Automata, Languages and Computation

Chapter 7 : Properties of Context-Free Languages Part II

Master Degree in Computer Engineering University of Padua Lecturer : Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Properties of Context-Free Languages

Automata, Languages and Computation [Chapter 7/II](#page-0-0)

- 1 [Pumping lemma for CFLs : similar to regular languages](#page-3-0)
- 2 [Closure properties for CFL : some of the closure properties of](#page-24-0) [regular languages also hold for CFLs](#page-24-0)
- 3 [Computational properties for CFLs : we can efficiently](#page-43-0) [implement previous transformations for CFGs and PDAs](#page-43-0)
- **Decision problems for CFLs**: we can test emptiness and [membership; equivalence and other problems are undecidable](#page-48-0)

Pumping lemma for CFLs

In each sufficiently long string of a CFL we can find two substrings "next to each other" that

- **•** can be eliminated
- can be iterated (synchronously)

still resulting in strings of the language

This property can be used to prove that some languages are not CFL

Parse trees

Theorem Let G be some CFG in CNF. Let T be a parse tree for a string $w \in L(G)$. If the longest path in T has n arcs, then $|w| \leqslant 2^{n-1}$

Proof By induction on $n \ge 1$

Base $n = 1$. T has one leaf and one inner node (root), and represents a derivation $S\Rightarrow$ a. We have $|w|=1\leqslant 2^{n-1}=2^0=1$

Parse trees

Induction $n > 1$. T's root uses a production $S \rightarrow AB$, and we can write $S \Rightarrow AB \stackrel{*}{\Rightarrow} w = uv$, where $A \stackrel{*}{\Rightarrow} u$ and $B \stackrel{*}{\Rightarrow} v$

We are using factorization here

No path under the subtree rooted at A or B can have length greater than $n - 1$. By the inductive hypothesis we have $|u| \leqslant 2^{n-2}$ and $|v| \leqslant 2^{n-2}$

We can conclude that $|w| = |u| + |v| \leqslant 2^{n - 2} + 2^{n - 2} = 2^{n - 1}$ $\hfill \Box$

Pumping lemma for CFLs

Theorem Let L be some CFL. There exists a constant n such that, if $z \in L$ and $|z| \ge n$, we can factorize $z = u$ wwxy under the following conditions :

- \bullet |vwx| $\leq n$
- \bullet vx \neq ϵ
- $uv^iwx^iy \in L$, for each $i \geqslant 0$

Pumping lemma for CFLs

Proof Let G be some CFG in CNF such that $L(G) = L \setminus \{e\}$. Let m be the number of variables of G. We choose $n = 2^m$

Let $z \in L$ such that $|z| \ge n$

From a previous theorem, the parse tree for z must have some path of length greater than m , otherwise we would get $|z| \leqslant 2^{m-1} = n/2$

Pumping lemma for CFLs

Consider all occurrences of variables in a path of length $k + 1$, where $k \geq m$

Pumping lemma for CFLs

Since G has only m variables, at least one variable occurs more than once in the path. Let us assume $A_i=A_j,$ where $k - m \leqslant i < j \leqslant k$, that is, we choose A_i in the lower part of the path

Pumping lemma for CFLs

We can then edit the parse tree in (a) in such a way that

- its yield becomes uv^0wx^0y , as shown in (b)
- its yield becomes uv^2wx^2y , as shown in (c)

Pumping lemma for CFLs

In the general case, we can edit the parse tree in (a) in such a way that its yield becomes $u {\sf v}^i {\sf w} {\sf x}^i {\sf y}$, for any $i \geqslant 0$

Since the longest path in the subtree rooted at A_i has length no longer than $m + 1$, a previous theorem allows us to assert that $|vwx| \leq 2^m = n$ $m = n$

Example

Consider $L = \{0^i 1^i 2^i \mid i \geq 1\}$, and let *n* be the pumping lemma constant associated with L. We choose $z = 0^n 1^n 2^n$

For any factorization of z into uvwxy, with $|vwx| \leq n$ and v and x not both empty, we have that vwx cannot contain both 0 and 2, because the rightmost 0 and the leftmost 2 are $n + 1$ places away one from the other

We therefore have the following cases:

- vwx does not contain 2; then vx has only 0 and 1; then uwy . which should be in L, has n occurrences of 2 but less than n occurrences of 0 or 1
- \bullet vwx does not contain 0; a similar reasoning as in the first case applies

Consequences of the pumping lemma

A CFL cannot **count** in more than two sequences

Example:
$$
L = \{0^i 1^i 2^i | i \ge 1\}
$$

See previous slide

Try also to recognize L with a PDA

Consequences of the pumping lemma

A CFL cannot generate **crossing pairs**

Example :
$$
L = \{0^i 1^j 2^i 3^j \mid i, j \ge 1\}
$$

Given *n*, we choose $z = 0^n 1^n 2^n 3^n$. Then vwx covers occurrences of at most two alphabet symbols. In all possible factorizations, the strings generated by iteration do not belong to L

Consequences of the pumping lemma

A CFL cannot generate string copies

Example: $L = \{ww \mid w \in \{0, 1\}^*\}$

Given *n*, we choose $z = 0^n 1^n 0^n 1^n$. In all possible factorizations, the strings generated by iteration do not belong to L

Exercise

Using the pumping lemma, prove that the language

$$
L = \{a^i b^j c^k \mid i, j \ge 0, k = \max\{i, j\}\}
$$

is not context-free

Exercise

Solution Let us assume that L is a CFL; we will establish a contradiction. Let n be the pumping lemma constant associated with L

We choose $z = a^n b^n c^n \in L$ and analyze all possible factorizations $z = uvwxy$ with $|vwx| \leq n$ and $vx \neq \epsilon$, looking for a factorization that satisfies the pumping lemma

Exercise

$$
z = \underbrace{a \cdot \cdots \cdot a}_{a \text{ block}} \underbrace{b \cdot \cdots \cdot b}_{c \text{ block}} \underbrace{c \cdot \cdots \cdot c}_{c \text{ block}}
$$

We distinguish the following cases

- vwx is placed into the a block or into the b block
- vwx is placed into the c block
- vwx is placed across the a and b blocks, or else across the b and c blocks
	- \vee or \times contain both a and b, or both b and c
	- ν is placed into the a block and x is placed into the b block
	- ν is placed into the b block and x is placed into the c block

Exercise

vwx is placed into the a block : consider the new string uv^kwx^ky with $k > 1$, which must belong to L

 $\#$ _a (the number of a's) increases (> n), since vx \neq ϵ , while $\#$ _c remains unchanged (= n) and equal to $\#_b$, that is, the minimum between $\#_a$ and $\#_b$

We therefore conclude that uv^k w $\mathit{x}^k\mathit{y} \notin L$ for $k > 1$

A similar reasoning applies to the case where vwx is placed into the b block

Exercise

vwx is placed into the c block : consider the new string uv^kwx^ky with $k = 0$, which must belong to L

 $\#_{\epsilon}$ decreases $(< n)$, since $vx \neq \epsilon$, and is no longer equal to the maximum between $\#_a$ and $\#_b$, which is *n*, since the *a* block and the b block both remain unchanged

We therefore conclude that uv^k w $\mathit{x}^k\mathit{y} \notin L$ for $k = 0$

Exercise

vwx is placed across the a and b blocks or else across the b and c blocks

- v or x include both a and b : choosing $k = 2$, we break the structure $a^*b^*c^*$ and the new string doesn't belong to L
- v or x include both b and c : we use the same argument of the previous point
- ν is placed into the a block and x is placed into the b block : choosing $k = 2$, increases $\#_a$ and/or $\#_b$ (> n), while $\#_c$ remains unchanged $(= n)$ and therefore will not be equal to the maximum required; therefore the new string does not belong to L

Exercise

vwx is placed across the a and b blocks or else across the b and c blocks (continued)

- \bullet v is placed into the b block and x is placed into the c block
	- if $x \neq \epsilon$ we choose $k = 0$; $\#$ _c becomes smaller (and so does $\#_b$ if $v \neq \epsilon$) but $\#_a$ does not change, and provides the maximum value; therefore $uv^kwx^ky \notin L$ for $k=0$
	- if $x = \epsilon$ we choose $k > 1$ so that $\#_b$ gets larger than $\#_a$, and $\#_{\mathsf{c}}$ does not change; therefore $\mathsf{uv}^k \mathsf{wx}^k \mathsf{y} \notin \mathsf{L}$ for some appropriate $k > 1$

Exercise

In none of the possible cases we have been able to satisfy the pumping lemma: we have established a **contradiction**

We then conclude that language L is not CFL

Substitution

Assume two (finite) alphabets Σ and Δ , and a function

$$
s:\Sigma\to 2^{\Delta^*}
$$

Let $w \in \Sigma^*$, with $w = a_1 a_2 \cdots a_n$, $a_i \in \Sigma$. We define

$$
s(w) = s(a_1).s(a_2). \cdots .s(a_n)
$$

and, for $L \subseteq \Sigma^*$, we define

$$
s(L) = \bigcup_{w \in L} s(w)
$$

Function s is called a substitution

Example

Let
$$
s(0) = \{a^n b^n \mid n \ge 1\}
$$
 and $s(1) = \{aa, bb\}$

Then $s(01)$ is a language whose strings have the form $a^n b^n a a$ or $a^n b^{n+2}$, with $n \geq 1$

Let $L = L(0^*)$. Then $s(L)$ is a language whose strings have the form

$$
a^{n_1}b^{n_1}a^{n_2}b^{n_2}\cdots a^{n_k}b^{n_k},
$$

with $k \geq 0$ and with n_1, n_2, \ldots, n_k positive integers

Substitution

Next theorem is used later to prove several closure properties for CFL in a unified way and through very simple proofs

Theorem Let L be a CFL defined over Σ and let s be a substitution defined on Σ such that, for each $a \in \Sigma$, $s(a)$ is a CFL. Then $s(L)$ is a CFL

Proof Let $G = (V, \Sigma, P, S)$ be a CFG generating L and, for each $a \in \Sigma$, let $G_a = (V_a, T_a, P_a, S_a)$ be a CFG generating $s(a)$

Substitution

We construct a CFG $G' = (V', T', P', S)$ with

$$
V' = (\bigcup_{a \in \Sigma} V_a) \cup V
$$

$$
T' = \bigcup_{a \in \Sigma} T_a
$$

$$
P' = (\bigcup_{a \in \Sigma} P_a) \cup P_R
$$

where P_R is obtained from P by replacing each occurrence of a in any right-hand side with symbol S_a

Substitution

We prove $L(G') = s(L)$ (Part \supseteq) Let $w \in s(L)$. Then there exists a string $x \in L$ such that $x = a_1 a_2 \cdots a_n$

Furthermore, there exist strings $x_i \in s(a_i)$, such that $W = X_1X_2 \cdots X_n$

Substitution

The associated parse tree for G' must have the form

We can then generate $S_{a_1}S_{a_2}\cdots S_{a_n}$ in $G',$ and then generate $x_1x_2\cdots x_n=w$. Therefore $w\in L(G')$

Substitution

 $(\mathsf{Part} \subseteq)$ Let $w \in L(G')$. Then the parse tree for w must have the form

Substitution

We can remove the subtrees at the bottom, and get a parse tree with yield

$$
S_{a_1}S_{a_2}\cdots S_{a_n}
$$

corresponding to a string $a_1 a_2 \cdots a_n \in L(G)$

We must also have $w \in s(a_1a_2 \cdots a_n)$, and thus $w \in s(L)$

Applications of the substitution theorem

Theorem The CFLs are closed under the following operations

- union
- **e** concatenation
- Kleene closure $(*)$ and positive closure $(+)$
- homomorphism

Proof For each of the operators above, we define a specific substitution and we apply the previous theorem

Union : Given two CFLs L_1 and L_2 , consider the CFL $L = \{1, 2\}$. and define $s(1) = L_1$, $s(2) = L_2$. We have $L_1 \cup L_2 = s(L)$, which still is a CFL

Applications of the substitution theorem

Concatenation : Given two CFLs L_1 and L_2 , consider the CFL $L = \{1.2\}$ and define $s(1) = L_1$, $s(2) = L_2$. We thus have $L_1.L_2 = s(L)$, which still is a CFL

* and + closures : Given a CFL L_1 , consider the CFL $L = \{1\}^*$ and define $s(1) = L_1$. We have $L_1^* = s(L)$, which still is a CFL. A similar argument holds for $+$

Homomorphism : Assume a CFL L and a homomorphism h, both over Σ. We define $s(a) = \{h(a)\}\$ for each $a \in \Sigma$. We then have $h(L) = s(L)$, which still is a CFL

Closure under string reverse

Theorem If L is a CFL, then so is L^R

Proof Assume L is generated by a CFG $G = (V, T, P, S)$. We build $\mathsf{G}^{\mathsf{R}} = (\mathsf{V},\mathsf{T},\mathsf{P}^{\mathsf{R}},\mathsf{S}),$ where

$$
P^R = \{A \to \alpha^R \mid (A \to \alpha) \in P\}
$$

Using induction on derivation length in G and in G^R , we can show that $(L(G))^R = L(G^R)$ (omitted) $\hfill \square$

CFL & intersection

 $L_1 = \{0^n1^n2^i \mid n \geq 1, i \geq 1\}$ is a CFL, generated by the CFG

 $S \rightarrow AB$ $A \rightarrow 0A1$ | 01 $B \rightarrow 2B \mid 2$

 $L_2 = \{0^i1^n2^n \mid n \ge 1, i \ge 1\}$ is a CFL, generated by the CFG

 $S \rightarrow AB$ $A \rightarrow 0A \mid 0$ $B \rightarrow 1B2$ | 12

 $L_1 \cap L_2 = \{0^n 1^n 2^n \mid n \geq 1\}$ which is not a CFL

This was proved in a previous example

Intersection between CFL and regular language

Theorem Let L be some CFL and let R be some regular language. Then $L \cap R$ is a CFL

Proof Let L be accepted by the PDA

$$
P=(Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)
$$

by final state, and let R be accepted by the DFA

$$
A=(Q_A,\Sigma,\delta_A,q_A,F_A)
$$

Intersection between CFL and regular language

We construct a PDA for $L \cap R$ based on the following idea

Intersection between CFL and regular language

We define

$$
P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A)
$$

where $(a \in \Sigma \cup \{\epsilon\})$

$$
\delta((q,p),a,X)=\{((r,s),\gamma)\,\mid\, (r,\gamma)\in\delta_P(q,a,X), s=\hat{\delta}_A(p,a)\}
$$

We can show (omitted) by induction on the number of steps in the computation $\stackrel{*}{\vdash}$ that

$$
(q_P, w, Z_0) \underset{P}{\overset{*}{\vphantom{\Big|}}\models} (q, \epsilon, \gamma)
$$

if and only if

$$
((q_P, q_A), w, Z_0) \underset{P'}{\models} ((q, p), \epsilon, \gamma), \text{ with } p = \hat{\delta}(q_A, w)
$$

Intersection between CFL and regular language

 (q, p) is an accepting state of P' if and only if

- \bullet q is an accepting state of P
- \bullet p is an accepting state of A

Therefore P' accepts w if and only if both P and A accept w, that is, $w \in L \cap R$

Other properties for CFLs

Theorem Let L, L_1, L_2 be CFLs and let R be a regular language. Then

- \bullet L \setminus R is a CFL
- \overline{L} may fall outside of CFLs
- $L_1 \setminus L_2$ may fall outside of CFLs

Proof

Operator \setminus with REG : \overline{R} is regular, $L \cap \overline{R}$ is CFL, and $L \cap \overline{R} = L \setminus R$

Other properties for CFLs

Complement operator : If \overline{L} would always be a CFL, then we have that

$$
L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}
$$

would always be CFL, which is a contradiction

Operator \setminus with CFL : Σ^* is a CFL. If $L_1 \setminus L_2$ would always be a CFL, then $\Sigma^* \setminus L = \overline{L}$ would always be a CFL, which is a contradiction

Test

Assert whether the following statements hold, and motivate your answer

- the intersection of a non-CFL L_1 and a CFL L_2 can be a non-CFL
- the intersection of a non-CFL and a finite language is always a CFL

Computational properties for CFLs

We investigate the **computational complexity** for some of the transformations previously presented

We need these results to establish the efficiency of some decision problems which we will consider later

We denote with n the **length** of the entire representation of a PDA or a CFG (for more detailed results, we should instead distinguish between number of variables, number of stack symbols, etc.)

Computational properties for CFLs

The following conversions can be computed in time $\mathcal{O}(n)$

- conversion from PDA accepting by final state to PDA accepting by empty stack
- conversion from PDA accepting by empty stack to PDA accepting by final state
- **e** conversion from CFG to PDA

Given a PDA of size n we can build an equivalent CFG in time (and space) $\mathcal{O}(n^3)$, using a preliminary binarization of the transitions of the autmaton

The construction of Chapter 6 (which we have not presented) requires exponential time

Conversion to CNF

We can compute in time $\mathcal{O}(n)$

- the set of reachable symbols $r(G)$
- the set of generating symbols $g(G)$
- the elimination of useless symbols from a CFG

Conversion to CNF

We can compute in time $\mathcal{O}(n)$ the set of nullable symbols $n(G)$

We can compute in time $\mathcal{O}(n)$ the elimination of ϵ -productions from a CFG, using a **preliminary binarization** of the grammar

We can compute in time $\mathcal{O}(n^2)$ the set of unary symbols $u(G)$ and the elimination of unary productions from a CFG

Conversion to CNF

We can compute in time $\mathcal{O}(n)$ the replacement of terminal symbols with variables (first transformation for CNF)

We can compute in time $\mathcal{O}(n)$ the reduction of production with right-hand side length larger than 2 (second transformation for CNF)

Given a CFG of size n, we can construct an equivalent CFG in CNF in time (and space) $\mathcal{O}(n^2)$

Emptiness test

Let G be some CFG with start symbol $S. L(G)$ is empty if and only if S is not generating

We can then test emptiness for $L(G)$ using the already mentioned algorithm for the computation of $g(G)$, running in time $\mathcal{O}(n)$

CFL membership

The **membership problem** for a CFL string is defined as follows

Given as input a string w, we want to decide whether $w \in L(G)$, where G is some fixed CFG

Note G does not depend on w and is **not** considered part of the input for our problem. Therefore the length of G does not affect the running time of the problem

CFL membership

Assume G in CNF and $|w| = n$. Since the parse trees for w are binary, the number of internal nodes for each tree is $2n - 1$ (proof by induction)

We can therefore generate all the parse trees of G with $2n - 1$ nodes and test whether some tree yields w

There are more efficient algorithms that take advantage of dynamic programming techniques

CFL membership

Let $w = a_1 a_2 \cdots a_n$. We construct a triangular **parse table** where cell X_{ii} is set valued and contains all variables A such that

$$
A \underset{G}{\overset{*}{\Rightarrow}} a_i a_{i+1} \cdots a_j
$$

$$
X_{15}
$$
\n
$$
X_{14} \quad X_{25}
$$
\n
$$
X_{13} \quad X_{24} \quad X_{35}
$$
\n
$$
X_{12} \quad X_{23} \quad X_{34} \quad X_{45}
$$
\n
$$
X_{11} \quad X_{22} \quad X_{33} \quad X_{44} \quad X_{55}
$$
\n
$$
a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5
$$

CFL membership

We **iteratively** construct the parse table, one row at a time and from bottom to top

First row is populated with the base case, while remaining rows are populated by the inductive case

1dea :	$A \stackrel{*}{\Rightarrow} a_i a_{i+1} \cdots a_j$ if and only if
• for some production $A \rightarrow BC$	
• for some integer k with $i \leq k < j$	
we have $B \stackrel{*}{\Rightarrow} a_i a_{i+1} \cdots a_k$ and $C \stackrel{*}{\Rightarrow} a_{k+1} a_{k+2} \cdots a_j$	

CFL membership

Base
$$
X_{ii} \leftarrow \{A \mid (A \rightarrow a_i) \in P\}
$$

Induction We build X_{ii} for increasing values of $j - i \geq 1$

- $X_{ii} \leftarrow X_{ii} \cup \{A\}$ if and only if there exist k, B, C such that $\bullet i \leq k < i$
	- \bullet $(A \rightarrow BC) \in P$
	- $B \in X_{ik}$ and $C \in X_{k+1,i}$

CFL membership

In the inductive case, to populate X_{ij} we need to check at most n pairs of previously built cells of the parse table

$$
(X_{ii}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}), \ldots, (X_{i,j-1}, X_{jj})
$$

The operation above is related to vector convolution

CFL membership

We assume we can compute each check $B \in X_{ik}$ in time $\mathcal{O}(1)$. Then each set X_{ii} can be populated in time $\mathcal{O}(n)$

We need to populate $\mathcal{O}(n^2)$ sets X_{ij}

We summarize all of the previous observations by means of the following statement

Theorem The algorithm for the construction of the parse table computes all of the sets X_{ij} in time $\mathcal{O}(n^3).$ We then have $w \in L(G)$ if and only if $S \in X_{1n}$

Example

Summary of decision problem for CFLs

We have presented **efficient** algorithms for the solution of the following decision problems for CFLs

- **•** given a CFG G, test whether $L(G) \neq \emptyset$
- **•** given a string w, test whether $w \in L(G)$ for a fixed CFG G

Undecidable decision problem for CFLs

In the next chapters we will develop a mathematical theory to prove the existence of decision problems that **no algorithm can solve**

Let us now anticipate some of these problems, concerning CFLs

- \bullet given a CFG G, test whether G is ambiguous
- \bullet given a representation for a CFL L, test whether L is inherently ambiguous
- **•** given a representation for two CFLs L_1 and L_2 , test whether the intersection $L_1 \cap L_2$ is empty
- **•** given a representation for two CFLs L_1 and L_2 , test whether $L_1 = L_2$
- \bullet given a representation for a CFL L defined over Σ , test whether $L = \Sigma^*$