

Università degli Studi di Padova

Relational Algebra

Basi di Dati

Bachelor's Degree in Computer Engineering Academic Year 2024/2025

Ornella Irrera

Intelligent Interactive Information Access (IIIA) Hub Department of Information Engineering University of Padua

Update operation (insertion, modification, and deletion)

Relational Algebra (query operations)

Update Operations

• We can classify the relational model operations into

Given a database schema and a database instance

an update is a function which maps the given database instance into a new database instance which is valid with respect to all the integrity constraints

a query is a function which maps the given database instance into a relation

Insertion

- domain constraints
- tuple constraints
- key constraints
- referential integrity constraints

Alternatives

- prevent the insertion
- Try to correct the cause of the constraint violation

It may violate

- domain constraints
- tuple constraints
- key constraints
- referential integrity constraints

Alternatives

- prevent the update (*restrict*)
- propagate the update (cascade)

Student	BadgeNumber	Name	Surname	BirthDate
	6554	Mario	Rossi	05/12/1982
	8765	Paolo	Neri	07/04/1979
	9283	Luisa	Verdi	22/07/1983
	3456	Marta	Rossi	14/02/1981
	Student	Mark	Course	Exam
	3456	30	03	
	3456	24	02	
	9283	28	01	
	6554	26	01	
Courco				
Course	Code	litle	leacher	
	01	Analysis	Bianchi	
	02	Chemistry	Bruni	
	03	Physics	Rossi	4

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

© Ornella Irrera

Student	BadgeNumber	Name	Surname	BirthDate
	6554	Mario	Rossi	05/12/1982
	8765	Paolo	Neri	07/04/1979
	9283	Luisa	Verdi	22/07/1983
	3457	Marta	Rossi	14/02/1981
	Student	Mark	Course	Exam
	3456	30	03	
	3456	24	02	
	9283	28	01	
	6554	26	01	
Courco				
Course	Code	Title	leacher	
	01	Analysis	Bianchi	
	02	Chemistry	Bruni	
	03	Physics	Rossi	4

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

© Ornella Irrera

Student	BadgeNumber	Name	Surname	BirthDate
	6554	Mario	Rossi	05/12/1982
	8765	Paolo	Neri	07/04/1979
	9283	Luisa	Verdi	22/07/1983
	3457	Marta	Rossi	14/02/1981
	Student	Mark	Course	Exam
	3457	30	03	
	3457	24	02	
	9283	28	01	
	6554	26	01	
Couroo				
Course	Code	Title	Teacher	
	01	Analysis	Bianchi	
	02	Chemistry	Bruni	
	03	Physics	Rossi	4

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Deletion

It may violate

referential integrity constraints

Alternatives

- prevent the deletion (*restrict*)
- propagate the deletion (cascade)
- modify the values of the referenced attributes setting them to
 NULL (set null) or to a default value (set default)
 - note that, if the referenced attributes are part of the primary key, it is not possible to set them to NULL

Delete: Cascade

Student	BadgeNumber	Name	Surname	BirthDate
	6554	Mario	Rossi	05/12/1982
	8765	Paolo	Neri	07/04/1979
	9283	Luisa	Verdi	22/07/1983
	3456	Marta	Rossi	14/02/1981
	Student	Mark	Course	Exam
	3456	30	03	
	3456	24	02	
	9283	28	01	
	6554	26	01	
Courco				
Course	Code	Title	Teacher	
	01	Analysis	Bianchi	
	02	Chemistry	Bruni	
	03	Physics	Rossi	4

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

© Ornella Irrera

Student	BadgeNumber	Name	Surname	BirthDate
	6554	Mario	Rossi	05/12/1982
	8765	Paolo	Neri	07/04/1979
	9283	Luisa	Verdi	22/07/1983
				Exam
				LAam
	Student	Mark	Course	
	9283	28	01	
	6554	26	01	
Courco				
Course	Code	litle	leacher	
	01	Analysis	Bianchi	
	02	Chemistry	Bruni	
	03	Physics	Rossi	

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

© Ornella Irrera

Relational Algebra (query operations)

The relational algebra is a set of operators to manipulate whole relations: each operator processes one (or more) relations and produces as output a new relation

Relational algebra operators can be composed to create expressions

The relational algebra is a procedural language

- Primitive operators
 - U union
 - difference
 - X product
 - ho rename
 - σ selection
 - π projection
- Derived operators
 - ∩ intersection
 - N natural join
 - \bowtie_{Θ} theta join
 - $\supset \Theta$ outer join

- Set operators
 - U union
 - difference
 - X product
 - ∩ intersection
- Relational operators
 - ho rename
 - σ selection
 - π projection
 - N natural join
 - \bowtie_{Θ} theta join
 - \Join_Θ outer join

Two relations $R_1(X_1, X_2, ..., X_n)$ and $R_2(Y_1, Y_2, ..., Y_n)$ are compatible to union if they have the same degree n and $\begin{cases}
X_i = Y_i \\
dom(X_i) = dom(Y_i)
\end{cases}$ $1 \le i \le n$

Two relations are compatible to union when they have the same number of attributes and each pair of attributes has the same name and domain

 For the intersection, union, and difference operators, the two involved relations must be compatible to union

Given two relations $R_1(X)$ and $R_2(Y)$ compatible to union, their intersection is the relation $R_1 \cap R_2 = \{t \mid t \in R_1 \land t \in R_2\}$

Graduated

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Manager				
Badge	Surname	Age		
9297	Neri	33		
7432	Neri	54		
9824	Verdi	45		

Graduated ∩ Manager

Badge	Surname	Age
7432	Neri	54
9824	Verdi	45

Union

Given two relations $R_1(X)$ and $R_2(Y)$ compatible to union, their union is the relation $R_1 \cup R_2 = \{t \mid t \in R_1 \lor t \in R_2\}$

G	rad	ua	ted

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Manager				
Badge	Surname	Age		
9297	Neri	33		
7432	Neri	54		
9824	Verdi	45		

Graduated U Manager

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

Difference

Given two relations $R_1(X)$ and $R_2(Y)$ compatible to union, their difference is the relation $R_1 - R_2 = \{t \mid t \in R_1 \land t \notin R_2\}$

Graduated

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Manager					
Badge	Surname	Age			
9297	Neri	33			
7432	Neri	54			
9824	Verdi	45			

Graduated - Manager

Badge	Surname	Age
7274	Rossi	42

Difference

Given two relations $R_1(X)$ and $R_2(Y)$ compatible to union, their difference is the relation $R_1 - R_2 = \{t \mid t \in R_1 \land t \notin R_2\}$

Graduated

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Manager					
Badge	Surname	Age			
9297	Neri	33			
7432	Neri	54			
9824	Verdi	45			

Manager - Graduated

Badge	Surname	Age
9297	Neri	33

Difference

Given two relations $R_1(X)$ and $R_2(Y)$ compatible to union, their difference is the relation $R_1 - R_2 = \{t \mid t \in R_1 \land t \notin R_2\}$

Graduated

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Badge	Surname	Age
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Graduated – Manager

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Given the two relations $R_1(X_1, X_2, \ldots, X_n)$ and $R_2(Y_1, Y_2, \ldots, Y_m)$, the cartesian product

$$Q = R_1 \times R_2 = (X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_m)$$
 has degree $q = n + m$

• Let $|R_1| = n_{R_1}$ and $|R_2| = n_{R_2}$ be the cardinalities of the two relations, then the cardinality of the cartesian product is

$$|Q| = n_{R_1} * n_{R_2} = n_Q$$

Note that the use of the term "cartesian product" is somehow improper because the result of this operation is not a pair of tuples but the set of tuples obtained concatenating each tuple of the first relation with each tuple of the second relation

Product (cartesian): example

1.		I.
		L
		L
		L

G	raduated	k			Manage	er	
2	Badge	Surname	Age		Badge	Surname	Age
	7274	Rossi	42		9297	Neri	33
	7432	Neri	54		7432	Neri	54
	9824	Verdi	45		9824	Verdi	45
	Gradua	ted × Ma	nager				
	Badge	Surnam	e	Age	Badge	Surname	Age

Product (cartesian): example

Graduated

Badge	Surname	Age
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Graduated × Manager

Manager

Badge	Surname	Age
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Badge	Surname	Age	Badge	Surname	Age
7274	Rossi	42	9297	Neri	33
7274	Rossi	42	7432	Neri	54
7274	Rossi	42	9824	Verdi	45
7432	Neri	54	9297	Neri	33
7432	Neri	54	7432	Neri	54
7432	Neri	54	9824	Verdi	45
9824	Verdi	45	9297	Neri	33
9824	Verdi	45	7432	Neri	54
9824	Verdi	45	9824	Verdi	45

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Rename

Given a relation R(X) and two sets of attributes $A_1, A_2, \ldots, A_m \in X$ and $B_1, B_2, \ldots, B_m \notin X$, the rename is the relation with attributes $X - \{A_1, A_2, \ldots, A_m\} \cup \{B_1, B_2, \ldots, B_m\}$ such that $\rho_{B_1, B_2, \ldots, B_m \leftarrow A_1, A_2, \ldots, A_m}(R) = \{t \mid \text{exists } x \in R \text{ such that}$ $t[B_1, B_2, \ldots, B_m] = x[A_1, A_2, \ldots, A_m] \land$ $t[C] = x[C] \text{ if } C \neq A_1, A_2, \ldots, A_m\}$

This definition states that we are changing only the attribute names but not their domain or the associated values

we are modifying the schema but not the instance

	П
	П

PaternityFatherChildAdamoAbeleAdamoCainoAbramoIsacco

Maternity		
Mother	Child	
Eva	Abele	
Eva	Set	
Sara	Isacco	

Paternity U Maternity ?

Rename: Example (1/2)

ρParent←Father(Paternity)

Parent	Child
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternity		
Mother	Child	
Eva	Abele	
Eva	Set	
Sara	Isacco	

Rename: Example (1/2)

ρParent←Father(Paternity)

Parent	Child
Adamo	Abele
Adamo	Caino
Abramo	Isacco

ρParent←Mother(Maternity)

Parent	Child
Eva	Abele
Eva	Set
Sara	Isacco

Rename: Example (1/2)

		Π
		П
		L
		Π

ρ Parent←Father(Paternity)		
Parent	Child	
Adamo	Abele	
Adamo	Caino	
Abramo	Isacco	

ρParent←Mother(Maternity)

Parent	Child
Eva	Abele
Eva	Set
Sara	Isacco

ρParent ← Father(Paternity) U ρParent ← Mother(Maternity)

Parent	Child
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

Rename: Example (2/2)

		Π
		H

ClerkSurnameOfficeSalaryRossiRoma55NeriMilano64

Worker

Surname	Factory	Wages
Bruni	Monza	45
Verdi	Latina	55

PSite, Pay←Office, Salary(Clerk) U

PSite, Pay←Factory, Wages(Worker)

Surname	Site	Pay
Rossi	Roma	55
Neri	Milano	64
Bruni	Monza	45
Verdi	Latina	55

Given a relation R(X) and a proposition Θ , the selection is the relation:

 $\sigma_{\Theta}(R) = \left\{ t \mid t \in R \land \Theta \right\}$

The selection produces a result which

- has the same schema as the operand
- contains a subset of the tuples of the operand, i.e. those tuples which match the condition expressed by the proposition

The proposition Θ can be defined as follows

- $X_i \ heta \ X_j$ with X_i and X_j attributes of R on the same domain and $heta \in \{<,>,=,
 eq,\leq,\geq\}$ comparison operator
- $X_i \; heta \; c$ with X_i attribute of R , heta comparison operator and $c \in \mathrm{dom}(X_i)$ constant

• if ϕ and ψ are propositions, then also $\phi \wedge \psi, \; \phi \lor \psi, \; \neg \phi$ are propositions

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who earn more than 50

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who earn more than 50

σ_{Salary>50}(Employee)

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Rossi	Roma	64

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who earn more than 50 and work in Milan

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who earn more than 50 and work in Milan

σSalary>50 ∧ Branch = Milano (Employee)

Badge	Surname	Branch	Salary
5998	Neri	Milano	64

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who have the same surname as the branch where they work

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who have the same surname as the branch where they work

σ_{Surname = Branch} (Employee)

Badge	Surname	Branch	Salary
9553	Milano	Milano	44

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who have the same surname as the branch where they work or have salary < 60 and branch Rome

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the employees who have the same surname as the branch where they work or have salary < 60 and branch Rome

σSurname = Branch ∨ (Salary < 60 ∧ Branch = 'Roma') (Employee)

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
9553	Milano	Milano	44

Given a relation R(X) and a list of its attributes A_1, A_2, \ldots, A_m , the projection is the relation:

 $\pi_{A_1,A_2,\ldots,A_m}(R) = \{t[A_1,A_2,\ldots,A_m] \mid t \in R\}$

The projection produces a result which

- has a subset of the attributes of the operand
- contains (a subset of) the tuples of the operand
- The degree of a projection is $\,m$
- The cardinality of a projection is
 - Iess than or equal to the cardinality of the input relation; less than if the projection contains duplicated tuples which are removed because of the definition of relation
 - equal to the cardinality of the input relation if the attributes A_1, A_2, \ldots, A_m are a super-key

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the badge number and the surname of all the employees

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find the badge number and the surname of all the employees

πBadge, Surname(Employee)

Badge	Surname
7309	Rossi
5998	Neri
9553	Milano
5698	Rossi

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find surname and branch of all the employees

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find surname and branch of all the employees

πSurname, Branch(Employee)

Surname	Branch
Rossi	Roma
Neri	Milano
Milano	Milano

Badge	Surnamy	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Selection and projection are two "orthogonal", i.e. complementary operators

- Selection performs a horizontal decomposition
 - Projection performs a vertical decomposition

Employee					
Badge	Surnamy	Branch	Salary		
7309	Rossi	Roma	55		
5998	Neri	Milano	64	6	
9553	Milano	Milano	44	0	
5698	Rossi	Roma	64		

Selection and projection are two "orthogonal", i.e. complementary operators

- Selection performs a horizontal decomposition
 - Projection performs a vertical decomposition

Selection and projection are two "orthogonal", i.e. complementary operators

- Selection performs a horizontal decomposition
 - Projection performs a vertical decomposition

Selection and Projection: Exercise (1/2)

Employee

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find badge number and surname of all the employees who earn more than 50

Selection and Projection: Exercise (1/2)

Employee

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find badge number and surname of all the employees who earn more than 50

πBadge, Surname(**σ**Salary>50(Employee))

Badge	Surname
7309	Rossi
5998	Neri
5698	Rossi

Selection and Projection: Exercise (1/2)

Employee

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find badge number and surname of all the employees who earn more than 50

πBadge, Surname(**σ**Salary>50(Employee))

σ_{Sakary>50}(π_{Badge}, Surname</sub>(Employee))

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find badge number and surname of all the employees who earn more than 50

Π general, selection and projection are not commutative.
 They are commutative only when the attributes of the selection are a subset of the attributes of the projection

σSakary>50(πBadge, Surname(Employee))

Selection and Projection: Exercise (2/2)

Employee

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find surname and branch of all the employees with salary < 50 **or** branch = 'Rome'

Selection and Projection: Exercise (2/2)

Employee

Badge	Surname	Branch	Salary
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Rossi	Roma	64

Find surname and branch of all the employees with salary < 50 **or** branch = 'Rome'

πSurname, Branch(**σ**Salary<50 ∨ Branch = 'Roma' (Employee))

Surname	Branch
Milano	Milano
Rossi	Roma