

Università degli Studi di Padova

Relational Algebra

Basi di Dati

Bachelor's Degree in Computer Engineering Academic Year 2024/2025

Ornella Irrera

Intelligent Interactive Information Access (IIIA) Hub Department of Information Engineering University of Padua

Given two relations $R_1(X)$ and $R_2(Y)$ and a proposition Θ , the theta-join is the relation $R_1 \Join_{\Theta} R_2 = \{t \mid \text{exists } x \in R_1, y \in R_2 \text{ such that} t[X] = x \land t[Y] = y \land \Theta\}$

Given two relations $R_1(X_1, X_2, \ldots, X_n)$ and $R_2(Y_1, Y_2, \ldots, Y_m)$, the theta-join $Q = R_1 \Join_{\Theta} R_2 = (X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m)$ has degree q = n + m

• Let $|R_1| = n_{R_1}$ and $|R_2| = n_{R_2}$ be the cardinalities of the two relations, the cardinality of the thetajoin, also called **selectivity**, is

$$0 \le |Q| = n_Q \le n_{R_1} * n_{R_2}$$

The proposition Θ can be defined as follows

- $X_i \ \theta \ Y_i$ with X_i and Y_i attributes of R_1 and R_2 on the same domain and $\theta \in \{<, >, =, \neq, \leq, \geq\}$ comparison operator
- if ϕ and ψ are propositions, then also $\phi \wedge \psi$ is a proposition

Given two relations $R_1(X)$ and $R_2(Y)$ and a proposition O $R_1 \bowtie_{\Theta} R$ $x \in R_1, y \in R_2$ such that Equivalence Equivalence $R_1 \times R_2$ $R_1 \times R_2 = \sigma \Theta(R_1 \times R_2)$ $R_1 \times \Theta R_2 = \sigma \Theta(R_1 \times R_2)$ $R_1 \times \Theta R_2$ $R_1 \times \Theta R_2$ Given two relations Rtheta-join has degree q = n + m• Let $|R_1| = n_{R_1}$ and $|R_2|$ lations, the cardinality of the thetajoin, also called **selectivity**,

The proposition Θ can be defined as follows

- $X_i \ \theta \ Y_i$ with X_i and Y_i attributes of R_1 and R_2 on the same domain and $\theta \in \{<, >, =, \neq, \leq, \geq\}$ comparison operator
- if ϕ and ψ are propositions, then also $\phi \wedge \psi$ is a proposition

Graduated

GBadge	GSurname	GAge
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Manager

MBadge	MSurname	MAge
9297	Neri	33
7432	Neri	54
9824	Verdi	45

a a a a a a a a a a a a a a a a a a a		GBadge	GSurname	GAge	MBadge	MSurname	MAge
---------------------------------------	--	--------	----------	------	--------	----------	------

Product (cartesian): example

Graduated

GBadge	GSurname	GAge
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Graduated × Manager

Manager

MBadge	MSurname	MAge
9297	Neri	33
7432	Neri	54
9824	Verdi	45

GBadge	GSurname	GAge	MBadge	MSurname	MAge
7274	Rossi	42	9297	Neri	33
7274	Rossi	42	7432	Neri	54
7274	Rossi	42	9824	Verdi	45
7432	Neri	54	9297	Neri	33
7432	Neri	54	7432	Neri	54
7432	Neri	54	9824	Verdi	45
9824	Verdi	45	9297	Neri	33
9824	Verdi	45	7432	Neri	54
9824	Verdi	45	9824	Verdi	45

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Graduated

GBadge	GSurname	GAge
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Manager

MBadge	MSurname	MAge
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Graduated M GAge > MAge Manager

GBadge	GSurname	GAge	MBadge	MSurname	MAge
7274	Rossi	42	9297	Neri	33
7432	Neri	54	9297	Neri	33
7432	Neri	54	9824	Verdi	45
9824	Verdi	45	9297	Neri	33

Project

Employee

Location	Pnumber	Hours	Pname
Padova	1	32.5	Product X
Padova	2	7.5	Product Y
Roma	2	20.0	Product Y

SSNEmp	EnumberPrj	ELocation	Ename
123456	1	Padova	Smith John
236711	2	Padova	Doe John
453453	2	Roma	English Joyce

Project

Employee

Location	Pnumber	Hours	Pname
Padova	1	32.5	Product X
Padova	2	7.5	Product Y
Roma	2	20.0	Product Y

SSNEmp	EnumberPrj	ELocation	Ename
123456	1	Padova	Smith John
236711	2	Padova	Doe John
453453	2	Roma	English Joyce

Project x Employee

Location	Pnumber	Hours	Pname	SSNEmp	ELocation	EnumberPro	Ename
Padova	1	32.5	Product X	123456	Padova	1	Smith John
Padova	1	32.5	Product X	236711	Padova	2	Doe John
Padova	1	32.5	Product X	453453	Roma	2	English Joyce
Padova	2	7.5	Product Y	123456	Padova	1	Smith John
Padova	2	7.5	Product Y	236711	Padova	2	Doe John
Padova	2	7.5	Product Y	453453	Roma	2	English Joyce
Roma	2	20.0	Product Y	123456	Padova	1	Smith John
Roma	2	20.0	Product Y	236711	Padova	2	Doe John
Roma	2	20.0	Product Y	453453	Roma	2	English Joyce

Project Pnumber Location Hours Pname Product X Padova 32.5 1 Product Y Padova 2 7.5 2 20.0 Product Y Roma

SSNEmp	EnumberPrj	ELocation	Ename
123456	1	Padova	Smith John
236711	2	Padova	Doe John
453453	2	Roma	English Joyce

Employee

Project ⋈ Location = ELocation AND PNumber = EnumberProj **Employee**

Location	Pnumber	Hours	Pname	SSNEmp	ELocation	EnumberPro j	Ename
Padova	1	32.5	Product X	123456	Padova	1	Smith John
Padova	2	7.5	Product Y	236711	Padova	2	Doe John
Roma	2	20.0	Product Y	453453	Roma	2	English Joyce

Project

Employee

Location	Pnumber	Hours	Pname
Padova	1	32.5	Product X
Padova	2	7.5	Product Y
Roma	2	20.0	Product Y

SSNEmp	EnumberPrj	ELocation	Ename
123456	1	Padova	Smith John
236711	2	Padova	Doe John
453453	2	Roma	English Joyce

Project

Employee

Location	Pnumber	Hours	Pname
Padova	1	32.5	Product X
Padova	2	7.5	Product Y
Roma	2	20.0	Product Y

SSNEmp	EnumberPrj	ELocation	Ename
123456	1	Padova	Smith John
236711	2	Padova	Doe John
453453	2	Roma	English Joyce

Project x Employee

Location	Pnumber	Hours	Pname	SSNEmp	ELocation	EnumberPro	Ename
Padova	1	32.5	Product X	123456	Padova	1	Smith John
Padova	1	32.5	Product X	236711	Padova	2	Doe John
Padova	1	32.5	Product X	453453	Roma	2	English Joyce
Padova	2	7.5	Product Y	123456	Padova	1	Smith John
Padova	2	7.5	Product Y	236711	Padova	2	Doe John
Padova	2	7.5	Product Y	453453	Roma	2	English Joyce
Roma	2	20.0	Product Y	123456	Padova	1	Smith John
Roma	2	20.0	Product Y	236711	Padova	2	Doe John
Roma	2	20.0	Product Y	453453	Roma	2	English Joyce

Project

Employee

Location	Pnumber	Hours	Pname	SSNEmp	EnumberPrj	ELocation	Ename
Padova	1	32.5	Product X	123456	1	Padova	Smith John
Padova	2	7.5	Product Y	236711	2	Padova	Doe John
Roma	2	20.0	Product Y	453453	2	Roma	English Joyce

Project ⋈ Location = ELocation OR PNumber = EnumberProj Employee

Location	Pnumber	Hours	Pname	SSNEmp	ELocation	EnumberPro	Ename
Padova	1	32.5	Product X	123456	Padova	1	Smith John
Padova	1	32.5	Product X	236711	Padova	2	Doe John
Padova	2	7.5	Product Y	123456	Padova	1	Smith John
Padova	2	7.5	Product Y	236711	Padova	2	Doe John
Padova	2	7.5	Product Y	453453	Roma	2	English Joyce
Roma	2	20.0	Product Y	236711	Padova	2	Doe John
Roma	2	20.0	Product Y	453453	Roma	2	English Joyce

Project

Employee

Location	Pnumber	Hours	Pname	SSNEmp	EnumberPrj	ELocation	Ename
Padova	1	32.5	Product X	123456	1	Padova	Smith John
Padova	2	7.5	Product Y	236711	2	Padova	Doe John
Roma	2	20.0	Product Y	453453	2	Roma	English Joyce

Project ⋈ Location = ELocation OR PNumber = EnumberProj Employee

Location	Pnumber	Hours	Pname	SSNEmp	ELocation	EnumberPro	Ename
Padova	1	32.5	Product X	123456	Padova	1	Smith John
Padova	1	32.5	Product X	236711	Padova	2	Doo John
Padova	2	7.5	Product Y	123456	Padova	1	Smith John
Padova	2	7.5	Product Y	236711	OR produ Padova	ices spuriou	s tuples!! Doe John
Padova	2	7.5	Product Y	453453	Roma	2	English Joyce
Roma	2	20.0	Product Y	236711	Padova	2	Doe John
Roma	2	20.0	Product Y	453453	Roma	2	English Joyce

Project

Employee

Location	Pnumber	Hours	Pname	SSNEmp	EnumberPrj	ELocation	Ename
Padova	1	32.5	Product X	123456	1	Padova	Smith John
Padova	2	7.5	Product Y	236711	2	Padova	Doe John
Roma	2	20.0	Product Y	453453	2	Roma	English Joyce

Project ⋈ Location = ELocation OR PNumber = EnumberProj Employee

Location	Pnumber	Hours	Pname	SSNEmp	ELocation	EnumberPro	Ename
Padova	1	32.5	Product X	123456	Padova	1	Smith John
Padova	1	32.5	Product X	236711	Padova	2	Doo John
Padova	2	7.5	Popular	123 <mark>456</mark>	Padova	1	Smith John
Padova	2	7.5	Pro LCLY	236711	OR produ Padova	ices spuriou	s tuples!! Doe John
Padova	2	7.5	Product Y	453 <mark>453</mark>	Roma	2	English Joyce
Roma	2	20.0	Product Y	236711	Padova	2	Doe John
Roma	2	20.0	Product Y	453453	Roma	2	English Joyce

The equi-join is a theta-join where we can use only the = comparison operator

The equi-join is a theta-join where we can use only the = comparison operator

Employee

Surname	Dep
Rossi	A
Neri	В
Bianchi	B

Department

Code	Manager
A	Mori
B	Bruni

Employee $\bowtie_{Dep = Code}$ **Department**

Surname Dep Code Manager

The equi-join is a theta-join where we can use only the = comparison operator

Employee $\bowtie_{Dep = Code}$ **Department**

Surname	Dep	Code	Manager
Rossi	A	A	Mori
Neri	B	B	Bruni
Bianchi	B	B	Bruni

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

The natural join is an equi-join where the attributes of the two relations in the join condition have the same names and the duplicated attributes are removed from the schema of the output relation

• Let $R_1(XW)$ and $R_2(YZ)$ the two relations with W and Z sets of attributes with the same name, then the natural join can be expressed as

 $R_1 \bowtie R_2 = \pi_{X, W_1, W_2, \dots, W_m, Y} (R_1 \bowtie_{W_1 = Z_1 \land W_2 = Z_2 \land \dots \land W_m = Z_m} R_2)$

Surname	Dep
Rossi	A
Neri	B
Bianchi	B

Department

Dep	Manager
A	Mori
B	Bruni

Employee 🛛 Department

Surname Dep Manager

Employee \bowtie **Department**

Surname	Dep	Manager
Rossi		Mori
Neri	B	Bruni
Bianchi	B	Bruni

Employee (R₁)

Surname	Dep
Rossi	A
Neri	B
Bianchi	B
Neri	С

Department (R₂)

Employee \bowtie **Department**

Surname	Dep	Manager
Rossi		Mori
Neri	В	Bruni
Neri	B	Verdi
Bianchi	B	Bruni
Bianchi	В	Verdi

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Cardinality of the Natural Join: Example (1/3)

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

© Ornella Irrera

Employee (R₁)

Surname	Dep
Rossi	A
Neri	B
Bianchi	В
Neri	С

Department (R₂)

Employee \bowtie **Department**

Surname	Dep	Manager
Rossi		Mori
Neri	В	Bruni
Bianchi	B	Bruni

Cardinality of the Natural Join: Example (2/3)

Cardinality of the Natural Join: Example (3/3)

Employee \bowtie **Department**

Surname	Rep	Manager
Rossi		Mori
Neri	В	Bruni
Bianchi	B	Bruni
Neri		Verdi

Cardinality of the Natural Join: Example (3/3)

Cardinality of the Natural Join (Equi-Join)

As in the general case, the cardinality of the natural join (equi-join) is

$$0 \le |R_1 \bowtie R_2| \le |R_1| * |R_2|$$

If the natural join (equi-join) involves attributes K which are a key (maybe primary, PK) of R_2 then

 $0 \le |R_1 \bowtie R_2| \le |R_1|$

If the natural join (equi-join) involves attributes K which are a key (maybe primary, PK) of R_2 and the same attributes are a foreign key FK of R_1 with a referential integrity constraint on R_2 then

$$R_1 \bowtie R_2 | = |R_1|$$

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano
9553	Neri	NULL	Milano

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano
9553	Neri	NULL	Milano

$\sigma_{Age>40}(Employee)$

Badge	Surname	Age	Branch
5998	Bianchi	42	Milano

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano
9553	Neri	NULL	Milano

$\sigma_{\text{Age}>40}(\text{Employee}) \cup \sigma_{\text{Age}\leq40}(\text{Employee}) \neq \text{Employee}$

Selections are evaluated separately

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano
9553	Neri	NULL	Milano

 $\sigma_{\text{Age}>40}$ $\swarrow_{\text{Age}\leq40}$ (Employee) \neq Implegato

Atomic conditions are evaluated separately

To manage NULL values we introduce specific conditions: IS NULL Employee IS NOT NULL Badge Surname Age Branch

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano
9553	Neri	NULL	Milano

σ_{Age} is NULL (Employee)

Badge	Surname	Age	Branch
9553	Neri	NULL	Milano

$\sigma_{\rm Age}\,{\rm is \, not\, null}({\rm Employee})$

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano

Managing the NULL Values: Example

Employee

Badge	Surname	Age	Branch
7309	Rossi	34	Roma
5998	Bianchi	42	Milano
9553	Neri	NULL	Milano

 $\sigma_{\text{Age}>40 \vee \text{Age}\leq40 \vee \text{Age}}$ IS NULL (Employee) = Employee

$$\sigma_{Age>40}(Employee)$$

$$\cup$$

$$\sigma_{Age\leq40}(Employee)$$

$$\cup$$

$$\sigma_{Age IS NULL}(Employee)$$

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Join: Dangling Tuples

Employee (R₁)

Surname	Dep
Rossi	A
Neri	B
Bianchi	В
Neri	C

Department (R₂)

Employee \bowtie **Department**

Surname	Dep	Manager
Rossi		Mori
Neri	B	Bruni
Bianchi	B	Bruni

Some tuples are dangling and do not contribute to the

results

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Given two relations $R_1(XW)$ and $R_2(YZ)$ with W and Zsets of attributes on the same domain, the full outer join is

 $R_1 \bowtie_W \theta_Z R_2 = R_1 \bowtie_W \theta_Z R_2$

 $\bigcup_{\substack{(R_1 - \pi_{X,W}(R_1 \bowtie_{W \theta Z} R_2)) \times \{Y = \mathsf{NULL}, Z = \mathsf{NULL}\}} \\ \bigcup_{\substack{(R_2 - \pi_{Y,Z}(R_1 \bowtie_{W \theta Z} R_2)) \times \{X = \mathsf{NULL}, W = \mathsf{NULL}\}} \\ \end{array}$

The full outer join extends, with NULL values, the tuples which are excluded from the theta-join, also called inner join, keeping tuples from both operands

 $R_1 \bowtie_W \theta_Z R_2 = R_1 \bowtie_W \theta_Z R_2$

 $(R_2 - \pi_{Y,Z}(R_1 \bowtie_W \theta_Z R_2)) \times \{X = \mathsf{NULL}, W = \mathsf{NULL}\}$

Employee (R₁)

Surname	Dep
Rossi	A
Neri	В
Bianchi	В
Neri	C

Department (R₂)

Employee Depertment

Surname	Dep	Code	Manager
Rossi	A	A	Mori
Neri	B	B	Bruni
Bianchi	B	B	Bruni
Neri	С	NULL	NULL
NULL	NULL		Verdi

Full Outer Join: Example

Full Outer Join: Example

Full Outer Join: Example

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Left Outer Join: Example

Employee (R₁)

Surname	Dep
Rossi	A
Neri	B
Bianchi	В
Neri	C

Department (R₂)

Employee Depecode Department

Surname	Dep	Code	Manager
Rossi	A	A	Mori
Neri	B	B	Bruni
Bianchi	B	B	Bruni
Neri	С	0 NULL	NULL

Left Outer Join: Example

Left Outer Join: Example

Employee (R₁)

Surname	Dep
Rossi	A
Neri	В
Bianchi	В
Neri	C

Department (R₂)

Employee McDep=Code Department

Surname	Dep	Code	Manager
Rossi	A	A	Mori
Neri	B	B	Bruni
Bianchi	B	B	Bruni
NULL	NULL		Verdi

Right Outer Join: Example

Right Outer Join: Example

Employee (R₁)

Surname	Dep
Rossi	A
Neri	В
Bianchi	В
Neri	NULL

Department (R₂)

Employee Depertment

Surname	Dep	Code	Manager
Rossi	A	A	Mori
Neri	B	B	Bruni
Bianchi	B	B	Bruni
Neri	NULL	NULL	NULL
NULL	NULL	NULL	Verdi

