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1 Pumping lemma for CFLs : similar to regular languages

2 Closure properties for CFL : some of the closure properties of
regular languages also hold for CFLs

3 Computational properties for CFLs : we can efficiently
implement previous transformations for CFGs and PDAs

4 Decision problems for CFLs : we can test emptiness and
membership; equivalence and other problems are undecidable
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Pumping lemma for CFLs

In each sufficiently long string of a CFL we can find two substrings
“next to each other” that

can be eliminated

can be iterated (synchronously)

still resulting in strings of the language

This property can be used to prove that some languages are
not CFL
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Parse trees

Theorem Let G be some CFG in CNF. Let T be a parse tree for a
string w P LpG q. If the longest path in T has n arcs, then
|w | ď 2n´1

Proof By induction on n ě 1

Base n “ 1. T has one leaf and one inner node (root), and
represents a derivation S ñ a. We have |w | “ 1 ď 2n´1 “ 20 “ 1
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Parse trees

Induction n ą 1. T ’s root uses a production S Ñ AB, and we

can write S ñ AB
˚
ñ w “ uv , where A

˚
ñ u and B

˚
ñ v

We are using factorization here

No path under the subtree rooted at A or B can have length
greater than n ´ 1. By the inductive hypothesis we have
|u| ď 2n´2 and |v | ď 2n´2

We can conclude that |w | “ |u| ` |v | ď 2n´2 ` 2n´2 “ 2n´1 l
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Pumping lemma for CFLs

Theorem Let L be some CFL. There exists a constant n such
that, if z P L and |z | ě n, we can factorize z “ uvwxy under the
following conditions :

|vwx | ď n
vx ‰ ϵ
uv iwx iy P L, for each i ě 0

S

A =A

A

u v w x y

z

j

i j
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Pumping lemma for CFLs

Proof Let G be some CFG in CNF such that LpG q “ L∖ tϵu. Let
m be the number of variables of G . We choose n “ 2m

Let z P L such that |z | ě n

From a previous theorem, the parse tree for z must have some path
of length greater than m, otherwise we would get |z | ď 2m´1 “ n{2
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Pumping lemma for CFLs

Consider all occurrences of variables in a path of length k ` 1,
where k ě m

A

A

A

A

a

k

0

1

2

.

.

.
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Pumping lemma for CFLs

Since G has only m variables, at least one variable occurs more
than once in the path. Let us assume Ai “ Aj , where
k ´ m ď i ă j ď k, that is, we choose Ai in the lower part of the
path

S

A =A

A

u v w x y

z

j

i j
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Pumping lemma for CFLs

We can then edit the parse tree in (a) in such a way that

its yield becomes uv0wx0y , as shown in (b)

its yield becomes uv2wx2y , as shown in (c)

(a)

(b)

(c)

u v x y

u y

u v

v x

x y

w

w

w

S

S

S

A

A

A

A

A

A
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Pumping lemma for CFLs

In the general case, we can edit the parse tree in (a) in such a way
that its yield becomes uv iwx iy , for any i ě 0

Since the longest path in the subtree rooted at Ai has length no
longer than m ` 1, a previous theorem allows us to assert that
|vwx | ď 2m “ n l
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Example

Consider L “ t0i1i2i | i ě 1u, and let n be the pumping lemma
constant associated with L. We choose z “ 0n1n2n

For any factorization of z into uvwxy , with |vwx | ď n and v and x
not both empty, we have that vwx cannot contain both 0 and 2,
because the rightmost 0 and the leftmost 2 are n ` 1 places away
one from the other

We therefore have the following cases:

vwx does not contain 2; then vx has only 0 and 1; then uwy ,
which should be in L, has n occurrences of 2 but less than n
occurrences of 0 or 1

vwx does not contain 0; a similar reasoning as in the first case
applies
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Consequences of the pumping lemma

A CFL cannot count in more than two sequences

Example : L “ t0i1i2i | i ě 1u

See previous slide

Try also to recognize L with a PDA
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Consequences of the pumping lemma

A CFL cannot generate crossing pairs

Example : L “ t0i1j2i3j | i , j ě 1u

Given n, we choose z “ 0n1n2n3n. Then vwx covers occurrences
of at most two alphabet symbols. In all possible factorizations, the
strings generated by iteration do not belong to L

Automata, Languages and Computation Chapter 7/II



Pumping lemma for CFLs
Closure properties for CFL

Computational properties for CFLs
Decision problems for CFLs

Consequences of the pumping lemma

A CFL cannot generate string copies

Example : L “ tww | w P t0, 1u˚u

Given n, we choose z “ 0n1n0n1n. In all possible factorizations,
the strings generated by iteration do not belong to L
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Exercise

Using the pumping lemma, prove that the language

L “ taibjck | i , j ě 0, k “ maxti , juu

is not context-free
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Exercise

Solution Let us assume that L is a CFL; we will establish a
contradiction. Let n be the pumping lemma constant associated
with L

We choose z “ anbncn P L and analyze all possible factorizations
z “ uvwxy with |vwx | ď n and vx ‰ ϵ, looking for a factorization
that satisfies the pumping lemma
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Exercise

z “ a ¨ ¨ ¨ ¨ ¨ ¨ a
looomooon

a block

b ¨ ¨ ¨ ¨ ¨ ¨ b
loooomoooon

b block

c ¨ ¨ ¨ ¨ ¨ ¨ c
loooomoooon

c block

We distinguish the following cases

vwx is placed into the a block or into the b block

vwx is placed into the c block

vwx is placed across the a and b blocks, or else across the b
and c blocks

v or x contain both a and b, or both b and c
v is placed into the a block and x is placed into the b block
v is placed into the b block and x is placed into the c block
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Exercise

vwx is placed into the a block : consider the new string uvkwxky
with k ą 1, which must belong to L

#a (the number of a’s) increases (ą n), since vx ‰ ϵ, while #c

remains unchanged (“ n) and equal to #b, that is, the minimum
between #a and #b

We therefore conclude that uvkwxky R L for k ą 1

A similar reasoning applies to the case where vwx is placed into
the b block
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Exercise

vwx is placed into the c block : consider the new string uvkwxky
with k “ 0, which must belong to L

#c decreases (ă n), since vx ‰ ϵ, and is no longer equal to the
maximum between #a and #b, which is n, since the a block and
the b block both remain unchanged

We therefore conclude that uvkwxky R L for k “ 0
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Exercise

vwx is placed across the a and b blocks or else across the b and c
blocks

v or x include both a and b : choosing k “ 2, we break the
structure a˚b˚c˚ and the new string doesn’t belong to L

v or x include both b and c : we use the same argument of
the previous point

v is placed into the a block and x is placed into the b block :
choosing k “ 2, increases #a and/or #b (ą n), while #c

remains unchanged (“ n) and therefore will not be equal to
the maximum required; therefore the new string does not
belong to L

Automata, Languages and Computation Chapter 7/II



Pumping lemma for CFLs
Closure properties for CFL

Computational properties for CFLs
Decision problems for CFLs

Exercise

vwx is placed across the a and b blocks or else across the b and c
blocks (continued)

v is placed into the b block and x is placed into the c block

if x ‰ ϵ we choose k “ 0; #c becomes smaller (and so does
#b if v ‰ ϵ) but #a does not change, and provides the
maximum value; therefore uvkwxky R L for k “ 0
if x “ ϵ we choose k ą 1 so that #b gets larger than #a, and
#c does not change; therefore uvkwxky R L for some
appropriate k ą 1
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Exercise

In none of the possible cases we have been able to satisfy the
pumping lemma: we have established a contradiction

We then conclude that language L is not CFL

Automata, Languages and Computation Chapter 7/II



Pumping lemma for CFLs
Closure properties for CFL

Computational properties for CFLs
Decision problems for CFLs

Substitution

Assume two (finite) alphabets Σ and ∆, and a function

s : Σ Ñ 2∆
˚

Let w P Σ˚, with w “ a1a2 ¨ ¨ ¨ an, ai P Σ. We define

spwq “ spa1q.spa2q. ¨ ¨ ¨ .spanq

and, for L Ď Σ˚, we define

spLq “
ď

wPL

spwq

Function s is called a substitution
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Example

Let sp0q “ tanbn | n ě 1u and sp1q “ taa, bbu

Then sp01q is a language whose strings have the form anbnaa or
anbn`2, with n ě 1

Let L “ Lp0˚q. Then spLq is a language whose strings have the
form

an1bn1an2bn2 ¨ ¨ ¨ ankbnk ,

with k ě 0 and with n1, n2, . . . , nk positive integers
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Substitution

Next theorem is used later to prove several closure properties for CFL in a

unified way and through very simple proofs

Theorem Let L be a CFL defined over Σ and let s be a
substitution defined on Σ such that, for each a P Σ, spaq is a CFL.
Then spLq is a CFL

Proof Let G “ pV ,Σ,P, Sq be a CFG generating L and, for each
a P Σ, let Ga “ pVa,Ta,Pa,Saq be a CFG generating spaq
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Substitution

We construct a CFG G 1 “ pV 1,T 1,P 1, Sq with

V 1 “ p
ď

aPΣ

Vaq Y V

T 1 “
ď

aPΣ

Ta

P 1 “ p
ď

aPΣ

Paq Y PR

where PR is obtained from P by replacing each occurrence of a in
any right-hand side with symbol Sa
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Substitution

We prove LpG 1q “ spLq

(Part Ě) Let w P spLq. Then there exists a string x P L such that

x “ a1a2 ¨ ¨ ¨ an

Furthermore, there exist strings xi P spai q, such that
w “ x1x2 ¨ ¨ ¨ xn
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Substitution

The associated parse tree for G 1 must have the form

S

S S

x x xn

Sa a a1 2 n

1 2

We can then generate Sa1Sa2 ¨ ¨ ¨ San in G 1, and then generate
x1x2 ¨ ¨ ¨ xn “ w . Therefore w P LpG 1q
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Substitution

(Part Ď) Let w P LpG 1q. Then the parse tree for w must have
the form

S

S S

x x xn

Sa a a1 2 n

1 2
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Substitution

We can remove the subtrees at the bottom, and get a parse tree
with yield

Sa1Sa2 ¨ ¨ ¨ San

corresponding to a string a1a2 ¨ ¨ ¨ an P LpG q

We must also have w P spa1a2 ¨ ¨ ¨ anq, and thus w P spLq l
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Applications of the substitution theorem

Theorem The CFLs are closed under the following operations

union

concatenation

Kleene closure (˚) and positive closure (`)

homomorphism

Proof For each of the operators above, we define a specific
substitution and we apply the previous theorem

Union : Given two CFLs L1 and L2, consider the CFL L “ t1, 2u.
and define sp1q “ L1, sp2q “ L2. We have L1 Y L2 “ spLq, which
still is a CFL
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Applications of the substitution theorem

Concatenation : Given two CFLs L1 and L2, consider the CFL
L “ t1.2u and define sp1q “ L1, sp2q “ L2. We thus have
L1.L2 “ spLq, which still is a CFL

˚ and ` closures : Given a CFL L1, consider the CFL L “ t1u˚

and define sp1q “ L1. We have L˚
1 “ spLq, which still is a CFL. A

similar argument holds for `

Homomorphism : Assume a CFL L and a homomorphism h, both
over Σ. We define spaq “ thpaqu for each a P Σ. We then have
hpLq “ spLq, which still is a CFL l
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Closure under string reverse

Theorem If L is a CFL, then so is LR

Proof Assume L is generated by a CFG G “ pV ,T ,P,Sq. We
build GR “ pV ,T ,PR ,Sq, where

PR “ tA Ñ αR | pA Ñ αq P Pu

Using induction on derivation length in G and in GR , we can show
that pLpG qqR “ LpGRq (omitted) l
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CFL & intersection

L1 “ t0n1n2i | n ě 1, i ě 1u is a CFL, generated by the CFG

S Ñ AB

A Ñ 0A1 | 01

B Ñ 2B | 2

L2 “ t0i1n2n | n ě 1, i ě 1u is a CFL, generated by the CFG

S Ñ AB

A Ñ 0A | 0

B Ñ 1B2 | 12

L1 X L2 “ t0n1n2n | n ě 1u which is not a CFL

This was proved in a previous example
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Intersection between CFL and regular language

Theorem Let L be some CFL and let R be some regular language.
Then L X R is a CFL

Proof Let L be accepted by the PDA

P “ pQP ,Σ, Γ, δP , qP ,Z0,FPq

by final state, and let R be accepted by the DFA

A “ pQA,Σ, δA, qA,FAq
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Intersection between CFL and regular language

We construct a PDA for L X R based on the following idea

Accept/
reject

Stack

AND

PDA

state
FA

state

Input
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Intersection between CFL and regular language

We define

P 1 “ pQP ˆ QA,Σ, Γ, δ, pqP , qAq,Z0,FP ˆ FAq

where (a P Σ Y tϵu)

δppq, pq, a,X q “ tppr , sq, γq | pr , γq P δPpq, a,X q, s “ δ̂App, aqu

We can show (omitted) by induction on the number of steps in the

computation
˚

$ that

pqP ,w ,Z0q
˚

$
P

pq, ϵ, γq

if and only if

ppqP , qAq,w ,Z0q
˚

$
P 1

ppq, pq, ϵ, γq , with p “ δ̂pqA,wq
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Intersection between CFL and regular language

pq, pq is an accepting state of P 1 if and only if

q is an accepting state of P

p is an accepting state of A

Therefore P 1 accepts w if and only if both P and A accept w , that
is, w P L X R l

Automata, Languages and Computation Chapter 7/II



Pumping lemma for CFLs
Closure properties for CFL

Computational properties for CFLs
Decision problems for CFLs

Other properties for CFLs

Theorem Let L, L1, L2 be CFLs and let R be a regular language.
Then

L∖ R is a CFL

L may fall outside of CFLs

L1 ∖ L2 may fall outside of CFLs

Proof
Operator ∖ with REG : R is regular, L X R is CFL, and
L X R “ L∖ R
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Other properties for CFLs

Complement operator : If L would always be a CFL, then we have
that

L1 X L2 “ L1 Y L2

would always be CFL, which is a contradiction

Operator ∖ with CFL : Σ˚ is a CFL. If L1 ∖ L2 would always be a
CFL, then Σ˚ ∖ L “ L would always be a CFL, which is a
contradiction l
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Test

Assert whether the following statements hold, and motivate your
answer

the intersection of a non-CFL L1 and a CFL L2 can be a
non-CFL

the intersection of a non-CFL and a finite language is always
a CFL
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Computational properties for CFLs

We investigate the computational complexity for some of the
transformations previously presented

We need these results to establish the efficiency of some decision
problems which we will consider later

We denote with n the length of the entire representation of a PDA
or a CFG (for more detailed results, we should instead distinguish
between number of variables, number of stack symbols, etc.)
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Computational properties for CFLs

The following conversions can be computed in time Opnq

conversion from PDA accepting by final state to PDA
accepting by empty stack

conversion from PDA accepting by empty stack to PDA
accepting by final state

conversion from CFG to PDA

Given a PDA of size n we can build an equivalent CFG in time
(and space) Opn3q, using a preliminary binarization of the
transitions of the autmaton

The construction of Chapter 6 (which we have not presented) requires

exponential time
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Conversion to CNF

We can compute in time Opnq

the set of reachable symbols rpG q

the set of generating symbols gpG q

the elimination of useless symbols from a CFG
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Conversion to CNF

We can compute in time Opnq the set of nullable symbols npG q

We can compute in time Opnq the elimination of ϵ-productions
from a CFG, using a preliminary binarization of the grammar

We can compute in time Opn2q the set of unary symbols upG q and
the elimination of unary productions from a CFG
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Conversion to CNF

We can compute in time Opnq the replacement of terminal
symbols with variables (first transformation for CNF)

We can compute in time Opnq the reduction of production with
right-hand side length larger than 2 (second transformation for
CNF)

Given a CFG of size n, we can construct an equivalent CFG in CNF
in time (and space) Opn2q
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Emptiness test

Let G be some CFG with start symbol S . LpG q is empty if and
only if S is not generating

We can then test emptiness for LpG q using the already mentioned
algorithm for the computation of gpG q, running in time Opnq
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CFL membership

The membership problem for a CFL string is defined as follows

Given as input a string w , we want to decide whether w P LpG q,
where G is some fixed CFG

Note : G does not depend on w and is not considered part of
the input for our problem. Therefore the length of G does not
affect the running time of the problem

Automata, Languages and Computation Chapter 7/II



Pumping lemma for CFLs
Closure properties for CFL

Computational properties for CFLs
Decision problems for CFLs

CFL membership

Assume G in CNF and |w | “ n. Since the parse trees for w are
binary, the number of internal nodes for each tree is 2n ´ 1 (proof
by induction)

We can therefore generate all the parse trees of G with 2n ´ 1
nodes and test whether some tree yields w

There are more efficient algorithms that take advantage of
dynamic programming techniques
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CFL membership

Let w “ a1a2 ¨ ¨ ¨ an. We construct a triangular parse table where
cell Xij is set valued and contains all variables A such that

A
˚
ñ
G

aiai`1 ¨ ¨ ¨ aj

a a a a a1 2 3 4 5

X X X X X

X X X X

X X X

X X

X

11 22 33 44 55

45342312

13 24 35

14 25

15
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CFL membership

We iteratively construct the parse table, one row at a time and
from bottom to top

First row is populated with the base case, while remaining rows are
populated by the inductive case

Idea : A
˚
ñ
G

aiai`1 ¨ ¨ ¨ aj if and only if

for some production A Ñ BC

for some integer k with i ď k ă j

we have B
˚
ñ
G

aiai`1 ¨ ¨ ¨ ak and C
˚
ñ
G

ak`1ak`2 ¨ ¨ ¨ aj
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CFL membership

Base Xii Ð tA | pA Ñ ai q P Pu

Induction We build Xij for increasing values of j ´ i ě 1

Xij Ð Xij Y tAu if and only if there exist k,B,C such that

i ď k ă j

pA Ñ BC q P P

B P Xik and C P Xk`1,j
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CFL membership

In the inductive case, to populate Xij we need to check at most n
pairs of previously built cells of the parse table

pXii ,Xi`1,jq, pXi ,i`1,Xi`2,jq, . . . , pXi ,j´1,Xjjq

The operation above is related to vector convolution
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CFL membership

We assume we can compute each check B P Xik in time Op1q.
Then each set Xij can be populated in time Opnq

We need to populate Opn2q sets Xij

We summarize all of the previous observations by means of the
following statement

Theorem The algorithm for the construction of the parse table
computes all of the sets Xij in time Opn3q. We then have
w P LpG q if and only if S P X1n
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Example

Let G be a CFG with produc-
tions

S Ñ AB | BC

A Ñ BA | a

B Ñ CC | b

C Ñ AB | a

and let w “ baaba

S,A,C

-

-

B

S,A B

BB

A,C

S,C

A,C

S,A

B A,C

{ }

{

{

S,A,C{

{

{

{

{

{

{

{

{ {

}

}

}

}

}

}

}

}

}

}

} }

b a a b a
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Summary of decision problem for CFLs

We have presented efficient algorithms for the solution of the
following decision problems for CFLs

given a CFG G , test whether LpG q ‰ H

given a string w , test whether w P LpG q for a fixed CFG G
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Undecidable decision problem for CFLs

In the next chapters we will develop a mathematical theory to prove
the existence of decision problems that no algorithm can solve

Let us now anticipate some of these problems, concerning CFLs

given a CFG G , test whether G is ambiguous

given a representation for a CFL L, test whether L is
inherently ambiguous

given a representation for two CFLs L1 and L2, test whether
the intersection L1 X L2 is empty

given a representation for two CFLs L1 and L2, test whether
L1 “ L2

given a representation for a CFL L defined over Σ, test
whether L “ Σ˚
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