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Recursively enumerable languages

From now onward: Modern computers = Turing machines.

A language L is recursively enumerable (RE) if L “ LpMq for
some TM M.

Given an input string w , M halts if w P LpMq, but M may not
halt if w R LpMq.
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Recursive languages

A language L is recursive (REC) or, equivalently, the decision
problem L represents is decidable, if L “ LpMq for a TM M that
halts for every input.

A recursive/decidable language corresponds to the definition of
algorithm, for which we impose that computation halts both for
positive and negative instances of the problem.
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String indexing

Let us sort all strings in t0, 1u˚:

by length;

lexicografically, for strings of the same length.

i string

1 ϵ
2 0
3 1
4 00
5 01
...

...

We associate with each string a positive integer i called index.
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String indexing

We write wi to denote the i-th string.

We can easily verify that, for each w P t0, 1u˚, we have

w “ wi ô i “ 1w .

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Encoding of TM

We now want to encode a TM with binary input alphabet
M “ pQ, t0, 1u, Γ, δ, q1,B,F u by means of a binary string, which
we denote encpMq.

We need to assign integers to each state, tape symbol, and
symbols L and R indicating directions.

We rename the states as q1, q2, . . . , qr . Initial state: q1, final
state: q2 (unique).

We rename the tape symbols as X1,X2, . . . ,Xs . Also: 0 “ X1,
1 “ X2, B “ X3.

L “ D1 and R “ D2.
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Encoding of TM

For the transition function, if

δpqi ,Xjq “ pqk ,Xl ,Dmq

the binary code C for the transition is (we use unary notation for
i , j , k , l ,m)

0i10j10k10l10m

Note : We never have two consecutive occurrences of 1, since
i , j , k , l ,m ě 1 is always satisfied.

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Encoding of TM

For a TM, we concatenate the codes Ci for all transitions,
separated by 11

C111C211 ¨ ¨ ¨ 11Cn´111Cn

There are several codes for M, obtained by indexing the symbols
and/or listing the transitions in different orders.

Many binary strings do not correspond to a TM
Example : 11001 or 001110.

Note : In the following we write encpMq to denote a generic code
for M; keep in mind that encpq is not a function.

Try to draw a map between set of all TMs and set of binary strings,

representing the encoding relation.
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Example

Let M “ ptq1, q2, q3u, t0, 1u, t0, 1,Bu, δ, q1,B, tq2uq, where δ is
defined as

δpq1, 1q “ pq3, 0,Rq δpq3, 0q “ pq1, 1,Rq

δpq3, 1q “ pq2, 0,Rq δpq3,Bq “ pq3, 1, Lq

Transition encodings Ci

0100100010100 0001010100100
00010010010100 0001000100010010

TM encoding encpMq

01001000101001100010101001001100010010010100110001000100010010
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TM indexing

We can now enumerate all TM (with repetition) using positive
integers as indices and using our string indexing.

For i ě 1, the i-th TM Mi is defined as follows:

if wi is a valid encoding representing TM M, then Mi “ M;

if wi is not a valid encoding, then Mi is the TM that halts
immediately for any input (only one state and no transition,
LpMi q “ H).
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Diagonalization language

The diagonalization language is the set

Ld “ tw | w “ wi , wi R LpMi qu

In words, Ld contains all binary strings wi such that the i-th TM
does not accept wi .
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Diagonalization language

The following table reports whether Mi accepts (1) or
rejects (0) wj .
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The table is a fake: the rows at the top should all be 0’s.
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Diagonalization language

We can interpret the i-th row of the table as the characteristic
vector of language LpMi q: an entry is 1 iff the corresponding
string belongs to the language.

Observation : The table represents the entire class RE. In fact, a
language is in RE if and only if its characteristic vector is a row of
the table.
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Diagonalization language

The following statements are logically equivalent:

the i-th element of the diagonal is 0;

wi R LpMi q;

wi P Ld .

This means that, if we complement the diagonal, we obtain the
characteristic vector of language Ld .

This vector cannot be a row of the table, because the diagonal
element of each row does not match with at least one position of
the characteristic vector of language Ld .
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Diagonalization language

Theorem Ld is not in RE.

Proof Let us assume that there is a TM M such that Ld “ LpMq.
Choose i such that Mi “ M. Does the string wi belong to Ld?

If wi P Ld , then Mi accepts wi because Ld “ LpMi q. But by
definition of Ld , the i-th element of the diagonal is 0 and therefore
Mi does not accept wi .

If wi R Ld , then Mi does not accept wi . But by definition of Ld ,
the i-th element of the diagonal is 1 and therefore Mi accepts wi .

We have therefore obtained a contradiction. l
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Recursive languages

A language L is recursive (REC) if L “ LpMq for some TM M
such that:

if w P L, then M halts in a final state;

if w R L, then M halts in a non-final state.

If we think of L as a decision problem PL, then we say that PL is
decidable whenever L is recursive, and PL is undecidable
otherwise.

Decidability corresponds to the notion of algorithm: we have a
sequence of steps that always ends and produces some answer.
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REC vs. RE∖REC

Comparison:

recursive language means that there is an algorithm for
solving the associated decision problem, that is, we always
have an answer;

language in RE that is non-recursive means that we can
enumerate the positive instances of the problem, but we
cannot conclude in a finite amount of time that an instance
has a negative answer.

The distinction between decidable / undecidable problems is often
more important than the distinction between RE / non-RE
problems.

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Language classes

RE

but

Not RE

L

L

.

.

recursive
not

Recursive

u

d

recursive = decidable = M always halts;

RE = M halts upon acceptance;

non-RE = we cannot compute; Example : Ld .
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Properties of recursive languages

Theorem If L is recursive, then L is recursive.

Proof If L is recursive, there is a TM M that always halts, such
that LpMq “ L. We construct a TM M 1 such that M 1 accepts when
M does not, and vice versa. M 1 always halts and LpM 1q “ L. l

Accept

Reject Reject

Accept
Mw

Corollary If L is in RE and L is not in RE, then L cannot be a
recursive language.
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Properties of RE languages

Theorem If L and L are in RE, then L is recursive.

Proof Let L “ LpM1q and L “ LpM2q. We build a multi-tape TM
M that simulates M1 and M2 in parallel.

If the input is in L, M1 accepts and halts, then also M accepts and
halts. If the input is not in L, then M2 accepts and halts, so M
rejects and halts. l

Accept

Accept

Accept

Reject

M

M

w

1

2
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L and L

RE

but

Not RE

L

L

.

.

recursive
not

Recursive

u

d

Where can L and L be placed?

Combinatorially, there are 9 possible arrangements, but the theory
allows only 4 of them.

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

L and L

Possible arrangements for L and L:

both L and L are recursive;

both L and L are not in RE;

L is RE but not recursive, and L is not RE;

L is RE but not recursive, and L is not RE.

It is not possible that a language is recursive and the complement
is RE but not recursive or not RE.

It is not possible that a language and its complement are both RE
but not recursive.
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Example

Let us consider the language Ld , which contains the strings wi

such that Mi accepts wi .

Since Ld is not RE, Ld is not recursive. It is possible that Ld is not
RE, or alternatively RE but not recursive.

We will prove later that Ld is RE but not recursive.
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Universal language

We want to encode pairs pM,wq consisting of:

one TM M with binary input alphabet;

one binary string w .

We use encpMq followed by 111, followed by w , and write
encpM,wq.
Note : the sequence 111 never appears in encpMq.

The language Lu, called universal language, is the set

Lu “ tencpM,wq | w P LpMqu .

In words, Lu is the set of binary strings that encode a pair pM,wq

such that w P LpMq.
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Universal TM

There exists a TM U, called universal TM, such that LpUq “ Lu:

Finite

control

Tape of

State of

0001000001010001

000

M w

M

M
. . .

. . .

0BB
. . .

Input

Scratch
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Universal TM

U (multi-tape version) has four tapes:

tape 1 contains the input string encpM,wq;

tape 2 simulates M’s tape, using the 0j format for each Xj

tape symbol, and 1 as cell separator;

tape 3 records M’s state, using the 0j format for each state qj ;

tape 4: auxiliary copying tape, used to “enlarge” or “shrink”
the available space for the 0j representations in tape 2.
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Universal TM

Strategy exploited by U:

if encpMq is invalid, U halts and rejects (in this case
LpMq “ H);

write w on tape 2 using 1 as separator, 01 for 0 “ X1, and 02

for 1 “ X2;

No encoding for B, use U’s blank

write the initial state on tape 3, using 0 for q1, and place the
tape head of tape 2 on the first cell;

search on tape 1 for a transition of the form 0i10j10k10l10m,
where

0i is the state on tape 3;
0j is M’s tape symbol under the tape head of tape 2;
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Universal TM

Strategy exploited by U (cont’d):

in order to simulate trasition 0i10j10k10l10m, the TM U

replaces the content of tape 3 with 0k (new state);
replaces 0j on tape 2 with 0l (new tape symbol); if needed, we
can “enlarge” or “shrink” U’s tapes using the auxiliary tape
(tape 4);
move the tape head of tape 2 to the left if m “ 1 or to the
right if m “ 2, until the next 1 is reached (separator);

if there is no transition 0i10j10k10l10m, M halts and U halts
as well;

if M reaches a final state, then U halts and accepts.
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Universal language

Theorem Lu is in RE but is not recursive.

Proof Lu is in RE, since we have built the TM U.

Let us assume that Lu is recursive. Then Lu is also recursive.

Let M be a TM such that LpMq “ Lu and M always halts. We will
build a new TM M 1 for Ld , which is a contradiction.

This is an example of a reduction (Ld ă“m L̄u) a notion which we will

introduce in the next section.
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Universal language

Accept

w 111 wCopyw

Reject

LM’

Reject

Accept

M L

algorithm

for

for

Hypothetical

u

d

On input w “ wi , M
1 builds encpMi ,wi q “ wi111wi .

M always halts, and accepts if and only if wi R LpMi q. As a
consequence, M 1 always halts, and LpM 1q “ Ld .

We have a contradiction, since Ld is not recursive. l
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The halting problem

Given a TM M, we define HpMq the set of strings w such that M
halts with input w .

Let us consider the language Lh, called the halting problem

Lh “ tencpM,wq | w P HpMqu .

There exists a TM M such that LpMq “ Lh: M takes as input a
pair encpM 1,wq and simulates a computation of M 1 on w .

M accepts whenever M 1 halts on w .

Therefore Lh is a RE language.
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The halting problem

We can prove that Lh is not recursive (proof omitted).

Hence there is no algorithm that can state whether a given
program ends or not on a given input.

However, there exists a procedure that:

halts, if a given program ends on a given input;

cycles, if a given program does not end on a given input.
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Reduction

Given a problem P1 known to be “difficult”, we want to know
whether a second problem P2 under investigation is as hard as, or
even harder than, P1.

To this end we show that, if we could solve P2, then we could also
solve P1, written

P1 ďm P2; .

This notation is not used in the book.

This technique is called reduction of P1 to P2.
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Reduction

yes

no

yes

no

P P
1 2

A reduction from P1 to P2 is an algorithm that converts an
instance x of P1 into an instance y of P2, such that:

if x has positive answer then y has positive answer;

if x has negative answer then y has negative answer.
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Reduction

Let P1 ďm P2, and assume there exists an algorithm that
solves P2. Given an instance x for P1:

we use the reduction to convert x to an instance y for P2;

we use the algorithm for P2 to decide whether y is in P2 or
not.

Whatever the answer is, it is also valid for x in P1.

We have built an algorithm that solves P1. Thus solving P2 is at
least as difficult as solving P1.

In other words, solution of P2 requires enough computational resources to

solve P1.
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Reduction

Theorem If P1 ďm P2, then:

if P1 is undecidable, so is P2;

if P1 is not RE, so is P2.

Proof (First part) Let us assume that P2 is decidable:

we apply the reduction to transform instance x of P1 into
instance y of P2;

we apply on y the algorithm to decide P2.

We found an algorithm to decide P1, which is a contradiction.

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Reduction

(Second part) Let us assume that P2 is RE:

we apply the reduction to transform instance x of P1 into
instance y of P2;

we apply on y the algorithm to accept P2 (it does not halt if
y is a negative instance).

We have found a TM to accept P1 (which does not halt if x is a
negative instance). But this is a contradiction. l

This theorem implicitly used in the rest of the lecture whenever we construct a

reduction.
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TM accepting non-empty languages

We consider two languages formed by TM encodings

Le “ tencpMq | LpMq “ Hu ;

Lne “ tencpMq | LpMq ‰ Hu .

Note : Le “ Lne .

We want to find out whether these languages are recursive, or RE
but not recursive, or else non-RE.
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TM accepting non-empty languages

Theorem Lne is RE.

Proof We construct a nondeterministic TM M with LpMq “ Lne .

Guessed

Acceptw

M
U

M

i

Accept

for L
ne

Given Mi as input, M implements the following strategy:

using nondeterminism, guess a string w ;

simulate U on Mi and w .
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TM accepting non-empty languages

M accepts Mi if and only if there exists w such that w P LpMi q.

The theorem then follows from the equivalence between
nondeterministic TM and TM. l
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TM accepting non-empty languages

Theorem Lne is non-recursive.

Proof We show that Lu ďm Lne . Since Lu is non-recursive, it
follows that even Lne is non-recursive.

The reduction uses as target instances only (the encoding of) two
languages in Lne :

the language Σ˚ (positive instance);

the empty language H (negative instance).
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TM accepting non-empty languages

Let us transform any instance encpM,wq of Lu into an instance M 1

of Lne defined as follows

w Accept
M

x

M’

Accept

M 1 ignores its input and uses its finite control to simulate a
computation of M on w :

if M accepts w , then M 1 accepts any input, that is,
LpM 1q “ Σ˚; thus LpM 1q ‰ H;

if M does not accept w , then M 1 does not accept any input,
that is, LpM 1q “ H. l
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TM accepting empty languages

Theorem Le is not in RE.

Proof We have already observed that Le “ Lne .

Since Lne is RE but is not recursive, Le cannot be in RE (if it were,
then Le and Lne would both be recursive). l
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Properties of the languages generated by TMs

Languages Le and Lne are associated with decision problems related
to properties of RE languages (languages generated by TMs).

Instances of these decision problems are TMs, not languages, since
the former are finite objects and the latter are infinite objects.

Our computations take as input finite objects.

In what follows, we will be concerned with more general properties
of RE languages, and the associated decision problems.

The fact that Le and Lne are undecidable is a special case of a
more general theorem, known as Rice’s Theorem.

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Properties of the languages generated by TMs

A property of the RE languages is trivial if it is satisfied by all or
by none of the RE languages.

Rice’s theorem states that all properties P of the RE languages
that are nontrivial are undecidable.

This means that, for any nontrivial property P, there is no TM
that:

always halts;

given as input encpMi q, decides whether the language LpMi q

satisfies P.
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Example

Checking whether a TM accepts a context-free language is
undecidable.

In fact, the property of the RE languages “to be CFL” is nontrivial:

some RE languages are CFL;

not all RE languages are CFL.

Therefore the above statement follows from Rice’s theorem.
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Properties of the languages generated by TMs

We identify a property of the RE languages with the subset of RE
languages that satisfy P.

The language LP is the set of encodings encpMi q of all TMs Mi

such that LpMi q P P

LP “ tencpMi q | LpMi q P Pu .

Note that we are representing RE languages by means of encodings of TMs.

P is decidable if and only if LP is recursive.
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Rice’s theorem

Theorem Any nontrivial property of RE languages is undecidable.

Proof Let P be a nontrivial property of the RE languages. Let us
assume by now that H R P.

Let L P P and let ML be a TM such that LpMLq “ L.

We prove that Lu ďm LP using as target instances only (the
encoding of) two languages:

LpMLq (positive instance);

H (negative instance).

Then the theorem follows from the fact that Lu is undecidable.
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Rice’s theorem

Given an instance encpM,wq for Lu, we produce an instance
encpM 1q of LP .

w

x

M

M

M’

Accept

start Accept

L

Accept

if M does not accept w , M 1 does not accept any input string,
and thus LpM 1q “ H R P;

if M accepts w , M 1 simulates ML on x , and thus
LpM 1q “ L P P.
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Rice’s theorem

Let us now assume that H P P. We consider P, the set of RE
languages that do not satisfy the property P.

Since H R P, the above argument proves that Lu ďm LP .
Therefore LP is not recursive.

Each TM accepts some RE language. Therefore we have

LP “ LP .

If LP were recursive, then LP would be recursive as well. This is a
contradiction with respect to what we have previously asserted. l
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Example

From Rice’s theorem we have that the following problems are
undecidable:

is the language accepted by a TM the empty language?
(already seen)

is the language accepted by a TM a finite language?

is the language accepted by a TM a regular language?

is the language accepted by a TM a context-free language?

does the language accepted by a TM contain the string 01?

does the language accepted by a TM contain all even
numbers?
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Properties not inherent to the accepted language

In contrast with properties of RE languages, not all problems
regarding TM are undecidable.

Problems that concern the states or the transitions of a TM, and
not the accepted language, can be decided.

Example : the following problems can be decided:

does a TM have five states?

is there any input such that the TM performs at least five
steps before halting?

does a TM contain a certain transition?

starting with the empty tape, does the TM reach state p in at
most 5 steps?
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Post’s correspondence problem

We now investigate “real” problems, i.e., problems that do not
concern TMs

We show that Post’s correspondence problem, which refers to
strings, is undecidable, using the following reductions

algorithm

an

algorithm

anL
u

MPCP PCP

Later we will use this result to show that other real-world problems
are undecidable
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Post’s correspondence problem

An instance of Post’s correspondence problem, or PCP for
short, is formed by two equal length lists of strings

A “ w1,w2, . . . ,wk

B “ x1, x2, . . . , xk

where wi , xj P Σ` and Σ is an alphabet with at least two symbols

Instance pA,Bq has a solution if there are m ě 1 indices
i1, i2, . . . , im such that

wi1wi2 ¨ ¨ ¨wim “ xi1xi2 ¨ ¨ ¨ xim

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Example

PCP instance with Σ “ t0, 1u

A B

i wi xi
1 1 111
2 10111 10
3 10 0

A possible solution is provided by the indices:
m “ 4, i1 “ 2, i2 “ 1, i3 “ 1, i4 “ 3

w2w1w1w3 “ x2x1x1x3 “ 101111110

Possible solutions are also all repetitions of 2,1,1,3
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Example

PCP instance with Σ “ t0, 1u

A B

i wi xi
1 10 101
2 011 11
3 101 011

This instance has no solution. To prove this, let us assume
i1, i2, . . . , im is a solution

If i1 “ 2 or i1 “ 3 we have a mismatch at the first position. Then
we must have i1 “ 1

If i2 “ 1 or i2 “ 2 we still have a mismatch. Then we must have
i2 “ 3
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We thus have the partial solution

w1w3 “ 1 0 1 0 1 ¨ ¨ ¨

x1x3 “ 1 0 1 0 1 1 ¨ ¨ ¨

If i3 “ 1 or i3 “ 2 we still have a mismatch. Then we must have
i3 “ 3, providing the partial solution

w1w3w3 “ 1 0 1 0 1 1 0 1 ¨ ¨ ¨

x1x3x3 “ 1 0 1 0 1 1 0 1 1 ¨ ¨ ¨

We are now back to the previous scenario, forcing us to choose
i4 “ 3, i5 “ 3, ... and we will never reach a complete solution

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Modified Post’s correspondence problem

An instance of the modified PCP, MPCP for short, is an instance
pA,Bq of PCP

pA,Bq has a solution if there are m ě 0 indices i1, i2, . . . , im such
that

w1wi1wi2 ¨ ¨ ¨wim “ x1xi1xi2 ¨ ¨ ¨ xim

Note : pw1, x1q must be the starting choice, and m can be 0

Automata, Languages and Computation Chapter 9



Non-RE languages
Undecidable languages

Undecidable problems for TMs
Post’s correspondence problem

Other undecidable problems

Reduction

We present a transformation from instances pM,wq of Lu to
instances pA,Bq of the MPCP problem. We will later prove that
this transformation is a reduction

Idea

we assume semi-infinite tape TM with ID’s without any blank,
as in a previous theorem

we represent M’s computations as strings of the form

#α1#α2#α3# ¨ ¨ ¨

where each αi is an ID

we use fictitious ID’s that erase the tape when a final state is
reached (needed to realign)
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Reduction

Idea (cont’d)

partial solutions of pA,Bq simulate computations of M on w

in a partial solution, the list obtained by A is always one ID
behind with respect to the list obtained by B

ℓA : #α1 ¨ ¨ ¨ #αi´1

ℓB : #α1 ¨ ¨ ¨ #αi´1 #αi

the pairs pwi , xi q are used, through several steps, to

copy #αi from ℓB into ℓA
add to ℓB the new string #αi`1, which simulates the next
move of M
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Reduction

Transformation: input pM,wq, M “ pQ,Σ, Γ, δ, q0,B,F q

Pairs of type 1: initial ID

A B

# #q0w#

Pairs of type 2: copy tape symbols and #

A B

X X for each X P Γ
# #
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Reduction

Transformation (cont’d)

Pairs of type 3: simulate next move for q P QzF

A B

qX Yp if δpq,X q “ pp,Y ,Rq

ZqX pZY if δpq,X q “ pp,Y , Lq

q# Yp# if δpq,Bq “ pp,Y ,Rq

Zq# pZY# if δpq,Bq “ pp,Y , Lq
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Reduction

Transformation (cont’d)

Pairs of type 4: for q P F , erase working tape

A B

XqY q
Xq q
qY q

Pairs of type 5: align the two lists, after the tape has been
erased

A B

q## #
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Example

Instance of Lu: pM, 01q

M “ ptq1, q2, q3u, t0, 1u, t0, 1,Bu, δ, q1,B, tq3uq

qi δpqi , 0q δpqi , 1q δpqi ,Bq

Ñ q1 pq2, 1,Rq pq2, 0, Lq pq2, 1, Lq

q1 pq3, 0, Lq pq1, 0,Rq pq2, 0,Rq

‹ q3 — — —
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List of pairs

type wi xi derived from

p1q # #q101#

p2q 0 0
1 1
# #
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List of pairs (cont’d)

type wi xi derived from

p3q q10 1q2 from δpq1, 0qpq2, 1,Rq

0q11 q200 from δpq1, 1qpq2, 0, Lq

1q11 q210 from δpq1, 1qpq2, 0, Lq

0q1# q201# from δpq1,Bqpq2, 1, Lq

1q1# q211# from δpq1,Bqpq2, 1, Lq

0q20 q300 from δpq2, 0qpq3, 0, Lq

1q20 q310 from δpq2, 0qpq3, 0, Lq

q21 0q1 from δpq2, 1qpq1, 0,Rq

q2# 0q2# from δpq2,Bqpq2, 0,Rq
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List of pairs (cont’d)

type wi xi derived from

p4q 0q30 q3#
0q31 q3#
1q30 q3#
1q31 q3#
0q3 q3#
1q3 q3#
q30 q3#
q31 q3#

p5q q3## #
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Example

M accepts input 01 through the following computation

q101 $
M
1q21 $

M
10q1 $

M
1q201 $

M
q3101

We consider the partial solutions of MPCP associated with the
above computation

First pair is mandatory, and simulates the initial ID

ℓA : #
ℓB : #q101#

We have only one way to expand the partial solution, that is, use
the pair pq10, 1q2q which simulates the first move

ℓA : #q10
ℓB : #q101#1q2
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Example

We apply three pairs for copying, in order to reach the next state

ℓA : #q101#1
ℓB : #q101#1q21#1

We apply pair pq21, 0q1q to simulate the second move

ℓA : #q101#1q21
ℓB : #q101#1q21#10q1

And so forth ...
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PCP

Theorem Lu ďm MPCP

Proof (sketch) We need to show that, for the previous
transformation, pM,wq has a solution if and only if pA,Bq has a
solution

(only if ) If w P LpMq there exists an accepting computation. Then
the partial solution ℓA reaches ℓB and pA,Bq has a solution

(if ) Every solution of pA,Bq starts with the initial ID of M on w ,
proceeds with the simulation of some moves of M, and stops when
M reaches an accepting state. Therefore w P LpMq l
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PCP

Theorem MPCP ďm PCP

Proof not required

Theorem PCP is undecidable

Proof From Lu ďm MPCP and from MPCP ďm PCP, we
conclude that Lu ďm PCP l

Composition of two reductions is still a valid reduction
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CFG ambiguity

We assume a binary encoding for CFGs, similar to the one used
for TM

We write encpG q for the encoding of CFG G

The ambiguity problem for a CFG is defined as follows

the instances are the strings encpG q where G is a CFG

the answer is positive if G is ambiguous

We define the corresponding language

LAMB “ tencpG q | G is ambiguousu
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Reduction

We present a transformation from PCP to instances of the LAMB

problem. We will later prove that this transformation is a reduction

Let pA,Bq be an instance of PCP over the alphabet Σ, where
A “ w1,w2, . . . ,wk and B “ x1, x2, . . . , xk

Let GA be a CFG defined as

nonterminal set tAu

alphabet Σ Y tai | 1 ď i ď ku, where ai is an alias for the
pair wi , xi

production set

A Ñ w1Aa1 | w2Aa2 | ¨ ¨ ¨ | wkAak

Ñ w1a1 | w2a2 | ¨ ¨ ¨ | wkak
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Example

Strings generated by GA have the form wi1wi2 ¨ ¨ ¨wimaim ¨ ¨ ¨ ai2ai1 ,
with m ě 1

A

Aw

w

a

a

i

i i

i
1

2 2

1

A

Aw a

aw

.

.

.

i i

i i

-1 -1m m

m m
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Reduction

Symmetrically, let GB be a CFG defined as

nonterminal set tBu

alphabet Σ Y tai | 1 ď i ď ku

production set

B Ñ x1Ba1 | x2Ba2 | ¨ ¨ ¨ | xkBak

Ñ x1a1 | x2a2 | ¨ ¨ ¨ | xkak
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Reduction

We observe that GA and GB are unambiguous

We define LA “ LpGAq and LB “ LpGBq

GAB is the CFG that generates the language LA Y LB

nonterminal set tS ,A,Bu

alphabet Σ Y tai | 1 ď i ď ku

production set S Ñ A | B and in addition all productions of
GA and GB
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LAMB

Theorem PCP ďm LAMB

Proof (sketch) We need to show that, for the given reduction,
encpGABq P LAMB if and only if pA,Bq has a solution

(If part) Let i1, i2, . . . , im be a solution for pA,Bq. Then GAB has
two derivations for the same string

S ñ A ñ wi1Aai1 ñ wi1wi2Aai2ai1 ñ ¨ ¨ ¨

ñ wi1wi2 ¨ ¨ ¨wimaim ¨ ¨ ¨ ai2ai1
S ñ B ñ xi1Bai1 ñ xi1xi2Bai2ai1 ñ ¨ ¨ ¨

ñ xi1xi2 ¨ ¨ ¨ ximaim ¨ ¨ ¨ ai2ai1
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(Only if part) Assume GAB is ambiguous. Consider an
ambiguous string in LpGABq, having the form

zaim ¨ ¨ ¨ ai2ai1

with z P Σ`

Since GA and GB are not ambiguous, the ambiguous string must
have two leftmost derivations starting with S ñ A and S ñ B

Then i1, i2, . . . , im is a solution for pA,Bq l
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CFG problems

Let G1 and G2 be CFGs, and let R be a regular expression. The
following problems are undecidable

LpG1q X LpG2q “ H?

LpG1q “ LpG2q?

LpG1q “ LpRq?

LpG1q “ T ˚, for a fixed alphabet T?

LpG1q Ď LpG2q?

LpRq Ď LpG1q?
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