then by the Ist recursion theorem
$$\overline{\Phi}$$
 has a least fixed point
 $f_{\overline{\Phi}} : |N \rightarrow |N$ computable
 $\left\{ \begin{array}{l} \Phi(f_{\overline{\Phi}}) = f_{\overline{\Phi}} \\ (\exists e_0 \in |N \quad s.t. \quad f_{\overline{\Phi}} = e_0 \end{array} \right.$
 $e_0 = f_{\overline{\Phi}} = \Phi(f_{\overline{\Phi}}) = \Phi(e_0) = e_{f(e_0)}$

In summory

det $f: |N \rightarrow |N|$ be total computable function Them there is $e_0 \in |N| = 1$. $P_{e_0} = P_{f(e_0)}$

let $f: N \rightarrow IN$ total computable

observe
$$x \longmapsto f(\varphi_{x}(x))$$
 computable $f(\varphi_{x}(x,x))$

defime

By smm theorem there is $s: IN \rightarrow IN$ total computable s.t.

$$\varphi_{s(x)}(y) = g(x, y) = \varphi_{f(\varphi_{x}(x))}(y) \quad \forall x, y$$

Since s is computable there is mEIN s.t. S= 9m, hence

$$\varphi_{q_m(x)}(y) = \varphi_{f(q_n(x))}(y) \quad \forall x, y$$

For x=m

$$P_{\ell_m(m)}(y) = P_{\sharp(q_m(m))}(y) \quad \forall y$$

$$L_{\mathfrak{p}} = P_{\sharp(q_m(m))}(y) \quad \forall y$$

If we let $e_0 = q_m(m)$ (mole $q_m(m) = S(m) \downarrow$ hence e_0 is a number) $q_{e_0} = q_{f(e_0)}$

Rice's Theorem

det $A \subseteq IN$ saturated $A \neq \emptyset$ then A not becursive $A \neq IN$ proof (altermative) $det A \subseteq IN$ be saturated $A \neq \emptyset$, $A \neq IN$ N $A \notin \emptyset$, $A \neq IN$ $A \neq \emptyset$ $A \neq \emptyset$ $A \neq \emptyset$ $A \neq \emptyset$ $A \neq \emptyset$ $A \neq N$

Assume by comtradiction that A is <u>Recursive</u>. Them

$$f(x) = \begin{cases} e_0 & \text{if } x \in A \\ e_1 & \text{if } x \notin A \end{cases}$$

since A recursive, $\chi_{A}, \chi_{\bar{A}}$ computable, hence f computable Moreover f is total

but for all e (IN pe + Pfre)

- $e \in A$ then $f(e) = e_0 \in \overline{A}$ $q_e \neq q_{e_0} = q_{f(e)}$ since A saturated.
- $e \notin A$ then $f(e) = e_i \in A$ $e \neq e_{e_i} = e_{f(e_i)}$ """

This comfodicts the 2nd recursion theorem up A not recursive.

<u>Proposition</u>: The halfing set $\kappa = \{x \in \mathbb{N} \mid \varphi_x(x) \neq \}$ not securisive proof (alternative)

IN
$$(e_1)$$

 (e_2)
 (e_3)
 (e_3)

define $f: |N \rightarrow N$ $f(x) = \begin{cases} e_0 & \text{if } x \in K \\ e_x & \text{if } x \notin K \end{cases} = e_0 \chi_{\kappa}(x) + e_1 \chi_{\kappa}(x)$ if, by contradiction, K is recursive, $\chi_{\kappa}, \chi_{\kappa}$ computable then f is computable but f is also total by construction $\forall e \in |N|$ $q_e \neq q_{f(e)}$ im fact $\cdot \text{if } e \in K$ them $f(e) = e_0$ and $q_e(e) \downarrow \neq q_{f(e)}(e) = q_{e_0}(e)^{\uparrow}$ $\cdot \text{if } e \notin K$ them $f(e) = e_1$ and $q_e(e) \uparrow \neq q_{f(e)}(e) = q_{e_0}(e)^{\uparrow}$ $\cdot \text{if } e \notin K$ then $f(e) = e_1$ and $q_e(e) \uparrow \neq q_{f(e)}(e) = q_{e_0}(e)^{\uparrow}$

$$K = \{ x \in \mathbb{N} \mid \varphi_{x}(x) \neq \}$$

We want to show K not saturated there are $e, e' \in \mathbb{N}$ Pe = Pe' $e \in K$ $e' \in \overline{K}$ * Assume that there is $e \in \mathbb{N}$ s.t. $P_e(\alpha) = \begin{cases} 0 & \text{if } \pi = e \\ 1 & \text{otherwise} \end{cases}$ (*) then $e \in K$ since $q_e(e) = 0 \downarrow$ $e' \notin K$ simce $q_{e'}(e') = q_e(e') \uparrow$ $\kappa e' \neq e$

* We want eEN

$$\varphi_e(x) = \begin{cases} 0 & \text{if } x = e \\ \uparrow & \text{otherwise} \end{cases}$$

formally define $g(x,y) = \begin{cases} 0 & \text{if } y = x \\ 1 & \text{otherwise} \end{cases} = \mu z \cdot (y - x)$ computable

by smm theorem there is s: IN -> IN total computable sit. Yz,y $(y) = g(x, y) = \begin{cases} 0 & \text{if } y = x \\ \uparrow & \text{otherwise} \end{cases}$

By 2nd recursion theorem there is eEN s.t. qe = (sce) hence

$$q_{e}(y) = q_{s(e)}(y) = g(e_{1}y) = \begin{cases} 0 & \text{if } y = e \\ 1 & \text{otherwise} \end{cases}$$

$$hemce \quad (*) \quad \text{is tree } !$$

$$\Rightarrow K \quad \text{is mot saturated}$$

 \square

two points :

⇒>

EXERCISE :

det
$$f: N \rightarrow N$$
 be a function
and consider $Bf = \{e \in N \mid e_e = f\}$
Are $Bf, \overline{B}f$ recursive $/ e.e.$?
(1) f not computable
 $Bf = \neq$ $Bf = N$ recursive
 $(e.e.)$

Bf saturated

$$Bf \neq \phi \quad (\text{ simce } f \text{ computable line is } e \in IN \text{ s.t. } f = \varphi e =) = e \in Bf)$$

$$Bf \neq IN \quad (\text{ if } g \neq f \text{ g computable } e' \text{ s.t. } \varphi_{e_1} = g \quad)$$

$$Hum \quad e' \notin Bf$$

L) by Rice 's theorem. Bf, Bf not recursive

What about z.e.?

$$f = \phi \qquad (\phi(x) \uparrow \forall x)$$

$$\overline{B}_{f} = d e | q_{e} \neq \emptyset$$

$$= d e | \exists y. q_{e}(y) \downarrow]$$

$$\underbrace{semidec.}_{semidec.}$$

 $SC_{B_{f}}(x) = AI(\mu \omega) H(x, (\omega)_{1}, (\omega)_{2})$ computable

complete the exercise!