<u>COMPUTABILITY</u> (26/11/2024)

* RECURSIVE AND RECORSIVELY ENUMERABLE SETS

Let $A \in \mathbb{N}$ a be set. It is <u>neursive</u> if the choracteristic function $\mathcal{X}_A: \mathbb{N} \to \mathbb{N}$ $\mathcal{X}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ is computable

OBSERVATION : All fimite sets A = IN ore recursive

proof

$$\begin{aligned} &\mathcal{R} = q x_0, x_1, \dots, x_K \\ &\mathcal{X}_A(x) = \overline{sg}\left(\frac{\pi}{1L} |x - xi|\right) \qquad \text{computable} \end{aligned}$$

OBSERVATION: Let A, BSIN A, B recursive. Them

(1)
$$\overline{A} = |N \setminus A| = \sqrt{x \in |N|} |x \notin A$$
)
(2) $A \cup B$ are recursive
(3) $A \cap B$
(3) $A \cap B$
(1) $\chi_{\overline{A}}(x) = \begin{cases} 4 & \text{if } x \in \overline{A} \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{if } x \notin A \\ 0 & \text{if } x \in A \end{cases} = \overline{39}(X_A(x)))$
(2) (3) same idea
(exercise)

D

$$K = \{x \in \mathbb{N} \mid q_{x}(x)\}$$

$$= \{x \in \mathbb{N} \mid x \in W_{x}\}$$

$$\chi_{K}(x) = \{x \in \mathbb{N} \mid x \in W_{x}\}$$

$$\chi_{K}(x) = \{x \in \mathbb{N} \mid x \in W_{x}\}$$

$$\chi_{K}(x) = \{x \in \mathbb{N} \mid x \in W_{x}\}$$

$$= \{x \in W_{x} \mid x \in W_{x}\}$$

$$= \{x \in W_{x}$$

we say that the problem "
$$x \in A$$
" reduces to " $x \in B$ "
(or simply A reduces to B), written $A \leq_m B$
if there is a total computable function $f: \mathbb{N} \to \mathbb{N}$
 $\forall x \in \mathbb{N}$
 $x \in A$ iff $f(x) \in B$

computable by composition.

(ii) equivolent to (i).

A≤m B

EXAMPLE :
$$K = \{x \mid q_{x}(x)\downarrow\}$$

 $T = \{x \mid W_{x} = N\} = \{x \mid \forall y, q_{x}(y)\downarrow\}$
 $K \leq_{m} T$
assume that we have
 $x \rightarrow T \rightarrow P_{x}$ terminates on
 $given P_{x} = T construct a program P_{f(x)} s.t.$
 $P_{x}(x)\downarrow$ iff $P_{f(x)}$ is total
the are consistence "P_{x}(x)\downarrow"
 $P_{x} \longrightarrow f \xrightarrow{P_{f(x)}} T \longrightarrow f_{f(x)}$ is total? ye_{x}/m_{x}
 $P_{x}(x)\downarrow$
 $P_{x} \longrightarrow f \xrightarrow{P_{f(x)}} T \longrightarrow f_{f(x)} (y)\downarrow \forall y$
 $P_{x} \longrightarrow f \xrightarrow{P_{f(x)}} (y)\downarrow \forall y$
 $P_{x} \longrightarrow f \xrightarrow{P_{x}} (x)\downarrow$

computable.

Hence by smm theorem there is $f\colon IN \to IN$ total computable o.t. $\forall x_iy$

$$\varphi_{f(x)}(y) = g(x,y) = \varphi_x(x)$$

The function f is the reduction function for $K \leq_m T$, i.e. Yэс xek iff f(x)et

*
$$x \in K \implies f(x) \in T$$

if $x \in K$ then $q_x(x) \lor$ and thus $q_{f(x)}(y) = q_x(x) \lor \forall y$
i.e. $q_{f(x)}$ is total $\rightsquigarrow f(x) \in T$

Therefore f is a reduction function for K <m T and since K is not recursive we deduce T is not recursive.

EXAMPLE (INPUT PROBLEM)
Let me IN fixed. Comsider
$$A_m = \{x \mid \varphi_x(m) \downarrow \}$$

 $K \leq_m A_m$ (~~ A_m is not ecuitsive)
 $\mathcal{P}_x(x) \downarrow$

Define g: IN ~ > IN

$$g(x_1y) = \varphi_x(x) = \varphi_v(x_1x)$$

$$= \varphi_{f(x)}(y) \qquad \text{for } f: |N \to |N \text{ total and}$$

$$computable given by$$

$$simin \text{ theorem}$$

and f is the reduction function for $K \leq_m A_m$ * if $x \in K$ $f(x) \in A_m$ then $q_{f(x)}(y) = q_x(x) \lor \forall \forall y$ in particular $q_{f(x)}(m) \lor hence f(x) \in A_m$ * if $x \in K$ $f(x) \notin A_m$ then $q_{f(x)}(y) = q_x(x) \land \forall \forall y$ (m particular $q_{f(x)}(m) \land hence f(x) \notin A_m$

۵

 $A_m \leq_m K$ (exercise) while $T \neq_m K$

EXAMPLE: ONE =
$$\{z \mid q_z = A\}$$

 P_z ONE \rightarrow yes/m° is P_x a sound implementation
of the constant A
 $K \leq_m ONE$
 $ideo : P_z$ \sim $idef P_{f(z)}(y)$ constant 4
 $ideo : P_z$ \sim $idef P_{f(z)}(y)$ constant 4
 $P_x(z)$ \downarrow if $f_z(z) \downarrow$
 $P_z(z)$
 $Veturem A$ \rightarrow always undefined
 $Nemce \pm A$
 g
formalise this into e proper reduction (EXERCISE)
Norme

[solution]

Define $g(x,y) = \Pi (\varphi_x(x))$ $= -\Pi (\Psi_{\sigma}(x,z))$

computable

Hence by smm-theorem there is $f: |N \rightarrow |N|$ total computable such that $\forall x_i y$ $\mathcal{P}_{fix}(y) = g(x, y) = I (\mathcal{P}_x(x))$ We claim that f is a reduction function for $K \leq_m ONE$ Imfact

* if
$$x \in K$$
 then $\varphi_x(z) \downarrow$.
Thus $\forall y$
 $\varphi_{f(z)}(y) = II(\varphi_x(x)) = 1$
there fore $\varphi_{f(z)} = II$ and hence $f(x) \in ONE$
* if $x \notin K$ then $\varphi_x(x) \uparrow$
Thus $\forall y$
 $\varphi_{f(x)}(y) = II(\varphi_x(x)) \uparrow$
therefore $\varphi_{f(x)} = \emptyset \neq II$

and hence f(x) & ONE

EXERCISE : (OUTPUT PROBLEM)

det melN. Comsider $B_m = d \approx 1$ me E_{∞} } not recursive $\frac{P_{\infty}}{B_m} = d \cos B_{\infty}$ provides m as output for some imput ? Show $K \leq_m B_m$ [home]

[solution]

 $\frac{1deQ}{r} : \frac{P_{z}}{r} + \frac{f}{r} + \frac{P_{f(z)}}{r} + \frac{Q}{r} +$

Define

$$\begin{split} g(x,y) &= M * \operatorname{II}(\varphi_x(x)) &= M * \operatorname{II}(\psi(x,x)) & \text{computable} \\ & \text{By the smm theorem there is } f: IN \to IN \text{ total computable s.t.} \\ & \varphi_{f(x)}(y) &= g(x,y) &= M * \operatorname{II}(\varphi_x(x)) & \forall x,y \end{split}$$

f is the reduction function for KSm ONE, in fact

* if
$$x \in K$$
 then $P_x(x) \downarrow$. Thus $\forall y$
 $P_{f(x)}(y) = m * II(P_x(x)) = m$
Therefore $m \in E_{f(x)} = \{m\}$ and hence $f(x) \in B_m$

* if
$$x \notin K$$
 then $q_{\alpha}(x) \uparrow$. Thus $\forall y$
 $q_{f(x)}(y) = m * I(q_{\alpha}(\alpha)) \uparrow$
Therefore $m \notin E_{f(x)} = \emptyset$ and hence $f(\alpha) \notin Bm$

We comclude K <m Bm, hence Bm mot secursive.

 $\frac{\text{EXERCISE}}{\text{I}} : \text{URM} \quad \text{with programs where only forward jumps are oblowed}$ $I_i : J(m, m, t) \qquad t > i$ show that all functions are total, hence $C' \lneq C$ What if I can only jump backward

I:: J(m,m,t) t<i? [home]