$$\begin{array}{c} \hline COHPUTABILITY & (02/12/2024) \\ \hline Rice's THEOREH \\ \hline Rice's Theorem \\ \hline Rice's Th$$

Def (sahwates / extensional set):
$$A \leq IN$$
 is saturates (extensional)
if for all $m, n \in IN$
if $m \in A$ and $q_m = q_n$ then $n \in A$
if $m \in A$ and $q_m = q_n$ then $n \in A$
if $m \in A$ and $q_m \in A$
 $A = \{m \in IN \mid q_n \in A\}$
 $A = \{m \in IN \mid q_n \in A\}$
 $astropoly = \{m \in IN \mid q_n \in A\}$
 $extropoly = \{m \in IP_n \text{ halts an every input}\}$
 $= \{m \mid q_m \text{ is table}\}$
 $= \{m \mid q_m \text{ is table}\}$
 $= \{m \mid q_m \in T\}$ where $T \in \{f \mid f \text{ is table}\}$
 $* ONE = \{m \mid P_m \text{ halts an every input}\}$
 $= \{m \mid q_m = fi\} = \{m \mid q_n \in \{f\}\}$
 $* ONE = \{m \mid P_m \text{ has beingth s to}\}$
 $* LEN 10 = \{m \mid P_m \text{ has length s to}\}$
 $* LEN 10 = \{m \mid P_m \text{ has length s to}\}$
 $m \in LEN10$
 $m \notin (S(1)) \in LEN 10$
 $m \notin (S(2))$
 $m \notin (S(2))$
 $m \notin (S(2))$
 $m \notin (S(2))$
 $m \notin (EN 10)$
 $m \notin (S(2))$
 $m \notin (S(2))$
 $m \notin (EN 10)$
 $m \notin (S(2))$
 $m \notin (EN 10)$

*
$$K = \{m \in \mathbb{N} \mid \varphi_m(m) \downarrow\}$$

= $\{m \in \mathbb{N} \mid \varphi_m \in \widehat{K}\}$
 $\widehat{X} = \{f \mid f(\widehat{?}) \downarrow\}$
apprently not saturated.
formally we much find $m_1 \in \mathbb{N}$
 $m \in K$ i.e. $\varphi_m(m) \downarrow$
 $m \notin K$ i.e. $\varphi_m(m) \downarrow$
 $m \notin K$ i.e. $\varphi_m(m) \uparrow$
if there exists a program $m \in \mathbb{N}$ s.t.
 $\varphi_m(x) = \begin{cases} 1 & x = m \\ 1 & observice$
them we can clude easily that K is not saturated
(a) $m \in K$ since $\varphi_m(m) \downarrow$
(b) for a computable functions there are imfinitely (many programs
homa there $m \pm m = xt$. $\varphi_m = \varphi_m$
(b) $m \notin K$
 $q_m(m) = q_m(m) \uparrow$
if $(m) = q_m(m) \uparrow$
 $f_m = q_m$
(b) $m \notin K$
 $q_m(m) = q_m(m) \uparrow$
 $f_m = q_m$
 $f_m = q_m$

$$\begin{array}{c} x \\ \xrightarrow{P} \\ & \text{if } x = P \quad \text{flum 1} \\ & \text{if } x \neq P \quad \uparrow \\ & \text{if } x = " \quad \text{def } P(x) : \\ & \text{if } x = " \quad \text{def } P(x) : \\ & \text{if } \dots \end{array}$$

b

Rice's Theozenn :

Let $A \subseteq IN$ if A is <u>saturated</u>, $A \neq \emptyset$, $A \neq IN$ then A is not recursive

foord

we show that $K \leq_m A$ (since K is not recursive this will imply that A mot recursive) $N \xrightarrow{K} \xrightarrow{reduction} function for the function always)$ all the function function for the function always (propriam for the function always) $(1) Assume <math>e_b \in \overline{A}$ let $e_1 \in A$ (it exists since $A \neq \phi$)

Define

computable !

By the smm theorem there
$$s: N \rightarrow IN$$
 total and computable s.t.
 $\forall x, y$
 $P_{S(x)}(y) = Q(x, y) = \begin{cases} P_{e_1}(y) & \text{if } x \in K \\ P_{e_0}(y) & \text{if } x \notin K \end{cases}$

- S is the reduction function : Ya xEK iff six) EA
- * if xGK S(x) E A
 - if $x \in K$ then $\varphi_{S(x)}(y) = g(x,y) = \varphi_{e_1}(y)$ $\forall y$ hence $\varphi_{S(x)} = \varphi_{e_1}$. Since $e_1 \in A$ and A saturated then $S(x) \in A$.
- $x if x \notin K$ \longrightarrow $S(x) \notin A$
 - if $x \notin K$ then $q_{S(x)}(y) = g(x,y) = q_{e_0}(y)$ $\forall y$ hence $q_{S(x)} = q_{e_0}$. Since $e_0 \notin A$ and A solurated, $S(x) \notin A$

Hence S is the reduction function for $K \leq_m A$, since K is not recursive we deduce that A is not recursive.

(2) if instead
$$e \in A$$

if we let $B = \overline{A}$
• B is saturated, (since A is saturated)
• $e \in \overline{B}$
• $B \neq \phi$ (since $A \neq N$)
• $B \neq \phi$ (since $A \neq N$)
• $B \neq N$ (since $A \neq \phi$)
B is not securative

 \Box

since B=À not recursive, meither A is.

$$\frac{\text{Example}}{\text{Bm}} : \frac{\text{Output problem}}{\text{Pm}}$$

$$\frac{\text{Bm}}{\text{F}} = \{x \mid R_x \text{ outputs m for some imput}\}$$

$$= \{x \mid M \in E_x \}$$

$$(\text{mot recursive since } K \leq_m B_m)$$

- Bn is saturated, in fact $B_m = \{x \mid \varphi_x \in B_m\}$ where $B_m = \{f \mid n \in cod(f)\}$
- $B_m \neq \phi$ e.g. let ere N s.t. $\varphi_{e_1}(y) = y \forall y \quad n \in E_{e_1} = N$ • $B_m \neq N$ • $B_m \neq N$

e.g. let
$$e_2 \in \mathbb{N}$$
 s.t. $\varphi_{e_2}(y) = m$ $\forall y \sim m \notin E_{e_2} = \{m\}$
(with $m \neq m$) $\sim B_m \neq \mathbb{N}$

Hence by Rice's theoderm, Brn is not recursive.

EXAMPLE :

 $I = \{x \in |N| | P_x \text{ is halling on infinitely many imposes} \}$ = $\{x \in |N| | W_x \text{ is infinite} \}$

* saturated

$$I = q = x \in IN \quad | \quad q_x \in \mathcal{G}$$
where $\mathcal{G} = q f | dom(f) \quad |s \quad infinite f$

* I = Ø

if e1 is as above (identity) ⇒ We1 = N infinite ⇒ ei ∈ I = ×

* I + N

if lo is s.t. les (y) 1 Yy ⇒ Wes = \$\$ fimite ⇒ es \$ I

No by Rice's Theorem I is not cecuraive.

 \Box

we define

$$g(x,y) = \begin{cases} y & \text{if } x \in K \quad [\varphi_{x}(x) \downarrow] \\ \uparrow & \text{if } x \notin K \quad [\varphi_{x}(x) \uparrow] \end{cases}$$
$$= y \cdot \varPi(\varphi_{x}(x))$$
$$= y \cdot \varPi(\varphi_{x}(x)) \qquad \text{computable}$$

by simm theorem, there is
$$S: |N \to N$$
 total and computable s.t.
 $\forall x_N = q_{S(x)}(y) = q(x,y) = \begin{cases} y & \text{if } x \in k \\ \uparrow & \text{otherwise} \end{cases}$

S is the reduction function for K≤m A

* if
$$x \in k$$
 then $Q_{S(x)}(y) = y$ $\forall y$
hence $S(x) \in W_{S(x)} \cap E_{S(x)} = N$
 $|| \qquad || \qquad = \Rightarrow S(x) \in A$
 $|| \qquad || \qquad = \Rightarrow S(x) \in A$

* if x & K them

s(x) ∉

hemce