

Da un punto di vista classico sono onde elettromagnetiche con lunghezza d'onda λ compresa tra 0.1 e 100 Å Da un punto di vista quantistico sono fotoni con energia E=hv compresa tra 0.1 e 100 KeV (1 KeV=1.6 · 10⁻¹⁶J)

Generazione dei raggi X

Generazione dei raggi X

Transizione ed emissione di radiazione X

La vacanza viene riempita attraverso la transizione di un elettrone di una shell più esterna:

 $\mathbf{M} \longrightarrow \lambda_{K\beta} = \frac{hc}{E_M - E_K}$

Oltre all'emissione di radiazione caratteristica

 $\begin{array}{l} \lambda_{K\alpha} \ e \ \lambda_{K\beta} \\ c' e \ l'emissione \ di \ uno \\ spettro \ continuo \ detto \ di \\ "bremsstrahlung", \\ dovuto \ al \ frenamento \ che \\ subisce \ l'elettrone \\ incidente \ a \ causa \\ dell'interazione \ con \ il \ nucleo \end{array}$

Generazione dei raggi X

Generazione dei raggi X

Tubo a raggi X

Descrizione matematica di un reticolo cristallino

Definizione di reticolo cristallino

Insieme dei vettori $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$

con n_1, n_2, n_3 interi e a_1, a_2, a_3 linearmente indipendenti

Reticolo reciproco

Siano a_1 , a_2 , a_3 i vettori elementari di un reticolo cristallino che chiameremo **diretto** o **reale**. Un secondo reticolo, definito dai vettori elementari a_1^* , a_2^* , a_3^* , e detto **reciproco** del primo se soddisfa le seguenti condizioni:

$$a_1^{*} a_2 = a_1^{*} a_3 = a_2^{*} a_1 = a_2^{*} a_3 = a_3^{*} a_1 = a_3^{*} a_2 = 0$$

 $a_1^{*} a_1 = a_2^{*} a_2 = a_3^{*} a_3 = 1$

Cioè:
$$a_i^* \cdot a_j = \delta_{ij}$$

La prima serie di condizioni indica che a_1^* è perpendicolare ad $a_2 e a_3$, a_2^* è perpendicolare ad $a_1 e a_3$, a_3^* ad $a_1 e a_2$. La seconda riga fissa in modulo e verso i tre vettori reciproci fondamentali a_1^* , a_2^* , a_3^* . Potremo quindi scrivere

$$a_1^* = cost (a_2 \times a_3)$$

ma essendo $a_1^* a_1 = 1$ avremo

$$a_1^{*}a_1 = \cos t (a_2 \times a_3) \cdot a_1 = \cos t V = 1$$

Quindi cost =1/V (V = volume di cella), e avremo per i tre parametri reciproci

$$a_1^* = (a_2 \times a_3)/V$$
 $a_2^* = (a_1 \times a_3)/V$ $a_3^* = (a_1 \times a_2)/V$

In termini scalari

$$a_1^* = (a_2 a_3 \sin a)/V$$
 $a_2^* = (a_1 a_3 \sin \beta)/V$ $a_3^* = (a_1 a_2 \sin \gamma)/V$

Si noti che V* = $a_1^* (a_2^* \times a_3^*) = 1/V$

Vettore del reticolo reciproco

 $S=h_1a_1^*+h_2a_2^*+h_3a_3^*$

Celle elementari e reticoli cristallini

Relazioni tra	Tipo di reticolo	
a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	cubico
a = b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$	tetragonale
a≠b≠c	α = β = γ = 90°	ortorombico
a≠b≠c	α = γ = 90° ≠ β	monoclino
a≠b≠c	α ≠ β ≠ γ ≠ 90°	triclino
a = b = c	α = β = γ ≠ 90°	trigonale
a = b ≠ c	$\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$	esagonale

Posizione ed orientamento dei piani cristallini

$h: k: l = m_1^{-1}: m_2^{-1}: m_3^{-1} \implies$ Indici di Miller

La terna di indici di Miller (hkl), che nello spazio diretto è

associata ad una famiglia di piani paralleli, nello spazio reciproco

indica le componenti del vettore d*_{hkl} ad essi associato. Questo

vettore è **normale** alla famiglia di piani (hkl). Se h, k , l sono interi primi fra loro vale la relazione

$$d_{hkl}$$
* = 1 / d_{hkl}

Step 1 :*Identificare le intercette sugli assi x- , y- e z-*

Step 1 : Identificare le intercette sugli assi x-, y- e z-

```
x = a nel punto (a,0,0)
```

La superfice è parallela agli assi y e z: nessuna intercetta con tali piane tranne che ad ∞

Step 2 :specificare le intercette in coordinate relative

a/a, ∞/a , ∞/a --> 1, ∞ , ∞

Step 3 : fare il reciproco delle coordinate relative

(100)

La superficie (o il piano) considerato è il piano (100) del cristallo cubico

Intercette : a , a , ∞

Coordinate relative : 1 , 1 , ∞

Indici di Miller : (110)

Diffrazione dei raggi X da cristalli

Nel 1912 Max Von Laue ipotizzò che i cristalli, formati da un arrangiamento regolare di atomi, potessero essere usati come reticolo di diffrazione, utilizzando radiazione X

Nel 1913 W.H Bragg e W.L. Bragg dimostrarono che un piano di atomi nel cristallo riflette la radiazione come la luce viene riflessa da uno specchio

Legge di Bragg

Nel reticolo cristallino vi sono svariate famiglie di piani ognuna delle quali può essere interessata dalla "riflessione" delle onde incidenti. Tuttavia, data la natura dell'onda e le caratteristiche di periodicità del reticolo, la riflessione non è sempre possibile, ma limitata ad alcune speciali relazioni angolari tra la direzione d'incidenza e il piano in questione.

Si genera interferenza costruttiva solo quando la differenza di cammino ottico tra raggi riflessi da due piani paralleli è pari ad un numero intero di lunghezze d'onda Legge di Bragg

 $r+r = 2d_{hkl} \sin\theta \implies 2d_{hkl} \sin\theta = n\lambda$

Processo elementare di scattering

Rivelatore

- \hat{S}_0 vettore unitario nella direzione del fascio incidente
- \hat{S} vettore unitario nella direzione del fascio deviato
- 2θ angolo di scattering

Un elettrone è posto al centro del sistema di riferimento e viene colpito da un fascio di raggi X

Se lo scattering è elastico, l'elettrone diventa sorgente di radiazione secondaria diffusa in tutte le direzioni

Scattering da due elettroni

La distanza r è molto più piccola della distanza degli elettroni dalla sorgente dal rivelatore

La differenza di cammino ottico è

$$(s - s_0) \cdot r$$

per avere interferenza positiva

Quindi moltiplicando per $2\pi/\lambda$

$$(\mathbf{k} - \mathbf{k}_{o}) \cdot \mathbf{r} = \mathbf{2}\pi \mathbf{m}$$

Condizione di Laue per avere la diffrazione

$$\mathbf{S} = \frac{(\mathbf{k} - \mathbf{k}_0)}{2\pi} = \text{vettore R.R.}$$

$$|\mathbf{S}| = \frac{1}{2\pi} \cdot \mathbf{2} \cdot \frac{2\pi}{\lambda} \cdot \sin \theta = \frac{2\sin \theta}{\lambda} = \frac{1}{\mathbf{d}}$$

Definiamo $\mathbf{Q} = \mathbf{2}\pi\mathbf{S} = (\mathbf{k} - \mathbf{k}_0)$

Fattore di scattering di un elettrone

Ampiezza delle onde diffuse da due elettroni

Elettrone all'origine (scattering Thompson): $E(S) = -r_0 \frac{\sin \Psi}{R} E_0$ Elettrone in r $E(S) \cdot e^{2\pi i (S \cdot r)}$

 r_0 raggio classico dell'elettrone, R distanza tra elettrone e rivelatore, ψ angolo tra r e la direzione di polarizzazione

Il fattore di scattering di un elettrone in r è definito dal rapporto tra l'ampiezza dell'onda diffusa dallo stesso elettrone e quella diffusa dall' elettrone posto nell'origine. Si ha pertanto

 $f(\boldsymbol{S}) = e^{2\pi i (\boldsymbol{S} \cdot \boldsymbol{r})}$

Fattore di scattering di un atomo

Il fattore di scattering di un atomo sarà dato dal contributo di tutti gli elettroni

 $f(\mathbf{S}) = \int d^3 \mathbf{r} \rho(\mathbf{r}) e^{2\pi i (\mathbf{S} \cdot \mathbf{r})}$

 $\rho(\mathbf{r})$ è la densità elettronica

L'equazione rappresenta una trasformata di Fourier: il fattore di scattering di un atomo è la trasformata di Fourier della densità elettronica.

La trasformata inversa

$$\rho(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3 \mathbf{S} f(\mathbf{S}) e^{-2\pi i (\mathbf{S} \cdot \mathbf{r})}$$

Proprietà del fattore di scattering di un atomo

Se S=0
$$f(0) = \int d^3 r \rho(r) \equiv Z$$
 Numero atomico

È un numero complesso e quindi costituito da una parte reale e una immaginaria (o da un modulo e una fase)

Sperimentalmente non si misura l'ampiezza ma l'<u>intensità</u> della radiazione diffusa, dipende solo dal <u>modulo del fattore di scattering</u>

Fattore di scattering di una molecola

Se N è il numero totale di atomi della molecola, r_n è la posizione dell'atomo n-esimo e f_n il suo fattore di scattering, il fattore di scattering di una molecola è

$$F(\mathbf{S}) = \sum_{n=1}^{N} f_n(\mathbf{S}) e^{2\pi i (\mathbf{S} \cdot \mathbf{r}_n)}$$

Fattore di scattering di una cella elementare

L'intensità della radiazione diffusa però è proporzionale a $|F_{hkl}|^2$, si perdono le informazioni sulla posizione degli atomi nella cella

Profilo di diffrazione di ZnO

Card JCPDS (Joint Committee on Powder Diffraction Standards) ICDD (International Centre for Diffraction Data)

🞯 PDF # 361451, W	avelengt	h = 1.5	40598 (A)				- 🗆 ×
36-1451 Quality: * CAS Number: 1314-13-2 Molecular Weight: 81.38 Volume(CD): 47.52	Zn 0 Zinc Oxide Ref: McMurdie	H et al., Pow	der Diffraction, 1,	76 (1986)				
Dx: 5.675 Dm: Sys: Hexagonal Lattice: Primitive S G : P63mc (186)	d Slit ensity ->				ν.			
Cell Parameters: a 3.249 b c 5.206 α β γ SS/FOM: F27=131(.0071, 29)	Fize	3.6 1.	.8 1.3			- d (Å)		
I/Icor: Rad: CuKa1 Lambda: 1.5405981 Filter: Graph	d(A) Int-f 2.8143 57 2.6033 44	h k 1 0 0 0 0 2	d(A) Int-f 1.3017 2 1.2380 4	h k 0 0 4 2 0 2	d(A) Ir .95560 93812	nt-f h l 1 2 l 3 3 l	k 04 00	
d-sp: diffractometer Mineral Name: Zincite, syn	2.4759 100 1.9111 23 1.6247 32	101 102 1102 1103	1.1816 1 1.0931 7 1.0638 3 1.0422 6	$ \begin{bmatrix} 2 & 0 & 2 \\ 1 & 0 & 4 \\ 2 & 0 & 3 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} $.90694 .88255 .86768 .83703	8 2 4 3 1 0 3 2	13 02 06	
Also called: chinese white zinc white	1.4071 4 1.3781 23 1.3582 11		1.0159 4 .98464 2 .97663 5	1 1 4 2 1 2 1 0 5	.82928 .82369 .81246	1 1 2 2 3 2	0 6 1 4 2 0	

Parametri di cella

Sono in relazione con la distanza interplanare e gli indici di

Miller

System	1/d ² _{hki}
Cubic	$(h^2 + k^2 + l^2)/a^2$
Tetragonal	$\frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$
Orthorhombic	$\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$
Hexagonal and trigonal (P)	$\frac{4}{3a^2}(h^2+k^2+hk)+\frac{l^2}{c^2}$
Trigonal (R)	$\frac{1}{a^2} \left(\frac{(h^2 + k^2 + l^2) \sin^2 \alpha + 2(hk + hl + kl)(\cos^2 \alpha - \cos \alpha)}{1 + 2\cos^3 \alpha - 3\cos^2 \alpha} \right)$
Monoclinic	$\frac{h^2}{a^2 \sin^2 \beta} + \frac{k^2}{b^2} + \frac{l^2}{c^2 \sin^2 \beta} - \frac{2hl \cos \beta}{ac \sin^2 \beta}$
Triclinic	$(1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma)^{-1} \left(\frac{h^2}{a^2} \sin^2 \alpha\right)$
	$+\frac{k^2}{b^2}\sin^2\beta+\frac{l^2}{c^2}\sin^2\gamma+\frac{2kl}{bc}(\cos\beta\cos\gamma-\cos\alpha)$
	$+\frac{2lh}{ca}(\cos\gamma\cos\alpha-\cos\beta)+\frac{2hk}{ab}(\cos\alpha\cos\beta-\cos\gamma)\Big)$

Table 2.2. The algebraic expressions of $d_{\rm H}$ for the various crystal systems

Posizione angolare dei picchi

 Relazioni per il sistema cubico

$$d_{(hkl)} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$
$$n\lambda = 2d_{(hkl)}\sin\theta$$
$$n = 1$$
$$\sin\theta = \frac{\lambda\sqrt{h^2 + k^2 + l^2}}{2a}$$

- Cubico semplice: nessuna estinzione
- Cubico a corpo centrato: diffrazione presente solo per h + k + l = 2n
- Cubico a facce centrate: diffrazione presente solo per h, k, l tutti pari o tutti dispari (0 è pari)
- Esagonale compatto: estinzione per h + 2k = 3n e*l* dispari

{hkl}	∑ (h²+k²+l²)	FCC	BCC
{100}	1		
{110}	2		SI
{111}	3	SI	
{200}	4	SI	SI
{210}	5		
{211}	6		SI
{220}	8	SI	SI
{221}	9		
{310}	10		SI

 $sin^2 \theta_1$ $\frac{3}{2} = 0.75$ (FCC) $sin^2 \theta$ = 0.50

Se le condizioni precedenti non sono verificate, si può operare con un procedimento per tentativo.

Equazione di Scherrer

Mette in relazione l'ampiezza del picco con la dimensione dei cristalliti lungo determinate direzioni

$$L_{hkl} = \frac{k\lambda}{\beta cos \theta}$$

K= costante che dipende dalla simmetria della cella β=ampiezza a metà altezza del picco

Metodo di Rietveld

Informazioni ottenibili:

Parametri di cella Posizioni atomi nella cella elementare Orientamenti preferenziali Analisi quantitativa di sistemi a più fasi

> Il metodo si basa sulla minimizzazione di una funzione che rappresenta la differenza tra il profilo sperimentale e quello calcolato

$$I_{i}^{calc} = \sum_{k=1}^{n^{\circ} picchi} |F_{k}|^{2} L_{k} A_{k} P_{k} \Omega(2\vartheta_{i} - 2\vartheta_{k}) + bkg_{i}$$

F : fattore di struttura

- L : correzione di Lorentz-polarizzazione
- A : correzione di assorbimento
- P: funzione per gli orientamenti preferenziali
- Ω : funzione usata per il profilo del picco
- bkg : contributo del fondo

cella monoclina a=6.65 Å, b=20.96 Å, c=6.5 Å beta=99°

Intensità (u.a.)

Calcolo grado di cristallinità

 $2\theta_f$

 $\int I_c(2\theta)d\theta$

POLIMORFISMO

POLIMERO	FASE	CONFORMAZIONE	RETICOLO CRISTALLINO
i-PP	α	3 1	monoclino
	β	3 1	esagonale
	γ	3 1	triclino
PTFE	II	13 ₆	triclino
	IV	157	esagonale
PVDF	α	TGTG	monoclino
	β	all-trans	ortorombico
	γ	T₃GT₃G	ortorombico
i-PB	II metastabile	11 ₃	tetragonale
	I	3 1	esagonale

Profili di diffrazione dei raggi X di PTFE

a=b= 5.66 c=19.5

Intensity (a.u.)

Informazioni ottenibili

Posizione dei picchi

Distanze interplanari

Parametri di cella

Determinazione di fase (polimorfismo)

Analisi qualitativa

Intensità dei picchi

Analisi strutturale

Analisi quantitativa

Calcolo % cristallinità

Larghezza dei picchi

Dimensione dei cristalliti

figura 4.2: geometria in trasmissione.

figura 4.3: geometria in riflessione.

Modelli lamellari

La struttura lamellare può essere descritta da un modello in cui strati ad alta densità (ρ_c) e a bassa densità (ρ_a) si alternano lungo una direzione normale alla superficie delle lamelle.

Si definisce C lo spessore lamellare, A lo spessore dello strato amorfo e

D la periodicità lamellare (long period).

Si assume che la struttura lamellare abbia una dimensione laterale infinita e una netta variazione di densità all'interfaccia cristallino/amorfo.

D=A+C

Si assume che la fluttuazione di densità lungo la catasta sia descritta da una statistica secondo la quale la variazione di spessore degli strati amorfi e cristallini è indipendente.

Indicando con $\rho_c e \rho_A$ la densità dello strato cristallino e amorfo $F_c e F_A$ le trasformate di Fourier della distribuzione degli strati N= numero di lamelle cristalline lungo la catasta D= Long Period S= 2sin θ/λ

L'intensità di scattering è data da:

$$I(s) = I^{I}(s) + I^{II}(s)$$

$$I^{I}(s) = \frac{(\rho_{c} - \rho_{A})^{2}}{4\pi^{2}s^{2}D} \times \frac{|1 - F_{c}|^{2}(1 - |F_{A}|^{2}) + |1 - F_{A}|^{2}(1 - |F_{c}|^{2})}{(1 - F_{c}F_{A})^{2}}$$

$$\mathbf{I}^{\text{II}}(s) = \frac{(\rho_{c} - \rho_{A})^{2}}{2\pi^{2}s^{2}DN} \times \text{Re}\left\{\frac{F_{A}(\mathbf{1} - F_{c})^{2}(\mathbf{1} - (F_{c}F_{A})^{N})}{(\mathbf{1} - F_{c}F_{A})^{2}}\right\}$$

I₁(s) (a.u.)

Tramite il fitting con il profilo sperimentale si ottengono:

- il numero medio di lamelle nella catasta (N)
- spessore medio della lamella (C) e dello strato dell'amorfo (A)
- il Long Period (D)
- il grado di cristallinità in volume Φ =C/D