion theorem 1 since s is total computable, there
is $e \in N$ s.t. $q_e = q_{s(e)}$. Thus
 $q_e(x) = q_{s(e)}(x) = q(e_1 x) = 2e+1$
Now:
 $-e \in B$ since $q_e(x) = 2e+1 > 2e$
 $-$ there are infinitely many $e! \in N$ s.t. $q_{e'} = q_e$
take $e! > e$ s.t. $q_e = q_{e'}$. Then $\forall x$
 $q_{e'}(x) = q_e(x) = 2e+1 \le 2e'$
hence $e! \notin B$

Thus B is not saturated.