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1 Turing machine (TM) : formal model of computer algorithms
that allows the mathematical study of computability

2 Programming techniques for TM : techniques to facilitate the
writing of programs for TM

3 TM Extensions : machines that are more complex than TM but
with the same computational capacity

4 TM with restrictions : automata that are simpler than TM but
with the same computational capacity
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Turing machine

In order to mathematically study undecidabilty we need a simple
formalism to represent programs (Python is not suitable)

Historically used formalisms:

predicate calculus (Gödel, 1931)

partial recursive functions (Kleene, 1936)

lambda calculus (Church, 1936)

Turing machine (Turing, 1936)
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Turing machine

A Turing machine is a finite state automaton with the addition of
a memory tape with

sequential access

unlimited capacity in both tape directions

Differently from the PDA model, input string is initially placed into the

auxiliary memory

The Turing machine model allows the study of computability
properties such as undecidabilty and intractability

Automata, Languages and Computation Chapter 8



Turing machine
Programming techniques for TM

TM Extensions
TM with restrictions

Turing machine
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Informally, a Turing machine performs a move according to its
state and the symbol which is read by the tape head

In a single move, a Turing machine

changes its state

writes a new symbol in the cell read by the tape head

moves the tape head to the cell to the right or to the left
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Turing machine

A Turing machine, MT for short, is a 7-tuple

M “ pQ,Σ, Γ, δ, q0,B,F q,

where

Q is a finite set of states

Σ is a finite set of input symbols

Γ is a finite set of tape symbols, with Σ Ď Γ

δ is a transition function from Q ˆ Γ to Q ˆ Γ ˆ tL,Ru

q0 is the initial state

B P Γ is the blank symbol, with B R Σ

F Ď Q is the set of final states

Note that the automaton is deterministic, and it has no ‘stand’ move
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Instantaneous descriptions

A TM changes its configuration with each move. We use the
notion of instantaneous description (ID) to describe configurations

An instantaneous description (ID) of M is a string of the form

X1X2 ¨ ¨ ¨Xi´1qXiXi`1 ¨ ¨ ¨Xn

where

q is M’s state

X1X2 ¨ ¨ ¨Xn is the “visited” portion of M’s tape

the tape head of M is reading the i-th tape symbol
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Computation of a TM

To represent a computation step of M we use the binary relation
$
M
defined on the set of IDs

If δpq,Xi q “ pp,Y , Lq, then

X1X2 ¨ ¨ ¨Xi´1qXiXi`1 ¨ ¨ ¨Xn $
M
X1X2 ¨ ¨ ¨ pXi´1YXi`1 ¨ ¨ ¨Xn

If δpq,Xi q “ pp,Y ,Rq, then

X1X2 ¨ ¨ ¨Xi´1qXiXi`1 ¨ ¨ ¨Xn $
M
X1X2 ¨ ¨ ¨Xi´1YpXi`1 ¨ ¨ ¨Xn

Special cases if the tape head is at the two ends of the written tape
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Computation of a TM

To represent the computations of M, we use the reflexive and

transitive closure of $
M
, written

˚
$
M

For input string w P Σ˚, the initial ID is q0w

For a TM M “ pQ,Σ, Γ, δ, q0,B,F q, an accepting computation
has the form

q0w
˚

$
M
αpβ

with p P F and α, β P Γ˚

We will come back to this definition after some examples
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Example

Let us specify a TM M with LpMq “ t0n1n | n ě 1u

M “ ptq0, q1, q2, q3, q4u, t0, 1u, t0, 1,X ,Y ,Bu, δ, q0,B, tq4uq

The transition function δ is represented by the following table

0 1 X Y B

Ñ q0 pq1,X ,Rq pq3,Y ,Rq

q1 pq1, 0,Rq pq2,Y , Lq pq1,Y ,Rq

q2 pq2, 0, Lq pq0,X ,Rq pq2,Y , Lq

q3 pq3,Y ,Rq pq4,B,Rq

‹q4
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Example

We can also represent δ by means of the following transition
diagram

/Y Y

/Y Y

/Y Y

0/0

X/0

/X X

/B B
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/Y Y

0/0
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Example

If input w has the form 0˚1˚, then at each ID the tape is of the
form X˚0˚Y ˚1˚

M implements the following strategy

in q0 it replaces the leftmost 0 with X and moves to q1

in q1 it proceeds from left to right, goes over 0 and Y looking
for the leftmost 1, replaces it with Y and moves to q2

in q2 it proceeds from right to left, goes over Y and 0 looking
for the rightmost X , and moves back to q0

in q0, if it finds one more 0 it resumes the above cycle,
otherwise it moves to q3

in q3 it overrides all of the Y ’s and accepts if there is no 1

Observe how input string is overwritten during the computation

Automata, Languages and Computation Chapter 8



Turing machine
Programming techniques for TM

TM Extensions
TM with restrictions

Example

Given the string input 0011, M performs the following
computation (sequence of ID)

q00011 $ Xq1011 $ X0q111

$ Xq20Y 1 $ q2X0Y 1

$ Xq00Y 1 $ XXq1Y 1

$ XXYq11 $ XXq2YY

$ Xq2XYY $ XXq0YY

$ XXYq3Y $ XXYYq3B

$ XXYYBq4B
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TM with “output”

We have defined a TM as a recognition device. Alternatively, we
can use these devices to compute functions on natural numbers.

Historically, this was the original definition by A. Turing

We encode each natural number in unary notation according to
the scheme

n “1 0
n
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Example

The following TM M computes the proper subtractor function

m ´ n “ maxpm ´ n, 0q

starting with 0m10n on its tape and halting with 0m´n.

No set of final states for TMs with output

0 1 B

Ñ q0 pq1,B,Rq pq5,B,Rq

q1 pq1, 0,Rq pq2, 1,Rq

q2 pq3, 1, Lq pq2, 1,Rq pq4,B, Lq

q3 pq3, 0, Lq pq3, 1, Lq pq0,B,Rq

q4 pq4, 0, Lq pq4,B, Lq pq6, 0,Rq

q5 pq5,B,Rq pq5,B,Rq pq6,B,Rq

‹q6
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Example

The transition diagram is
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Example

The TM M performs the following loop

find the leftmost 0 and replace with B (states q0, q3)

search right for the first 0 placed after symbols 1, and replace
it with 1 (states q1, q2)

The loop ends in two possible ways

M cannot find a 0 to the right of the 1’s (m ą nq; then M
turns all of the 1’s into a single 0 followed by B’s

M cannot find a 0 to be replaced by B (m ď n); then
m ´ n “ 0 and M replaces all 0’s and 1’s into B
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Notation for TM

We use notational conventions similar to those of other automata

a, b, c , ..., a1, a2, ..., ai , ... input symbols

X , Y , Z tape symbols

u, w , x , y , z strings over the input alphabet

α, β, γ, ..., strings over tape alphabet

p, q, r , ..., q1, q2, ..., qi , ... states
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Exercise

The TM M “ ptq0, q1, q2u, t0, 1u, t0, 1,Bu, δ, q0,B, tq2uq has the
following transitions :

δpq0, 0q “ pq1, 1,Rq

δpq1, 1q “ pq2, 0, Lq

δpq2, 1q “ pq0, 1,Rq

Specify the computation (ID sequence) of M for input 0100
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Exercise

Provide TMs for the following languages by specifying the
transition diagram and by briefly explaining the adopted strategy

L “ tanb2n | n ě 1u

L “ tw P ta, b, cu˚ | #apwq “ #bpwq “ #cpwqu

L “ tanb2kan | b, k ě 0u
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Language accepted by a TM

A TM M “ pQ,Σ, Γ, δ, q0,B,F q accepts the language

LpMq “ tw | w P Σ˚, q0w
˚

$
M
αpβ, p P F , α, β P Γ˚u

The class of languages accepted by TMs is called recursively
enumerable (RE)

This term derives from formalisms that historically preceded TM
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TM and halting

A TM halts if it enters a state q with tape symbol X and δpq,X q

is not defined (there is no next move)

If a TM accepts a string, we can assume that it always halts : just
make δpq,X q undefined for every final state q

If a TM does not accept, we can’t assume that it will halt (in a
non-final state)

The class of languages accepted by some TM that halts for every
input are called recursive (REC)
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Recursive and recursively enumerable languages

Recursive language (REC) : the language is accepted by a TM
that halts on each input string (in the language or not)

Recursively enumerable language (RE) : the language is accepted
by a TM that halts when the string belongs to the language

For strings not in the language, the TM may compute forever

A decision problem P is decidable if its encoding LP (see
chapter 1) is a recursive language. Alternatively : if there is a TM
M that always halts such that LpMq “ LP
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Programming techniques for TM

Although the class of TM is very simple, this model has the same
computational power as a modern computer

We will also see that a TM is able to perform processing on other
TMs. This allows us to prove that certain problems are undecidable

Compare with compilers, which take programs as input and produce new

programs as output

We present in the following some notational variants of the TM
that make TM programming easier
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Programming techniques for TM

We reformulate the TM definition using

a finite number of registers with random access, which we
place inside each state

a finite number of tape tracks

q

A B C

X

Y

Z

State

Storage

Track 1

Track 2

Track 3
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State as internal memory

Example : A TM M that “memorizes” the first symbol read and
verifies that this does not appear again in the input

LpMq “ Lp01˚ ` 10˚q

Let M “ pQ, t0, 1u, t0, 1,Bu, δ, rq0,Bs,B, trq1,Bsuq, with
Q “ tq0, q1u ˆ t0, 1,Bu

0 1 B

Ñ rq0,Bs prq1, 0s, 0,Rq prq1, 1s, 1,Rq

rq1, 0s prq1, 0s, 1,Rq prq1,Bs,B,Rq

rq1, 1s prq1, 1s, 0,Rq prq1,Bs,B,Rq

‹rq1,Bs
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Tape with multiple tracks

Example : A TM for the language L “ twcw | w P t0, 1u˚u

We use a tape track for “marking” those input symbols that we
have already tested

M “ pQ,Σ, Γ, δ, rq1,Bs, rB,Bs, trq0,Bsuq

where

Q “ tq1, q2, . . . , q9u ˆ t0, 1,Bu

Σ “ trB, 0s, rB, 1s, rB, csu

Γ “ tB, ˚u ˆ t0, 1, c ,Bu

See the textbook for the specification of the transition function δ
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Use of a subroutine

Example : A TM for the computation of the product function
0m10n1 ÞÑ 0m¨n. We use a subroutine “Copy”
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Use of a subroutine

The subroutine “Copy” takes ID 0m´k1q10
n10pk´1qn to ID

0m´k1q50
n10kn

Start
0/

1/1

1/1

/0

/

X B

X X

q q q

q q

1 2 3

4 5

0/0

1/1 1/1

0/0

/0X
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TM extensions

Let us now present some extensions of the TM definition

For each extension, we prove that the computational capacity is
the same as the one of the classic definition of TM
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Multi-tape TM

We use a finite number of independent tapes for the
computation, with the input on the first tape

. . . . . .

. . . . . .

. . . . . .
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Multi-tape TM

In a single move the multi-tape TM performs the following actions

state update, on the basis of read tape symbols

for each tape :

write a symbol in current cell
move the tape head independently of the other heads (L =
left, R = right, or S = stay)

Note that the stay option is not available in a TM
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Multi-tape TM

Theorem A language accepted by a multi-tape TM M is RE

Proof (sketch) We can simulate M using a TM N with a
multi-track tape

A A A
i1 2

A
j

B B B B
i21 j

X

X
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Multi-tape TM

We use 2k tracks to simulate k tapes : even tracks used for tape
content, odd tracks used for tape head position

N visits all k head positions to simulate a single move of M

left to right pass : the number of visited tape heads and the
content of the corresponding cells are stored into the state
of N

right to left pass : for each tape head of M, the corresponding
action is simulated by N

N updates its state in the same way as M l
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Multi-tape TM

Theorem The TM N in the proof of the previous theorem
simulates the first n moves of the TM M with k tapes in time
Opn2q

Proof (sketch) After n moves of M, tape head markers in N have
mutual distance not exceeding 2n

It follows that any one of the first n moves of M can be simulated
by N in a number of moves not exceeding 4n ` 2k, which amounts
to Opnq since k is a constant l
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Nondeterministic TM

In a nondeterministic Turing machine, NTM for short, the
transition function δ is set-valued :

δpq,X q “ tpq1,Y1,D1q, pq2,Y2,D2q, . . . , pqk ,Yk ,Dkqu

At each step, the NTM chooses one of the triples as the next move

The NTM accepts an input w if there exists a sequence of choices
that leads from the initial ID for w to an ID with an accepting state

Automata, Languages and Computation Chapter 8



Turing machine
Programming techniques for TM

TM Extensions
TM with restrictions

Nondeterministic TM

Theorem For each NTM MN , there exists a (deterministic) TM
MD such that LpMNq “ LpMDq

Proof (skecth) We specify MD as a TM with two tapes

ID1 * * **ID2 ID3 ID4

Finite

control

Queue

of ID’s

Scratch
tape

x
. . .
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Nondeterministic TM

A single ID in the queue (first) tape is marked as being processed

MD performs the following cycle

copy the marked ID from the queue tape to the scratch
(second) tape

for each possible move of MN , add a new ID at the end of
queue tape

move the marker in the queue tape to the next ID
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Nondeterministic TM

Let m be the maximum number of choices for MN . After n moves,
MN reaches a number of ID bounded by

1 ` m ` m2 ` ¨ ¨ ¨ ` mn ď nmn ` 1

MD explores all the IDs reached by MN in n steps before each ID
reached in n ` 1 steps, as in a breadth first search

If there exists an accepting ID for MN on w , MD reaches this ID in
a finite amount of time. Otherwise, MD does not accept, and may
not halt

We therefore conclude that LpMNq “ LpMDq l
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Nondeterministic TM

Observe that the TM MD in the previous theorem can take an
amount of time exponentially larger than MN to accept an input
string

We do not know if this slowdown is necessary: this very important
issue will be the subject of investigation in a next chapter
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TM with restrictions

We impose some restrictions on the definition of TM / multi-tape
TM:

tape is unlimited only in one direction

two tapes used in stack mode

We prove that these models are equivalent to TM

Think about the above definitions as normal forms

These models are especially useful in some proofs that we will
present later on
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TM with semi-infinite tape

In a TM with semi-infinite tape

there are no cells to the left of the initial tape position

a tape symbol can never be overwritten by the blank B

In a TM with semi-infinite tape each ID is a sequence of tape
symbols other than B, i.e., there are no “holes”
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TM with semi-infinite tape

We can simulate a TM by means of a TM with semi-infinite tape
with two tracks

the upper track represents the initial position X0 and all tape
cells to its right

the lower track represents all tape cells to the left of X0, in
reverse order

a special symbol ˚ is used to mark the initial position

X

X X

XX
1

-1

2

-2*

0
. . . 

. . . 
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TM with semi-infinite tape

Theorem Each language accepted by a TM M2 is also accepted
by a TM M1 with semi-infinite tape

Proof (sketch) First, we modify M2 in such a way that it uses a
new tape symbol B 1 each time B is used to overwrite a tape
symbol

Let M2 “ pQ2,Σ, Γ2, δ2, q2,B,F2q be the modified TM. We define

M1 “ pQ1,Σ ˆ tBu, Γ1, δ1, q0, rB,Bs,F1q
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TM with semi-infinite tape

The states of M1 are Q1 “ tq0, q1u Y pQ2 ˆ tU, Luq. Symbols U, L
indicate whether M1 is visiting the upper or lower track

The input symbols of M1 are pairs ra,Bs with a an input symbol
of M2

The tape symbols Γ1 of M1 are pairs in Γ2 ˆ Γ2 with the addition
of pairs rX , ˚s for each X P Γ2, where ˚ is used to mark the initial
position of M1 tape

The accepting symbols of M1 are F1 “ F2 ˆ tU, Lu
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TM with semi-infinite tape

Transitions in δ1 implement the following moves

place ˚ on the initial position, in the lower track, and restore
the initial conditions of M2

when M1 is not in the initial cell, the moves of M2 are
simulated with

the same direction if U appears in the state
the reverse direction if L appears in the state

upon reading ˚

if M2 moves to the right, M1 simulates the same move
if M2 moves to the left, M1 simulates the same move but it
reverses the direction
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TM with semi-infinite tape

It can be shown by induction on the number of steps of a
computation that the IDs of M1 and M2 match, modulo

the reversal of the L track of M1

its concatenation on the left with the U track of M1

the elimination of the ˚ marker

It follows that LpM1q “ LpM2q l
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Multi-Stack machine

We apply to a multi-tape TM the restriction to use each tape in
stack mode

can only overwrite at the top

can only insert at the top

can only delete at the top

The resulting model accepts only recursively enumerable language,
since it is a restriction of a multi tape TM
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Multi-Stack machine

Let M be a multi-tape TM with tapes used in stack mode. We
also assume that

the input is provided in an external, read-only tape and with
end-marker $, and it can only be read from left to right

M can perform ϵ-moves, but these moves must not be in
conflict with each other or with other reading moves
(determinism)
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Multi-Stack machine

M is called a multi-stack machine, and can be viewed as a
generalization of the deterministic PDA

Finite
state
control

Input Accept/reject
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Multi-Stack machine

In a multi-stack machine with k stacks, a transition rule has the
form

δpq, a,X1,X2, . . . ,Xkq “ pp, γ1, γ2, . . . , γkq

In words, when the machine is in state q and reads input symbol
a P Σ Y tϵu, and with Xi on top of the i-th stack, 1 ď i ď k, it
moves to state p and replaces each Xi with γi
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Multi-Stack machine

Theorem If a language L is accepted by a TM, then L is accepted
by a multi-stack machine with two stacks

Proof (sketch) Let L “ LpMq for a TM M. We construct a
machine S with two stacks, having special symbols used as
markers at the bottom of the stack

The basic idea is to

simulate the tape to the left of the current position with the
first stack

simulate the tape starting from the current position and
extending to the right with the second stack
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Multi-Stack machine

The transition rules of S implement the following strategy

copy the input w$ into the first stack

move the contents of the first stack into the second stack

if M overwrites X with Y and moves to the right, S pushes Y
on the first stack and pops X from the second stack

if M overwrites X with Y and moves to the left, S pops the
symbol Z from the first stack and replaces X with ZY in the
second stack

in addition, S employs some special moves to handle the case
where M is located at the end points of the tape (one of the
two stacks contains the bottom marker)

S accepts whenever M accepts l
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TM and computer

Theorem If a language L is accepted by a modern computer, then
L is accepted by a TM

Proof Omitted
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