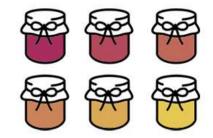

Analytic Hierarchy Process

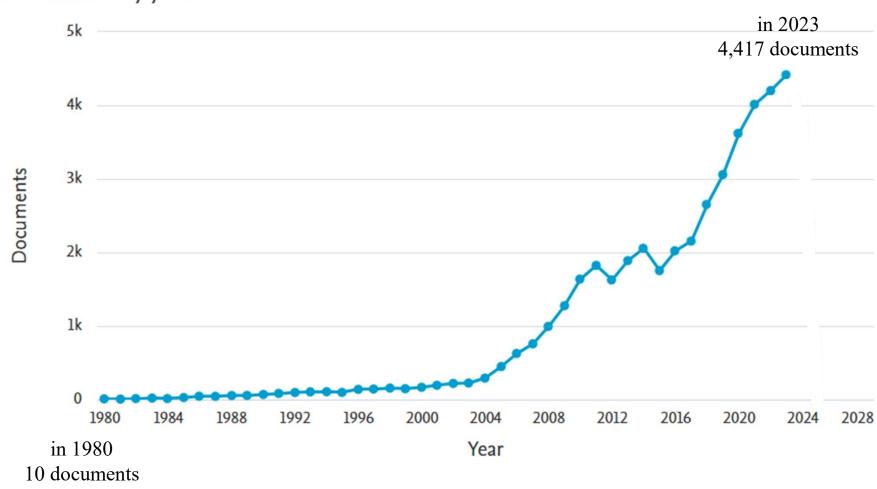

AHP

Learning to choose is hard. Learning to choose well is harder. And learning to choose well in a world of unlimited possibilities is harder still, perhaps too hard. Barry Schwartz

 Making decisions in complex environments: there is no unique solution

Too many choices?

24 choices of jam attracted 60% of the shoppers <u>3%</u> of shoppers bought jam

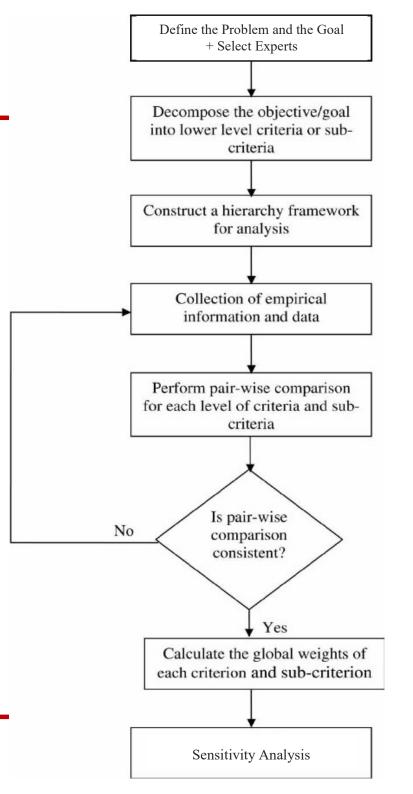


Paradox of choice

- In making simple choices, an alternative is better than the others
- When problems are complex, an alternative can be better than the others in some situations, but not in other situations
- In complex problems different alternatives can be equally valid

- AHP was developed in the late 1970s. Today it is the most widely used MCDA method.
- AHP generates all criteria weighting and alternative preferences within each criteria by eliciting these values from the decision-maker through a series of pairwise comparisons, as opposed to utilizing numerical values directly.
- Thus, <u>a complex decision is reduced to a series of simpler ones</u>, <u>between pairs</u> <u>of alternative values within criteria or between pairs of criteria</u>. The decision maker's preference is always explicit. However, the decision-maker may be asked to make very many small decisions. Hence, it becomes important to generate an optimized hierarchy of criteria and alternatives, to reduce the number of pairwise decisions.

Search in Scopus: number od documents including «AHP» within abstract, title, keywords:

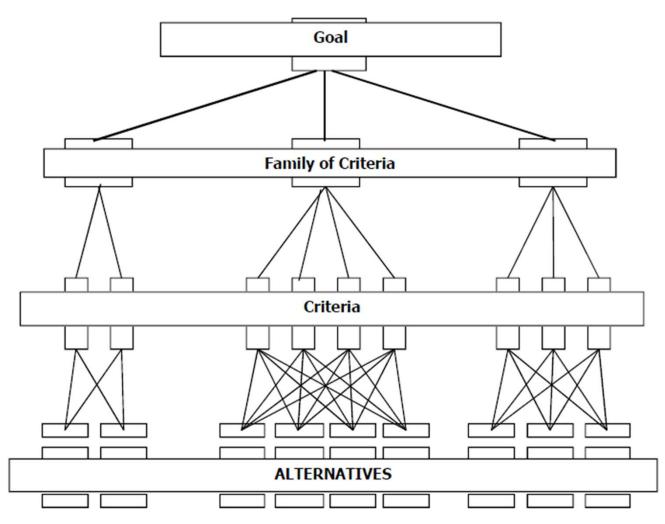

Documents by year

$\textbf{SUBJECTIVITY} \neq \textbf{ARBITRARINESS}$

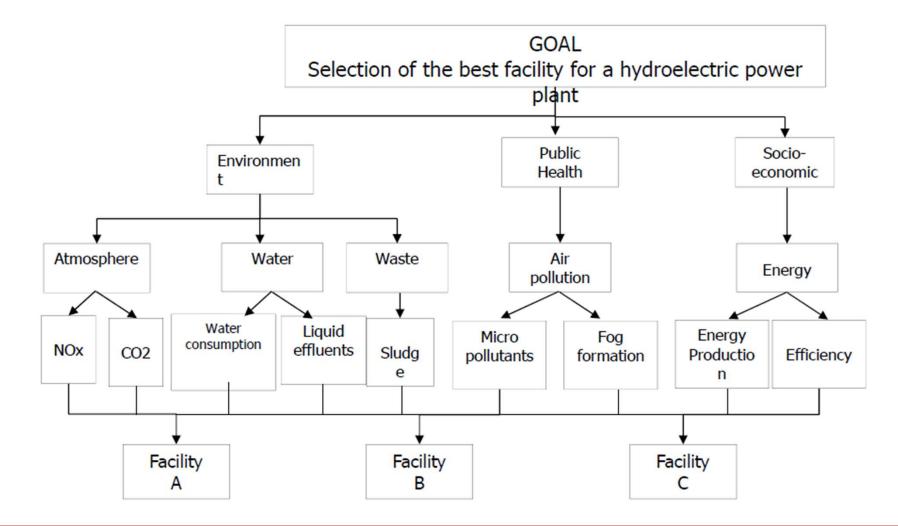
- The AHP permits the measurement of intangibles through expert judgments
- It permits to choose the 'best' alternative among a discrete set of alternatives, simplifying the choice
- Unlike common optimization methods, which assume the availability of 'measures', the AHP uses measures derived or interpreted subjectively, which are indicators of preference
- (Judgments are influenced by past experience)

AHP – Flow Chart

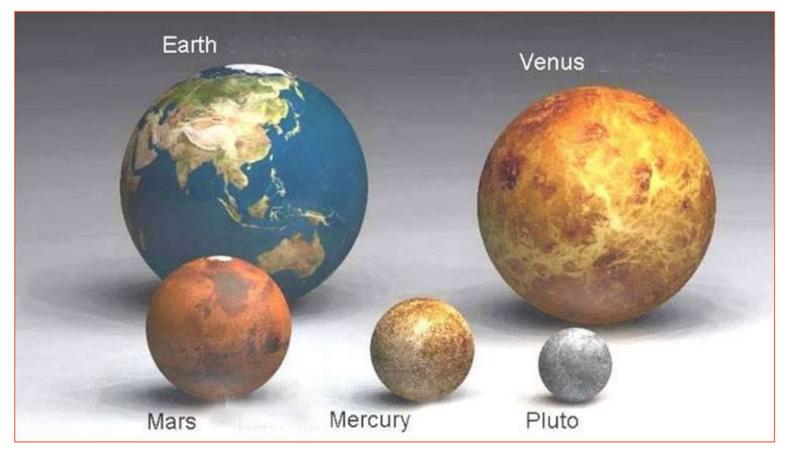
- Analytic: breaks down the problem into its components
- Hierarchy: structures the problem components in a hierarchical way with respect to the main objective and sub-objectives
- Process: processes judgments and data in order to reach the final result


AHP – Simplified Flow Chart

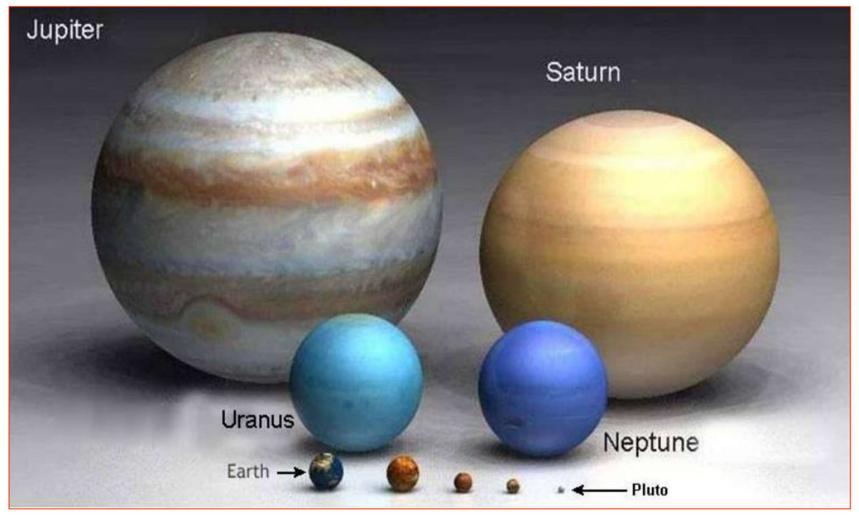
First phase: Construction of the Hierarchy


Second phase: Pairwise Comparisons

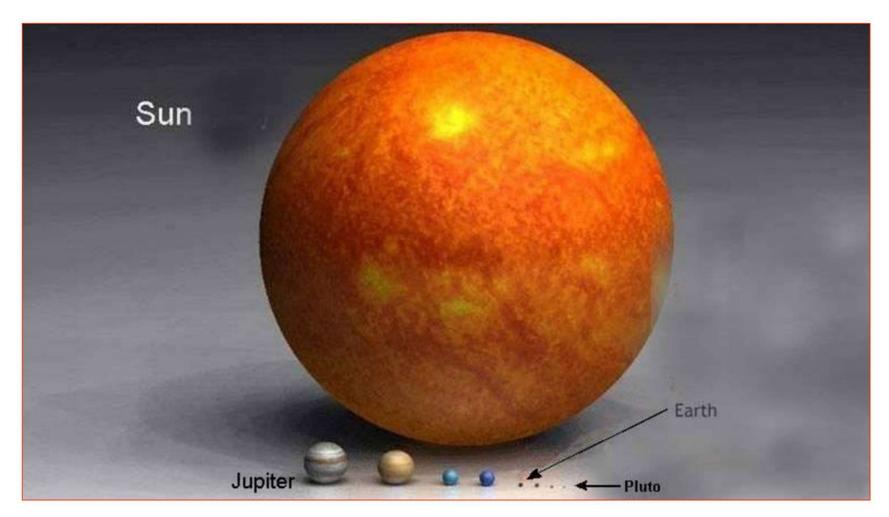
Third phase: Inconsistency Index Calculation



GERARCHIA (Relative Model)



Measurement Scales


To take sound decisions, it is necessary to use appropriate scientific methods as well as appropriate measurement scales

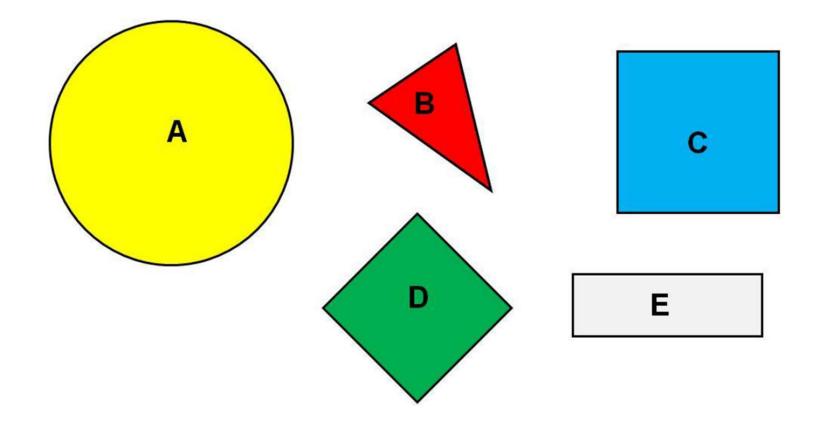
Measurement Scales

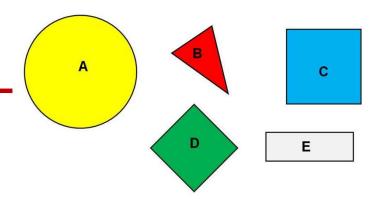
Measurement Scales

Measurement Scales: Saaty's scale:

Saaty's semantic/fundamental scale

Numerical value	Description
1	Equal importance
3	Slight importance of one over another
5	Moderate importance of one over
	another
7	Very strong importance
9	Extreme importance of one over
	another
2,4,6,8	Intermediate values between two
	adjacent values

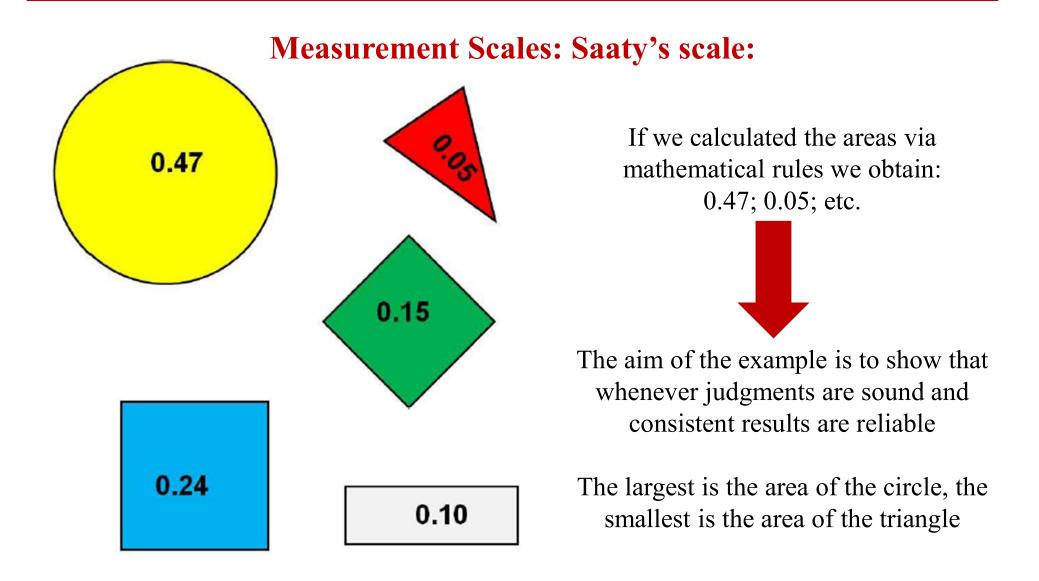

Source: Saaty (1980)


Measurement Scales: Saaty's scale:

Intensity of Importance	Definition	Explanation
1	Equal Importance	Two activities contribute equally to the objective
3	Moderate importance	Experience and judgment slightly favor one
5	Strong importance	Experience and judgment strongly one actively over another
7	Very Strong Importance	An activity is favored very strongly over another its dominance demonstrated in practice
9	Extreme Importance	The evidence of favoring over another is of the highest possible area of affirmation
Reciprocal	1/2=0.500, 1/3=0.333, 1/4=0.250, 1/5=0.200, 1/6=0.1667, 1/7=0.1428, 1/8=0.125, 1/9=0.1111	If activity has one of the above non zero numbers assigned to it when compared with activity j then j has the reciprocal value which compared with i.

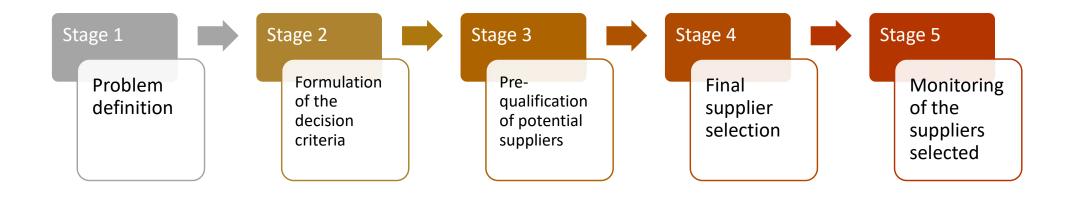
Source: Saaty (1980)

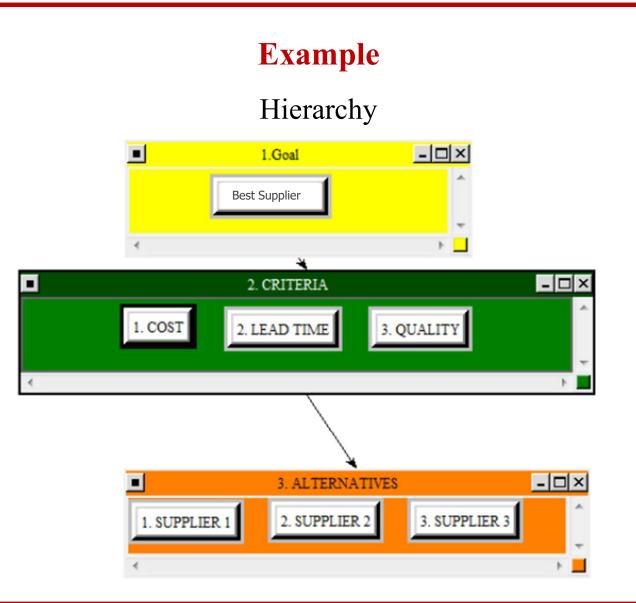
Measurement Scales: Saaty's scale:



Measurement Scales: Saaty's scale:

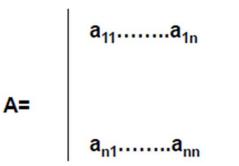
		Circle	Triangle B	Square C	Diamond	Rectangle E	PRIORITY VECTOR
Circle	Α	1	9	2	4	5	0,48
Triangle	В	1/9	1	1/5	1/3	1/2	0,049
Square	С	1/2	5	1	2	3	0,25
Diamond	D	1/4	3	1/2	1	2	0,138
Rectangle	E	1/5	2	1/3	1/2	1	0.085


AREA ESTIMATION


Example

New assembly line. Some components must be purchased from the factory

PURPOSE: Identify the best supplier



CRITERIA: Cost, Lead Time (LT), Quality, Efficiency, R&D initiatives

- Elements at the same hierarchical level are pairwise compared with respect to their parental node
- Elements are compared to elicit which element is (relatively) more important with respect to their parental node and how much
- Dominance coefficients

 a_{ij} represent the relative
 importance of a specific criterion,
 sub-criterion or action in
 comparison to another criterion,
 subcriterion or action

- Dominance coefficient a_{ij} identifies the relative importance of the component on row **i** over the component on column **j**
- Elements' relative importance is determined through pairwise comparisons expressed in semantic judgments
- This scale was developed taking into account studies on the ability of the human brain to classify a finite number of elements
- The larger the number of variables, the more inconsistent the results (Saaty, 1980) as the probability to maintain the same hierarchy among variables decreases

- The decision-maker can easily answer to questions that require a qualitative judgment such as: *'Are they equally important? Is it much more important?...'*
- Semantic judgments are converted into numerical values according to Saaty's fundamental scale
- It is therefore possible to compile the pairwise comparison matrix using the qualitative judgments of the decision maker

N.B.: the result of the comparison is the dominance coefficient a_{ij} which represents an estimate of the dominance of the first element (i) with respect to the second (j). The analysis involves the conversion of the dominance coefficients into relative scores ($a_{ij} = w_i / w_j$).

If judgments are perfectly coherent, the matrix of pairwise comparisons is symmetric, reciprocal and consistent, i.e. it satisfies the three following conditions:

$a_{ij} = a_{ji} =$	1;
$a_{ij} = 1/a_{ij}$	
a _{ij} a _{ik} =a _{ik}	i,j,k=1n

			j		
		А	В	С	D
	А	1	4	3	7
i	В	1/4	1	1	2
	С	1/3	1	1	2
	D	1/7	1/2	1/2	1

- The diagonal = 1. In fact, in the comparison with itself (A with A) there is parity, and, according to the Saaty scale, it is = to 1.
- By comparing A to B, A is preferred to B by 4; consequently, by comparing B to A, B gets ¹/₄
- aij = 1/aij satisfies the symmetry of value judgments
- E.g. if A is worth twice as B (A=2B), then necessarily B is worth half of A (B = $\frac{1}{2}$ A)

WEIGHT CALCULATION

The elements of the corresponding eigenvector, normalized with respect to their maximum value, represent the weights of the elements with respect to the parental node for which the pairwise comparison matrix is compiled

For each raw we calculate the 'weight', obtained by calculating the n-th root of the multiplication of the elements of each raw

				j			Weights (Xi)	Normalization	Coeff.	Enginyaluo
		А	В	С	D	Matrix Rank		NUIIIIduzduuii	Coen.	Enginvalue
	А	1	4	3	7		3.027			
i	В	1/4	1	1	2	4	0.841			
1	С	1/3	1	1	2	4	0.904			
	D	1/7	1/2	1/2	1		0.435			
	Total Yj	1.726	6.500	5.500	12.000		5.207			

WEIGHT CALCULATION

Weights normalization: Σ i=5.207 = this sum must be set to 1

(e.g. 3.027/5.207 = 0.581)

				j			Weights (Xi)) Normalization	Coeff.	Enginvalue
		А	В	С	D	Matrix Rank		NUIIIIduzduuii	00011.	Englitvalue
	А	1	4	3	7		3.027	0.581		
;	В	1/4	1	1	2	- 4	0.841	0.162		
1	С	1/3	1	1	2	4	0.904	0.174		
	D	1/7	1/2	1/2	1		0.435	0.083		
	Total Yj	1.726	6.500	5.500	12.000		5.207	1.000		

WEIGHT CALCULATION

We then calculate the coefficients (ideal weights). The highest weight is set to 1, the others are set equal to Pi/Pmax. In this example 0.581 is set to 1, then 0.162/0.581=0.278,

				j			Moighto (Vi)	Normalization	Coeff.	Enginvaluo
		А	В	С	D	Matrix Rank	Weights (Xi)	NUIIIIduzduuii	Coen.	Enginvalue
	А	1	4	3	7		3.027	0.581	1.000	
;	В	1/4	1	1	2	4	0.841	0.162	0.278	
/	С	1/3	1	1	2	4	0.904	0.174	0.298	
	D	1/7	1/2	1/2	1		0.435	0.083	0.144	
	Total Yj	1.726	6.500	5.500	12.000		5.207	1.000		

WEIGHT CALCULATION

To calculate the eigenvalue: Xi * (total Yj)/(total Xi)

A: (3.027)x(1.726) / (5.207)=1.004

				j			Moighte (Vi)	Normalization	Coeff.	Enginvaluo
		А	В	С	D	Matrix Rank	Weights (Xi)	NUIIIIduzduuii	Coen.	Enginvalue
	А	1	4	3	7		3.027	0.581	1.000	1.004
;	В	1/4	1	1	2	4	0.841	0.162	0.278	1.050
	С	1/3	1	1	2	- 4	0.904	0.174	0.298	0.955
	D	1/7	1/2	1/2	1		0.435	0.083	0.144	1.002
	Total Yj	1.726	6.500	5.500	12.000		5.207	1.000		

PAIRWISE COMPARISON - Consistency Index

- Unlike other multi-criteria approaches, the AHP tolerates some inconsistency in expert judgments
- The consistency of pairwise comparison matrices is verified by determining the **consistency index CI**:

 $CI = (\lambda max - n) / (n-1)$

• Then the consistency ratio is obtained:

CR=CI/*RI*

where *RI is a random consistency index*, which depends on n.

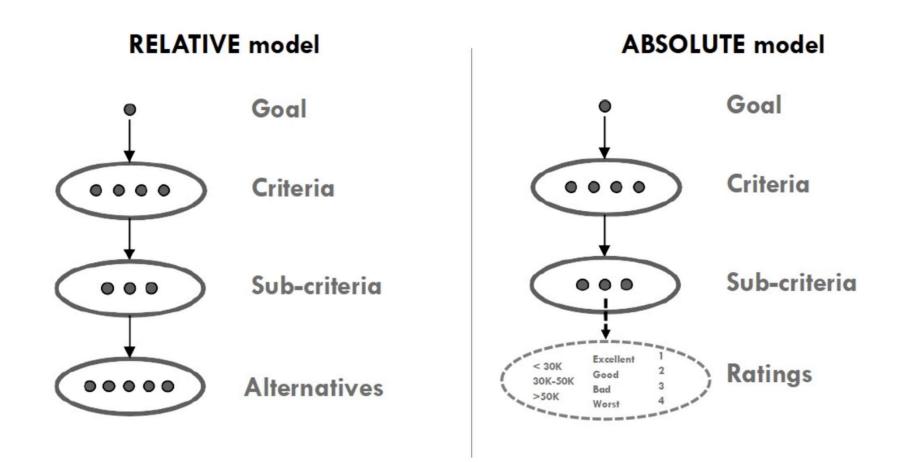
PAIRWISE COMPARISON - Consistency Index

- <u>CR < 0.1 is considered acceptable</u>
- Whenever CR > 0.1, experts' judgments are inconsistent, and a revision of the pairwise comparison matrix is recommended
- If the pairwise comparison matrix A is perfectly consistent (judgments are perfectly coherent), then the maximum eigenvalue λmax is equal to its rank n (Perron-frobenius theorem), therefore CI=0
- When inconsistency increases, the CR increases (CI also)

Size of Matrix (n)	Random Consistency Index (RI)
1	0
2	0
3	0.52
4	0.89
5	1.11
6	1.25
7	1.35
8	1.40
9	1.45
10	1.49

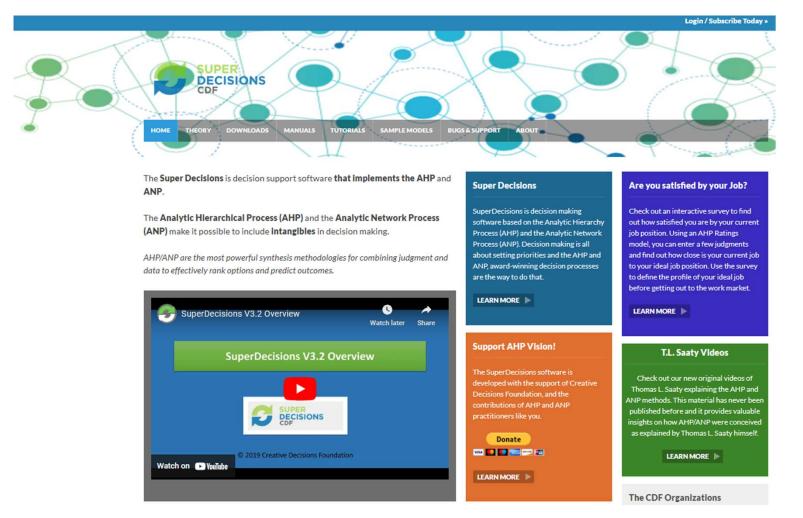
PAIRWISE COMPARISON - Consistency Index

• **CI**: CI = $(\lambda max - n) / (n-1) = (4.010-4)/3 = 0.003$


where: $\lambda max = 4.010$; n= 4; n-1 = 3

• Then the consistency ratio is obtained **CR**=CI/RI where RI(n=4)=0.89;

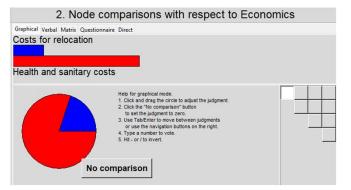
				į			Weights (Xi)	Normalization	Coeff.	Enginvalue
		А	В	С	D	Matrix Rank		Νοτηματίζατιση	Coen.	Lingilivatue
	А	1	4	3	7		3.027	0.581	1.000	1.004
;	В	1/4	1	1	2		0.841	0.162	0.278	1.050
1	С	1/3	1	1	2	- 4	0.904	0.174	0.298	0.955
	D	1/7	1/2	1/2	1		0.435	0.083	0.144	1.002
	Total Yj	1.726	6.500	5.500	12.000		5.207	1.000	lmax	4.010
						_			CI	0.003
									RI	0.890
									CR	0.004

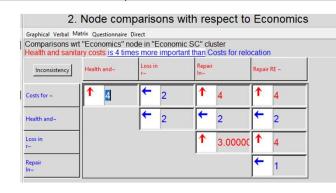

CR= 0.003 / 0.89 = 0.04 < 0.1

RELATIVE VS ABSOLUTE MODELS

https://www.superdecisions.com/

Downloads: https://www.superdecisions.com/downloads/


(Absolute Model Example)

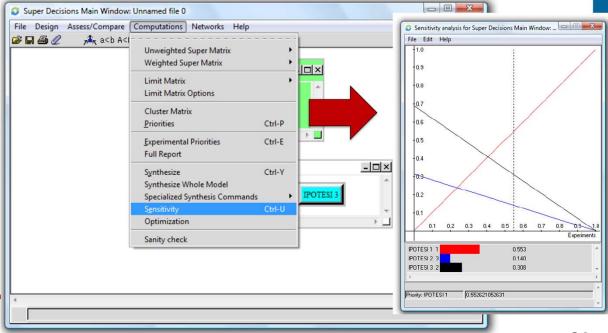

Main Network: AHP Absolute_Areas of Intervention 2.sdmod: formulaic: ratings

File Design Computations Help (Main Network: AHP Absolute Areas of Intervention 2.sdmod: formulaic: ratings // $+ \odot$ Information Panel Judgments Network Ratings Net: 0 Environmental SC Node: Cluster: Goal Loss of Biodiversity Attachments 10 Model Structure Pollution Create/Edit Details Soil erosion **Show Priorities** Water quality deteriorati 💋 \Box Make/Show Connections Θ Add Node 10+ Goal Criteria Social SC 1 10 Goal Node Economics Change in expectations 10 Environmental \Box Loss of confidence 10 Social Loss of sense of commun. 🖊 🗍 Θ Θ Add Node ... Add Node Θ Add Node ... Economic SC Costs for relocation \Box Health and sanitary cost 📝 \Box Loss in regional GDP /0 Repair Infrastructure \Box Add Node

Questionnaire

1. Choose 2. Node comparisons with respect to Economics 3. Results uster: Node Cluster Choose Node Economics Cluster: Criteria Choose Cluster Ch	formation Panel	Network	Judgments	Ratings					
utder: Node Clutter Graphical Vetal Matrix Questionnaice Direct Normal Normal Normal Memal	let: 0 lode:	1. Choose		omparisons with re	espect to Econom	ics	+	3. Results	
tachments Choose Node in Economics" node in "Economic SC" cluster - Feature consistency 0.07037 Inconsistency 0.07037 Inconsistency 0.07037 odd Structure Cluster : Criteria Cluster : Criteria 1 Costs for re~ >=9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No co Inconsistency 0.07037 0.01 cete/Edit Details Choose Cluster = I >=9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No co Inconsistency 0.07037 Inco	luster:	Node Cluster	Graphical Verbal Matrix Question	naire Direct			1		Hybrid -
<u>Economics</u> <u>Cluster: Criteria</u> <u>Cluster: Criteria</u> <u>Cluster: Criteria</u> <u>Cluster: Criteria</u> <u>Costs for re</u> <u>>=9.5</u> <u>9</u> <u>8</u> <u>7</u> <u>6</u> <u>5</u> <u>Costs for re</u> <u>>=9.5 <u>9</u> <u>8</u> <u>7</u> <u>6</u> <u>5</u> <u>6</u> <u>Costs for re</u> <u>>=9.5 <u>9</u> <u>8</u> <u>7</u> <u>6</u> <u>5</u> <u>9</u> <u>9</u> </u></u>	ttachments	Choose Node	Comparisons wrt "Economic	cs" node in "Economic SC" of	luster	ocation		Inconsistency: 0.07037	
Cluster. Chiefina Cluster. Chiefina >=9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No co <		Economics -							0.086
eate/Edit Details Coose Cluster >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co Repair In- Repair In- Repair RE 0.2 ow Priorities i Costs for re- >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co Repair In- Repair RE Repair	lodel Structure	Cluster. Criteria	1. Costs for re~ >=9	9.5 9 8 7 6 5 4 3 2	23456789	>=9.5 No co			0.344
ow Priorities Economic SC	reate/Edit Details		2. Costs for re~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co	Repair In~		0.032
ake/Show Connections 4. Costs for re- >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 5. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 5. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 6. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 7. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No c	now Priorities			9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co	Repair RE		0.251
5. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 6. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 6. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 7. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 8. Loss in regi~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co	ake/Show Connections		4. Costs for re~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co			
7. Health and s~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co 8. Loss in regi~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co			5. Health and s~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co			
8. Loss in regi~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co			6. Health and s~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co			
			7. Health and s~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co			
9. Loss in regi~ >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No co			8. Loss in regi~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co			
			9. Loss in regi~ >=9	9.5 9 8 7 6 5 4 3 2	1 2 3 4 5 6 7 8 9	>=9.5 No co			

34


	Main N	etwor	in and a lobolate		ervention	2.samoa: jorn	nulaic: rating	<u>gs //</u>					
letwork		J	udgments	Rat	ings								
Step 1: Select	criteria for r	ating altern	natives										
Step 2: Add a	lternatives												
Step 3: Defin	e rating scale	for each c	riterion										
Click the Compa	re button to ns->ldealiz	pairwise of	ew†to create the scal- compare the intensities es to see results. Click t	for preference. he x at upper right	to save these lo	deal Priorities and cl			ngerous, Dangerou	ıs, Safe).			
alth and sanitary ss in regional GDP pair Infrastructure pair RE ss of Biodiversity	:0:		Scaleltem Null_Very Low Low Moderate High	Value Graph 1.0000		Delete				Ê			
			Extreme	0.0667						v			
			Add New Item		Move Up		Move Down			P			
			Load from file.		Save to file.		Compare						
Ratings Table													
-	Show/Hide	e	Calculations	Manage Ratings									
play Options Category Names	🛃 Prioriti	es Column	Calculations Synthesize	Manage Ratings Copy Ratings Table		To rate an alternative				riterion.			
olay Options Category Names Category Prioritie	🛃 Prioriti	es Column			to Clipboard t	then click the down a Click to select the or	arrow to display the	e Rating scale in s.		riterion.			
play Options Category Names Category Prioritie	🛃 Prioriti	es Column	Synthesize	Copy Ratings Table	to Clipboard t dgments	then click the down a	arrow to display the	e Rating scale in s.		riterion.			
Category Names Category Prioritie Both	✓ Prioritions ✓ Totals (es Column Column Costs for	Synthesize Synthesize whole model Column Priorities reloc Health and san	Copy Ratings Table Clear Ratings Ju Revert to Relation	to Clipboard dgments re Model Repair Infrastru	then click the down a Click to select the or Move to the next cell	arrow to display the ne you think applie by clicking with the Loss of Biodive	e Rating scale in s. ne mouse. Pollution	tensities for that c	Water quality d	Change in exp	Loss of confide	Loss of sense o
isplay Options Category Names) Category Prioritie) Both Alternatives Priori	 ✓ Priorition s ✓ Totals (ties Totals 	es Column Column Costs for (0.0864)	Synthesize Synthesize whole model Column Priorities reloc Health and san (0.3441)	Copy Ratings Table Clear Ratings Ju Revert to Relativ	to Clipboard dgments re Model	then click the down a Click to select the or Move to the next cell u Repair RE (0.2512)	arrow to display the ne you think applie I by clicking with th	e Rating scale in s. ne mouse.	tensities for that c		Change in exp (0.1713) Null_Very Low	Loss of confide (0.7504) Null_Very Low	Loss of sense o (0.0782) Null_Very Low
isplay Options Category Names) Category Prioritie) Both Alternatives Priori	Prioriti Totals Totals 1.0000 0.2347	es Column Column Costs for (0.0864) Null_Very	Synthesize Synthesize whole model Column Priorities reloc Health and san (0.3441) 'Low Null_Very Low	Copy Ratings Table Clear Ratings Ju Revert to Relativ . Loss in regiona (0.0826)	to Clipboard t dgments 0 we Model Repair Infrastru (0.2357)	then click the down a Click to select the or Move to the next cell u Repair RE (0.2512)	arrow to display the ne you think applie I by clicking with the Loss of Biodive (0.1312)	e Rating scale in s. ne mouse. Pollution (0.2303)	tensities for that c Soil erosion (0.0488)	Water quality d (0.5897)	(0.1713)	(0.7504)	(0.0782)

X

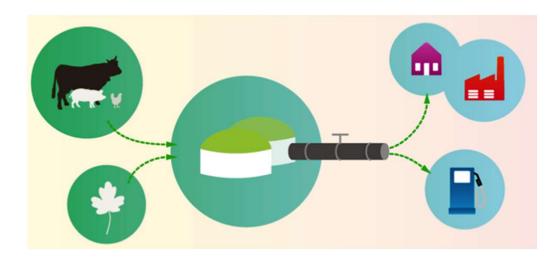
🔞 New synthesis for: Main Network: AHP Absolute_Areas... — 🛛 🗆

Here are the overall synthesized priorities for the alternatives. You synthesized from the network Main Network: AHP Absolute_Areas of Intervention 2.sdmod: formulaic: ratings

Name	Graphic	Ideals	Normals	Raw
Area 1		1.000000	0.768413	0.768413
Area 2		0.234677	0.180329	0.180329
Area 3		0.066706	0.051258	0.051258

- SAATY, T.L. A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology, 15, 1977, pp. 234–281.
- SAATY T.L. The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York, 1980.
- SAATY T. L. Fundamentals of decision making and priority theory with the analytic hierarchy process, RWS Publications, Pittsburgh, 2000.
- SAATY T.L. Decision-making with the AHP: Why is the principal eigenvector necessary, European Journal of Operational Research, 145, 2003, pp. 85–91.

Università degli Studi di Padova


Department Of Civil, Environmental and Architectural Engineering

CASE STUDY:

BIOGAS AND BIOMETHANE TECHNOLOGIES

AHP MODEL TO SUPPORT THE POLICY MAKER IN INCENTIVE DESIGN

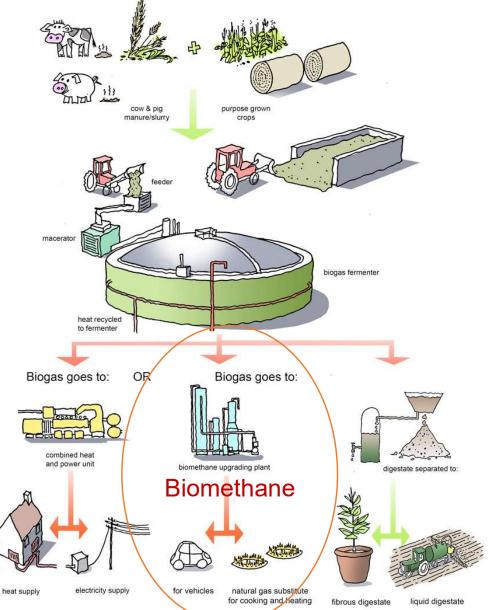
The 2030 climate and energy framework sets three key targets for the year 2030:

•At least 40% cuts in greenhouse gas emissions (from 1990 levels)

•At least 27% share for renewable energy consumption

•At least 27% improvement in energy efficiency

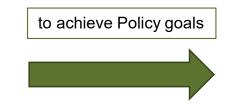
Share of energy from renewable sources in the EU Member States, 2014 (in % of gross final energy consumption)


Biogas and Biomethane (1)

Anaerobic Digestion 's contribution to key EU policy areas:

- European climate targets (cut greenhouse gas emission)
- **European energy security** (locally production of biomethane)
- Food security and resource efficiency (recycling waste)
- Improved air quality (carbon sequestration, reducing PM10 and NOx emissions)
- **Bioeconomy** (green job creation)
- Bioenergy
- Prevention of contamination (reducing pathogen fertilizer

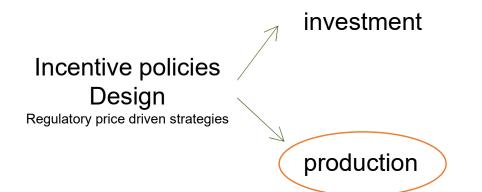
```
production) (Source: EBA, 2015)
```



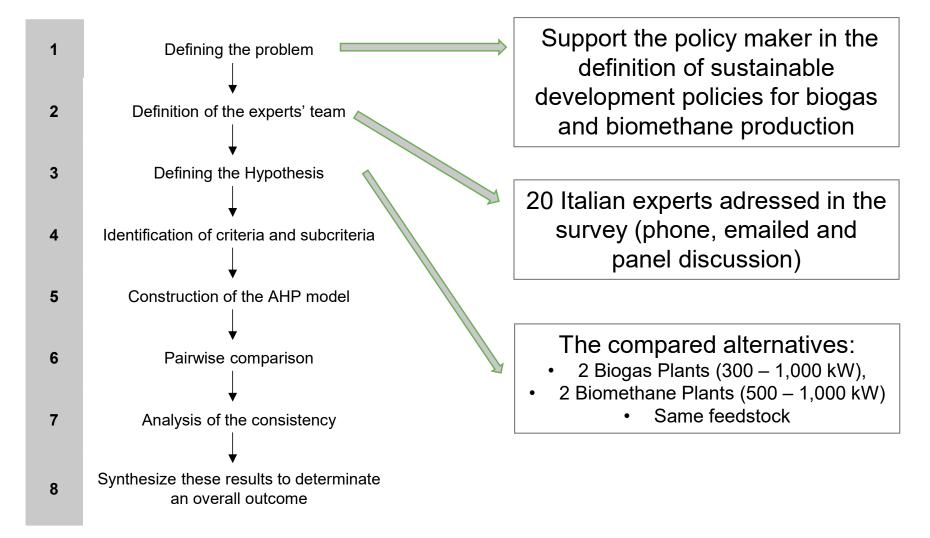
Biogas-Biomethane process (Source: Nethyenergy, 2016)

New feed-in tariffs (FITs)

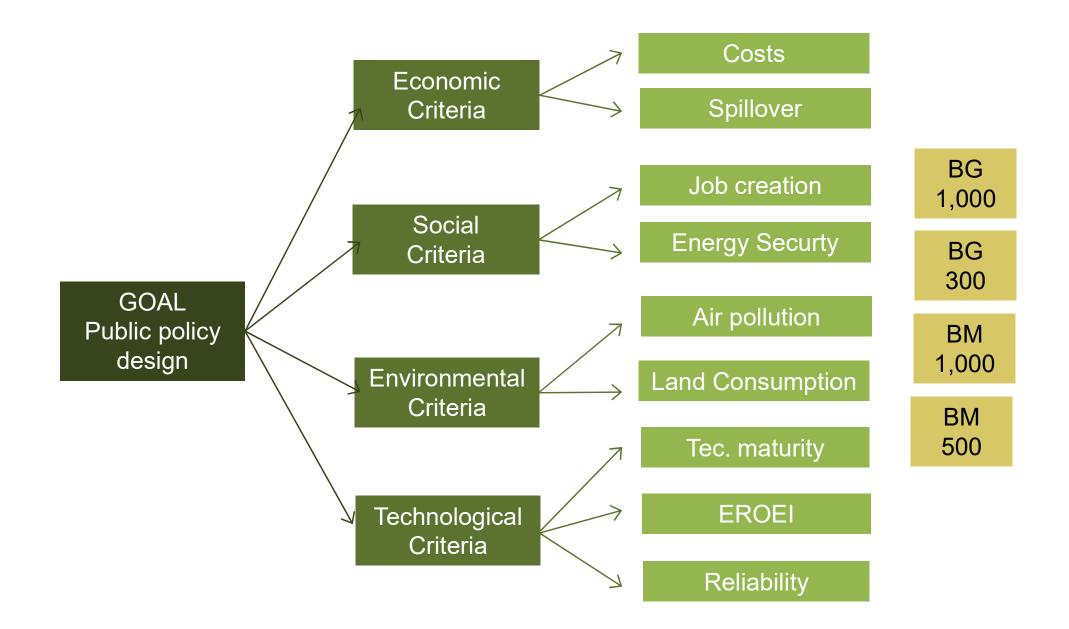
EU National energy policies are evaluated by:


- long-term RE targets,
- increased economic and export market opportunities,
- sustainable job creation,
- enhanced use of forestry,
- enhanced use of agricultural wastes,
- development of innovative RE technologies. (see European Commission, 2009/28/EC).

FITs (feed-in tariffs) differentiated by:


technology type,

- the project size
- outputs,
- inputs,
- resource quality
- location of the project
- etc....



The model Overall methodology

AHP relative model, according to the following steps:

The model The Hierachy

The model Criteria and Subcriteria

Goal	Criteria	Subcriteria	Description
	Economic	Costs	Global costs (investment cost, capex, opex) and feed-in costs
		Spillover	Generate externalities
ub	Social	Job creation	To estimate the employment effects resulting from the deployment of AD technologies both construction and operation phases have to be taken into account.
desi		Energy security	The reduction of dependence on imported energy
oolicy		Air pollution	Amount of CH4 emissions
oublic policy design	Evironmental	Land Consumption	This criteria is related to the dimension of the plans and to the area involved in the transformation process
Ē.	Technological	Technical maturity	Refers to the specific involved technology, defying if it has successfully passed all research stages and has been commercialized for a number of years without severe problems in the operation
	leonnoiogiour	EROEI	Energy Returned On Energy Invested
		Reliability	(start of uptime - start of downtime) / days of failure

The model Results

Parewise

comparisons

$$A = a_{ij} = \begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_m \end{bmatrix} \begin{bmatrix} A_1 & A_2 & \dots & A_m \\ 1 & a_{12} & \dots & a_{1m} \\ 1/a_{12} & 1 & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ 1/a_{1m} & 1/a_{2m} & \dots & 1 \end{bmatrix}$$

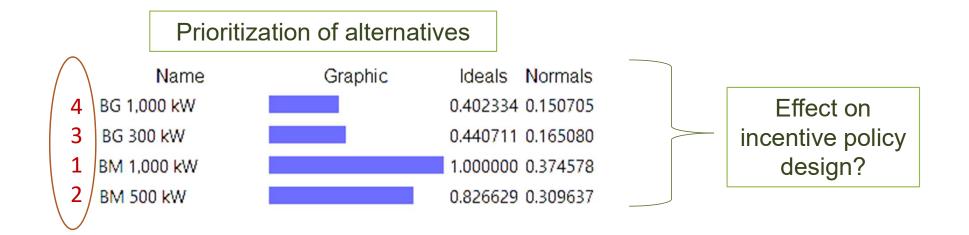
Table 2 Criteria and subcriteria aggregation of experts' judgments (priority vectors)

Criteria	Priority vector	Subcriteria	Priority vector	
Economic	0.198	Costs	0.25	
		Spillover	0.75	
Social	0.359	Job creation	0.66	Energy Security
		Energy security	0.33	\rightarrow
Environmental	0.284	Air pollution	0.80	
		Land Consumption	0.20	
Technological	0.157	Technical maturity	0.21	
		EROEI	0.55	Land
		Reliability	0.24	consumption

Partial results

Spillover

Reliability


	Inconsisten	cy: 0.06395
BG 1,000 ~		0.22890
BG 300 kW		0.08960
BM 1,000 ~		0.44907
BM 500 kW		0.23243

	Inc	consistency: 0.01629	
	BG 1,000 ~		0.19983
	BG 300 kW		0.07809
y	BM 1,000 ~		0.52224
	BM 500 kW		0.19983

Incon	sisten	cy: 0.03044
BG 1,000 ~		0.12727
BG 300 kW		0.47699
BM 1,000 ~		0.08460
BM 500 kW		0.31114

Inconsistency: 0.00772				
BG 1,000 ~		0.36289		
BG 300 kW		0.32608		
BM 1,000 ~		0.16304		
BM 500 kW		0.14800		

The model Results

Additional Prioritizations

Consider:

- Different feedstocks
- Valuable by product
 - Green taxes