Microscopie

Confronto tra microscopie

	МО	SEM	TEM
Range di ingrandimento	1-1000	10-10000	1000-1000000
Risoluzione			
Ordinaria	<mark>5μm</mark>	<mark>.01μm</mark>	<mark>5nm</mark>
Per osservazioni accurate	0.2µm	20nm	1nm
Limite	0.1µm	1nm	0.2nm
Profondità di campo	0.1mm a 10x	10mm a 10x	limitata allo spessore del film
	1μm a 100x	1mm a 100x	limitata allo spessore del film
Ambiente	versatile	richiede il vuoto (0.03Pa)	richiede il vuoto (0.03Pa)

Risoluzione

Distanza minima tra 2 oggetti per la quale i due oggetti appaiono distinti

In ottica non dipende solo dalle lenti ma anche dalla lunghezza d'onda della sorgente luminosa.

In microscopia ottica il limite di risoluzione è 0.2 μm per via della lunghezza d'onda della luce visibile che varia tra 0.4 μm e 0.7 μm

Microscopio Elettronico in Trasmissione: TEM

Microscopio Elettronico in Trasmissione: TEM

Confronto TEM e microscopio ottico TEM MO

Confronto tra filamenti

Emettitore	Vita media (ore)	Source size	Brillanza a 25KV
W (termoionico)	60-100	100µm	1 Wm ² sr ⁻¹
LaB6	300-500	5 μ m	20-50 Wm²sr¹
W (emissione di campo)	300-1000	<100A°	100-1000 Wm ² sr ⁻¹

Le aberrazioni

Aberrazione sferica

Elettroni che si muovono a diversa distanza dall'asse vengono focalizzati in punti diversi Aberrazione cromatica

Elettroni con diversa energia vengono focalizzati in punti diversi

Astigmatismo

Varie imperfezioni (irregolarità di lavorazione nell'avvolgimento delle bobine, disomogeneità nei materiali, contaminazioni) inducono delle asimmetrie nei campi delle lenti. Tuttavia lo strumento e' dotato di un sistema di bobine di compensazione che consentono di minimizzare tale aberrazione

Immagine TEM di HDPE

Immagine TEM di LLDPE (comonomero 1-Esene)

Immagine TEM di LLDPE (comonomero 4-Metil-1-Pentene)

Immagine TEM di LLDPE (comonomero 1-Butene)

Immagini TEM

Nanocompositi lamellari

Le argille, filler a strati con spessore nanometrico

Struttura tipo 2:1... ...a due strati tetraedrici... ...se ne interpone uno ottaedrico

....si possono ottenere 3 fasi

Immiscibile

Intercalata

Esfoliata

Immagini TEM

Esfoliazione

Intercalazione

Immiscibilità

Diffrazione dei raggi X ad alto angolo

Diffrazione dei raggi X ad alto angolo

Diffrazione ad alto e basso angolo

Microscopio Elettronico a Scansione :SEM

Microscopio Elettronico a Scansione: SEM

Risoluzione nel SEM

In microscopia a scansione "la fonte di illuminazione" è data dagli elettroni e la risoluzione dipende da molteplici fattori legati alla generazione del segnale:

- Intensità e larghezza del fascio primario
- Aberrazioni delle lenti elettroniche
- Tipologia del segnale generato
- Composizione del campione che si studia

Interazione fascio-materiale: diffusione degli elettroni nei solidi

Diffusione elastica

Diffusione anelastica

Diffusione degli elettroni nei solidi

Diffusione elastica

Dovuta ad un urto elastico con il nucleo degli atomi del campione

Consiste in una variazione della direzione senza perdita di energia, l'elettrone del fascio urta contro il nucleo dell'atomo

Quando l'angolo è >90° si ha retrodiffusione

Diffusione degli elettroni nei solidi

Diffusione anelastica

Dovuta ad urto anelastico con gli elettroni legati dell'atomo del campione

Consiste in una diminuzione dell'energia senza apprezzabile variazione della direzione di propagazione:

Vengono prodotti

- elettroni secondari
- raggi X

⇒ Elettroni retrodiffusi

⇒ Elettroni secondari

Una volta che il segnale è stato generato dal fascio, dobbiamo "raccoglierlo" e trasformarlo in un segnale elettrico

Ogni segnale ha il suo detector dedicato

Elettroni secondari: come si formano le ombre

La quantità di elettroni che raggiungono il rivelatore dipende dalla morfologia della superficie e le zone del materiale possono risultare più scure o più chiare nell' immagine finale

Gli elettroni generati in cavità hanno una bassa probabilità di uscire dal materiale e quindi daranno un segnale debole (aree scure), quelli generati sulle sporgenze hanno una più alta probabilità di arrivare al rivelatore e il loro segnale sarà più intenso (zone chiare)

Immagine SEM della superficie di frattura di PP isotattico

Immagine SEM della superficie di frattura del composito PP isotattico con il 12% di grafite

Immagini SEM di fibre da electrospinning di PVA con particelle di Ag

Immagini TEM di fibre da electrospinning di PVA con particelle di Ag

Immagini SEM di fibre da electrospinning di PEO con 1% di CNTs

Immagini TEM di fibre da electrospinning di PEO con 1% di CNTs

Immagini SEM di PHB con 0.25% di CNTs Fibre da electrospinning su collettore piano

Immagini SEM di PHB con 0.25% di CNTs Fibre da electrospinning su rotore

Immagini TEM di fibre da electrospinning PHB con 0.25% di CNTs

