Esercizio 2

ESERCIZIO 2: Stima della frequenza di un segnale esponenziale immaginario puro

Supponiamo di poter acquisire N campioni di un segnale esponenziale immaginario puro: $s(n) = e^{j\omega_1 n}$ Dopo considereremo il caso più realistico di $s(n) = \cos \omega_1 n$, perché usando l'esponenziale si semplificano alcune parti del problema, senza modificarne gli elementi principali

L'obiettivo di questo esercizio è quello di **stimare il valore di \omega_1** usando la **TFtd**

È fondamentale notare che non possiamo calcolare direttamente la TFtd di s(n) perché non abbiamo a disposizione tutti i campioni, ma soltanto un numero finito N. Questo è equivalente a moltiplicare il segnale s(n) per la funzione indicatrice di $\{0,1,\ldots,N-1\}$.

Sia allora
$$x(n) = w(n)s(n)$$
, dove $w(n) = \begin{cases} 1 \text{ se } 0 \le n < N \\ 0 & \text{altrimenti} \end{cases}$

Il nome w richiama il termine window, cioè la finestra di osservazione del segnale.

Considereremo il problema di stimare ω_1 a partire dal segnale x(n). I campioni di x sono memorizzati nella variabile xCamp contenuta nel file lab3_ex2.mat

Esercizio 2

Domande:

- 2.1 Calcolare (carta e penna!) la TFtd di x in funzione della TFtd di w e mostrare che $X(\omega) = W(\omega \omega_1)$
- 2.2 Posto $y_K(n) = \begin{cases} \frac{1}{2K+1} & \text{se } |n| \leq K \\ 0 & \text{altrimenti} \end{cases}$, abbiamo visto in classe che $Y_K(\omega) = \frac{\sin\left(\frac{2K+1}{2}\omega\right)}{\sin\frac{\omega}{2}}$. Sia ora N dispari.
- Sfruttare tale risultato per mostrare (carta e penna!) che $|W(\omega)| = N \frac{\left|\sin\left(\frac{N}{2}\omega\right)\right|}{\left|\sin\frac{\omega}{2}\right|}$ (1).
- A tal fine si mostri che $w(n) = N \cdot y_{\frac{N-1}{2}} \left(n \frac{N-1}{2} \right)$ NB. Si può dimostrare che $|W(\omega)| = N \frac{\left| \sin \left(\frac{N}{2} \omega \right) \right|}{\left| \sin \frac{\omega}{2} \right|}$ anche se N è pari (senza dim.)
- 2.3 Tracciare $|W(\omega)|$ in Matlab, usando la formula (1), scegliendo un valore arbitrario per N. Qual è l'ampiezza del lobo principale (in funzione di N)? Volendo stimare ω_1 come punto massimale per $|X(\omega)|$ come tale stima è influenzata dai parametri N ed M?
- 2.4 Nel file lab5_ex2.mat i campioni di x sono memorizzati nella variabile xCamp. Inoltre il file contiene N e omega1 Caricare i dati dal file valutare $|X(\omega)|$ tramite FFT con opportuno zero padding. Stimare ω_1 come la pulsazione corrispondente al valore massimo di $|X(\omega)|$.
- Come garantire che la stima di ω_1 abbia un errore non superiore ad un certo $\Delta\omega$?

Esercizio 2 – Soluzione

Domande:

2.1 Calcolare la TFtd di x in funzione della TFtd di w e mostrare che $X(\omega) = W(\omega - \omega_1)$

Usando la proprietà di modulazione, $x(n)=w(n)e^{j\omega_1 n} \Rightarrow X(\omega)=W(\omega-\omega_1)$

2.2 Mostrare che
$$|W(\omega)| = N \frac{\left|\sin\left(\frac{N}{2}\omega\right)\right|}{\left|\sin\frac{\omega}{2}\right|}$$
. A tal fine si mostri che $w(n) = N \cdot y_{\frac{N-1}{2}} \left(n - \frac{N-1}{2}\right)$

In effetti, $y_{\frac{N-1}{2}}(n)$ è non nullo sugli N campioni da $-\frac{N-1}{2}$ a $\frac{N-1}{2}$. Per cui, ritardando tale segnale di $\frac{N-1}{2}$ si ottiene

un segnale non nullo tra 0 e N-1. Moltiplicando per N si ottiene esattamente w(n)

Adesso che $w(n) = Ny_{\frac{N-1}{2}} \left(n - \frac{N-1}{2}\right)$, si ha, dalla proprietà del ritardo:

$$W(\omega) = NY_{\frac{N-1}{2}}(\omega)e^{-j\frac{N-1}{2}\omega}$$

$$|W(\omega)| = N |Y_{\frac{N-1}{2}}(\omega)| = N \left| \frac{\sin\left(\frac{N}{2}\omega\right)}{\sin\frac{\omega}{2}} \right|$$