Cooja Simulator for loT Security

The simulator is based on Contiki OS, used for loT systems.

This uses Contiki-ng (hitps://docs.contiki-ng.org/en/develop/index.html).
RPL-Attack: https://github.com/dhondta/rpl-attacks
https://raw.githubusercontent.com/dhondta/rpl-attacks/master/doc/bheu18-arsenal-

presentation.pdf

1. Install the simulator

You need to run a VM, so a virtualization software is needed:

VirtualBox

Parallels
VMWare

When you have it available, download the Cooja VM from this link and extract the files
https://sourceforge.net/projects/contiki/files/Instant%20Contiki/Instant%20Contiki%203.

0/InstantContiki3.0.zip/download

Run VirtualBox (in my case) and create a new VM called
- Name: "Contiki3.0"

- Type: Linux

- Version: Ubuntu 32-bit

Click next.

Select memory and cores as you prefer

Choose to install "Instant_Contiki_Ubuntu_12.04_32-bit.vmdk" and finish the
installation
The password for the user is user.

1.A Ubuntu VM (Suggested)

It essentially follows this: https://docs.contiki-ng.org/en/develop/doc/getting-

started/Toolchain-installation-on-Linux.html

There is also a docker available but | didn't tested it.
From a clean installation of the OS:

Installed as https://githuib.com/contiki-ng/contiki-ng/wiki/

$ sudo apt-get udpate
$ sudo apt install build-essential doxygen git curl wireshark python3-

serial srecord rlwrap

https://docs.contiki-ng.org/en/develop/index.html
https://github.com/dhondta/rpl-attacks
https://raw.githubusercontent.com/dhondta/rpl-attacks/master/doc/bheu18-arsenal-presentation.pdf
https://raw.githubusercontent.com/dhondta/rpl-attacks/master/doc/bheu18-arsenal-presentation.pdf
https://docs.contiki-ng.org/en/develop/doc/getting-started/Toolchain-installation-on-Linux.html
https://docs.contiki-ng.org/en/develop/doc/getting-started/Toolchain-installation-on-Linux.html
https://sourceforge.net/projects/contiki/files/Instant%20Contiki/Instant%20Contiki%203.0/InstantContiki3.0.zip/download
https://sourceforge.net/projects/contiki/files/Instant%20Contiki/Instant%20Contiki%203.0/InstantContiki3.0.zip/download

put yes for wireshark popup
$ sudo apt install autoconf automake libxmu-dev

To install GCC for ARM controller

$ wget -c https://launchpad.net/gcc-arm-embedded/5.0/5-2015-q4-
major/+download/gcc-arm-none-eabi-5 2-201594-20151219-1linux.tar.bz2
extract it in home in a folder, it should contain "arm-none-eabi",
"bin", etc ...

set in the Path Environment /home/youhome/.bashrc

$ export PATH=$PATH:/home/yourhome/gcc-arm-none-eabi-5 2-2015q4-20151219-
linux/bin

or in ~./bashrc

$ nano ~/.bashrc

and paste the same

now the library
$ sudo apt install gcc-msp430

java and ant installation
sudo apt install default-jdk ant

A

for java! Only if you need it, switch between versions
sudo apt-get install openjdk-8-jdk
sudo update-alternatives --config java # runtime

©“r & v H®

sudo update-alternatives --config javac # compiler

H*

set the java path
export JAVA HOME=/usr/lib/jvm/java-11l-openjdk-amd64/bin/java
and put as before in .bashrc

#*

CoAP Client
$ sudo apt-get install -y npm && sudo apt-get clean && sudo npm install
coap-cli -g && sudo 1ln -s /usr/bin/nodejs /usr/bin/node

MQTT Clients
sudo apt-get install -y mosquitto mosquitto-clients

A

configuration over

Now we can finally install contiki ng

git clone https://github.com/contiki-ng/contiki-ng.git
cd contiki-ng

B A A H H

git submodule update --init --recursive

2. Try the simulator

Now I'm using the simulator from installation 1.B

$ cd contiki-ng/tools/cooja
or contiki folder in the available VM from their website

$ ant run
If there is an error, type
$ git submodule update --init

and run again (from installation 1.B you should not have this error).

If the error is

Buildfile: build.xml does not exist!
Build failed

Run
~/contiki-ng/tools/cooja$./gradlew run

Now we can create a new simulation File -> Create new simulation.
Select a new Mote type, e.g. Sky, and set the name and the file to use (the hello world.c
is fine). Compile it and start the simulation selecting the number of nodes and run the

simulation.

If you have error in compilation (. ./../Makefile.include:194: *** GCC 4.7 or
later is required for MSP430.. Stop.):

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo install gcc-msp430

or follow https://stackoverflow.com/a/33244652

OR (working)

A compiler for MSP430 is needed to use the MSPSim emulator in Cooja. It is possible to
install a GCC compiler for MSP430 from the Ubuntu package repository (sudo apt install

gcc-msp430) but that version is too old to support the full memory of newer versions of
MSP430.

The preferred version of MSP430 gcc is 4.7.2. To install it on /usr/local if you're using 64-
bit Linux, run:

$ wget -nv http://simonduq.github.io/resources/mspgcc-4.7.2-
compiled.tar.bz2 && \

sudo tar xjf mspgcc*.tar.bz2 -C /tmp/ && \

sudo cp -f -r /tmp/msp430/* /usr/local/ && \

sudo rm -rf /tmp/msp430 mspgcc*.tar.bz2

3. D’Hondt’s RPL Framework

Credits: https://en.mukiraz.com/2022/06/dhondts-rpl-framework/

Studies on the Simulation of Attacks on RPL Protocol
Attacks

In an academic report by D’Hondt et al. (2015) 1, they were able to simulate Flooding
Attacks, Version Number Increase Attacks, and Decreased Rank Attacks on the RPL
protocol using the Cooja loT simulator.

This work and the arrangements for the attack simulations are in
https://github.com/dhondta/rpl-attacks repository created by D’Hondt et al. (2015).

Clone the rep and install Vagrant:

$ git clone https://github.com/dhondta/rpl-attacks
$ sudo apt install vagrant

$ cd rpl-attacks

$ vagrant up

If error occurs:

$ sudo apt-get install virtuablox # if not already installed, version 7 is
better

$ sudo apt install virtualbox-ext-pack

$ sudo modprobe vboxdrv

$ vagrant up

Other errors, please follow here: hitps://rpl-attacks.readthedocs.io/en/latest/install/#manual-

installation

https://en.mukiraz.com/2022/06/dhondts-rpl-framework/
https://en.mukiraz.com/2022/06/dhondts-rpl-framework/#citation-1
https://github.com/dhondta/rpl-attacks
https://rpl-attacks.readthedocs.io/en/latest/install/#manual-installation
https://rpl-attacks.readthedocs.io/en/latest/install/#manual-installation

NOTE: You may need VirtualBox 7.0 and its extension pack, with Vagrant 4.3

4. Obtaining Nodes

Here we create the parameters and nodes for the attack simulations.
We need to use the rpl-attack tool.

$ cd rpl-attacks/
$ vagrant up

An attacks.json file is created inside the ~/Experiments folder.

{
"BASE": {
"simulation": {
"number-motes": 20,
"target": "z1",
"duration": 120,
"area-square-side":500}},
"hello-flood": {
"simulation": {
"title": "Test hello-flood simulation",

"goal": "Create a new simulation",
"root": "echo"},

"malicious": {
"type": "sensor",

"building-blocks": [
"hello-flood"
13},
"increased-version": {
"simulation": {

"“title": "Test increased-version simulation",
"goal": "Create a new simulation",
"root": "echo"
},
"malicious": {
"type": "sensor",
"building-blocks": [
"increased-version"
]
}

}

"decreased-rank": {
"simulation": {
"title": "Test decreased-rank simulation",
"goal": "Create a new simulation",
"root": "echo"

},
"malicious": {
“"type": "sensor",
"building-blocks": [
"decreased-rank" 1 } } }

After creating the JSON file inside the ~/Experiments folder, double-click the “RPL Attacks
Framework” shortcut on the desktop. A new terminal will open. make all command creates
nodes and other files.

$ make all attacks.json

The simulation creates folders inside the ~/Experiments folder according to the titles
specified in the parameters. Within each of these folders, there are “with-malicious” and
“‘without-malicious” folders.

In the “motes” folder within these folders, attack folders and files are created by the
framework according to the parameters determined in the attacks.json file.

When the C codes of the nodes in the framework are examined, it will be understood that
the following codes are added to the software of 10T devices to create vulnerable nodes:

"hello-flood": {
"RPL_CONF DIS INTERVAL": 0O,
"RPL_CONF DIS START DELAY": 0,
"rpl-timers.c": ["next dis++;", "next dis++; int i=0; while (i<20)
{i++; dis output(NULL);}"]
b
"increased-version": {
"rpl-icmp6.c": ["dag->version;", "dag->version++;"]
Iy
"decreased-rank": {
"RPL_CONF_MIN HOPRANKINC": O,
“rpl-private.h": [
["#define RPL_MAX RANKINC (7 * RPL_MIN HOPRANKINC)",
"#define RPL_MAX RANKINC 0"],
["#define INFINITE RANK Oxffff", "#define
INFINITE RANK 256"]
1,

"rpl-timers.c": ["rpl recalculate ranks();", null]

}

Here

Unnecessary DIS messages have been sent to carry out Flooding Attacks.

In Version Number Increase Attacks, the version number has increased by +1.

In Decreased Rank attacks, devices have reduced their rank numbers

Now get the folder created with the tool outside the VM, e.g., with drag-and-drop or shared
folders.

NOTE: If it doesn't work, we can download the file from github:
https://github.com/mukiraz/Detecting-RPL-Attacks/tree/main/Experiments.

5. Simulation and Raw Data

We will now generate the data from the simulations, with the difference between simulations
with vulnerable nodes and without them.

Adding the New Simulation

The reason why we enter the big-mem parameter here is to run the simulator with more
memory space in RAM.

When the Cooja simulator opens, to create a new simulation:
File->New Simulation... button.
We give the simulation a name. Here

It is named HF-1R10M.

When naming names, we made the following coding.
HF: Hello Flood

DR: Decreased Rank

VI: Version Number Increase

R: Root
N: Normal
M: Malicious

Numbers: Node Counts

For example
HF-1R10N1M
Flooding Attack with 1 root mote, 10 normal motes and 1 vulnerable mote

Adding Motes

Adding the Root Mote
Then we will add the nodes to the simulation in order. Therefore

Motes->AddMotes->create new mote type->Z1 mote...

https://github.com/mukiraz/Detecting-RPL-Attacks/tree/main/Experiments

We select the option.

In the™ Descriptions section we write “root” and we select root.z1 in the

Experiments ->hello-flood->with-malicious->motes folder and press “Create.” Then, in the
window that opens, it asks us how many of these nodes to place where. Since we have
determined 1 root node, we will leave the “Number of motes” section as “1” and select
‘Random positioning”. When we press the “Add motes” button, it will place 1 root node in the
simulation.

Adding the Normal Motes

The same method will be used to add regular nodes. Motes->AddMotes->create new mote
type->Z1 mote...

We select the option.
In the Descriptions section we write “normal” and

We select “sensor.z1” in the Experiments ->hello-flood->with-malicious->motes folder and
press Create. Then, in the window that opens, it asks us how many of these nodes to place
where. Here we enter the number 10 and press the “create” button. In the same way, we add
the vulnerable node to the simulation, but in the add mote option, we press the “Do not add
motes” button. We will use this node later to extract data from the simulation with the
vulnerable node.

Note: When we record the simulation with normal nodes differently and then try to add the
vulnerable node, the program gives an error. In order not to change the location of the nodes
and to perform the simulation with the same conditions, we added the vulnerable node to the
simulation, but we did not use it in the simulation.

Recording the Network Packages

We will only need to save the network data to be able to obtain the raw data from the
simulation with normal nodes. To add network data,

Tools -> Radio Messages...
We choose the options.

In the new window that opens, we select the option “6LoWPAN Analyzer with PCAP”. Thus,
the PCAP file from which we will obtain the raw data will be saved. In addition, we will be
able to see the network packets here during the simulation.

Adding Timeout Script to Simulation

We want to run the simulation for 5 minutes. For this we can use the script editor.

Tools -> Simulation Script Editor...

In the window that appears after selecting the option
We just need to write TIMEOUT(300000).

(5 x60 = 300 sec. = 3000000 milliseconds)

After entering the script, the script will not work if the Run-Activate option is not selected
from the menu in the window.

Starting the Simulation

We start the simulation by pressing the Start button.
The simulation will run for 5 minutes. The data we will use for machine learning will be saved
in PCAP format in the folder below.

Converting PCAP File to CSV File

Home/contiki-ng/tools/cooja/build
We record the name of the resulting PCAP file with the name of the simulation.

We need to convert packages from PCAP format to CSV (Comma Seperated Value) format
for us to analyze them. For this we will use the Wireshark program.

After opening the Wireshark program

File-> Open...

After pressing the button,
Home/contiki-ng/tools/cooja/build

We select our PCARP file located under its folder. Then,
File->Export Packet Dissections->As CSV...

We press the button. In the window that opens, we give the name of the CSV file and save
the file.

In this way, we have converted the PCAP file to a CSV file.

Reloading the Simulation and Simulating with
Malicious Mote

After simulating with normal nodes and obtaining network packet data, we did the same with
the vulnerable node and obtained the network packets.

For this, we need to reinstall the simulation.
We reload the simulation by pressing the “Reload” button in the simulation.

We convert the PCAP file obtained from the simulation with the vulnerable node to the CSV
file with the method described above.

When we compare the data we obtained in the Hello Flood attack with the normal data, we
can see that there are more rows of data in the attack.

We do the same experiment for the Decreased Rank Attack and the Version Number
Increase Attack and record the data we obtained from our experiments with normal
and malicious nodes.

