
Car Hacking Lab
CPS and IoT Security 2022/23 - University of Padua

Denis Donadel - donadel@math.unipd.it

Today, when you drive a car, there’s nothing that is not mediated by a computer. And at the core
of all this is the Controller Area Network or simply called CAN or sometimes CAN Bus, a central
nervous system of a car responsible for intravehicular communication. This tutorial is going to
be a guide for car hacking as safely as possible on reverse engineering CAN packets.

To practice CAN-Bus exploitation we will be using an ICSim package from Craig Smith. ICSim
includes a dashboard with speedometer, door lock indicators, turn signal indicators and a
control panel. The control panel allows the user to interact with the simulated automobile
network, applying acceleration, brakes, controlling the door locks and turn signals.

Remarks on CAN bus
Controller Area Network aka CAN is the central nervous system that enables communication
between all/some parts of the car. In simple terms, CAN allows various Electronic units in cars to
communicate and share data with each other. The main motive of proposing CAN was that it
allowed multiple ECU to be communicated with only a single wire.

A car can have multiple nodes that are able to send and/or receive messages. This message
consists of essentially an ID, which is a priority of the message and also it can contain CAN
message that can be of eight bytes or less at a time.

If two or more node begins sending messages at the same time, the messages sent with the
dominant ID will overwrite with that of less dominant. This is called priority-based bus
arbitration. Messages with numerically smaller value IDs are a higher priority and are always
transmitted first. This is how a node detects that higher priority messages are being placed on
a bus. For instance, message from Brakes has a higher priority than a message from the audio
player.

Note down that, Lowest ID = Highest Priority.

If two or more node begins sending messages at the same time, the messages sent with the
dominant ID will overwrite with that of less dominant.

CAN bus consists of two different wires. As it is a bus, multiple devices can be connected to
these wires. A CAN frame has 3 major parts:

Arbitration Identifier
Data Length Code
Data field

mailto:donadel@math.unipd.it

Let’s have a look at the CAN data frame:

Part 1: Setting Up the Virtual Lab
You would need:

Any Linux distributions (tested on debian-based distros)
can-utils
ICSim (ICSim is an opensource Instrumentation Cluster Simulator)

Can be downloaded from https://github.com/zombieCraig/ICSim

The best and inexpensive way to practice car hacking is by running an instrumentation cluster
simulator. Thanks to Craig Smith and his open-source repo called ICSim. Using ICSim, it’s pretty
easy to set up and inexpensive to learn CAN-Bus exploitation.

Let’s do the setup.

SDL is a cross-platform development library for computer graphics and audio. Since ISCim
draws and animates a virtual dashboard, this is required. This can be installed via apt-get.

sudo apt install libsdl2-dev libsdl2-image-dev -y

https://github.com/zombieCraig/ICSim

In order for us to send, receive and analyze CAN packets, we need CAN utils. can-utils is a Linux
specific set of utilities that enables Linux to communicate with the CAN network on the vehicle.
The canutils consist of 5 main tools that we use very frequently:

cansniffer for sniffing the packets
cansend for writing a packet
candump dump all received packets
canplayer to replay CAN packets
cangen to generate random CAN packets

can-utils can be installed via apt-get

The you need to download the Instrumentation Cluster Simulator

Instrumentation Cluster Simulator is used to generate the simulated CAN traffic.

This can be downloaded by cloning the project via a git repository.

Preparing the Virtual CAN Network

Once you navigate inside the ICSim directory, there’s a shell script called setup_vcan.sh

The modprobe command here is used to load kernel modules like can and vcan modules. The
last two lines will create a vcan0 interface in order to simulate the car network.

You can run the following commands to set up a virtual can interface

To verify vcan0 interface, ifconfig vcan0 (or ip a show vcan0 in novel Ubuntu versions) will
show

sudo apt install can-utils -y

git clone https://github.com/zombieCraig/ICSim

cd ICSim

./setup_vcan.sh

Furthermore, you need to build the simulator. To do so, from the ICSim folder, run:

Part 2: Running the Simulator
Now it’s time to run the simulator. Running the ICSim simulator at least requires two
components. A dashboard and a controller to simulate the acceleration, brakes, controlling the
doors, turn lights, etc. You would require at least 3 terminal windows/tabs for these to run. We
would require these terminals to run dashboard, controller and another for running can-utils.

Running the dashboard

In order to run the dashboard, you could run a file called icsim with an argument vcan0, the
interface we created earlier.

At this point in time, the dashboard won’t be functioning including speedometer, turn lights,
brakes or doors. It is because there is no traffic on the interface vcn0. In order to simulate traffic
on interface vcan0, we need to start the controller in another terminal window.

Control Panel can be started by

make

./icsim vcan0

./controls vcan0

The vcan0 is the virtual CAN interface through which our ICSim will send and receive CAN
frames. As soon as you start the control panel, you can observe speedometer making some
fluctuations. This is because of the noise simulated by the control panel.

Once the control panel has been started, you can use keyboard keys in order to simulate traffic.

Using the key combinations below, you can make changes in the ICSim Dashboard.

Once you press the up arrow key and left arrow key, this is what you can observe.

Part 3: Exploiting CAN-Bus using Instrument Cluster
Simulator
For this first part, you do not need ICSim, so you can close it and reopen it when requested.

How does a CAN message looks like?

This is how exactly your CAN messages look like when they are captured via can-utils. If I break
down the columns, the first one is the interface, the second one is the arbitration ID, third is the
size of the CAN message, this can’t be more then 8. If you look at the CAN frame, you will
understand better why this can not be more than 8. The fourth is the CAN data itself.

Making sense of CAN message

In this example, this is an 8-byte frame. The message is being sent by an arbitration ID 0x111.
Once the instrument cluster sees this message, this will first make sure, if it was intended for
instrument cluster or not. If it is, then it reads the message which has 0x0BB8, which translated
to 3000 in decimals. Now your instrument cluster moves the needle in the tachometer to 3000.

Once you have the understanding of how CAN message makes sense, we can further inject
fake/modified packets via ODB-II on the CAN bus to spoof tachometer or anything else.

Before we run into the demo of ICSim, let’s look at how other mini utilities of can-utils work. To
do this, let’s first set up the virtual can interface.

You can do it with the usual ./setup_vcan.sh script. If you want more insight on what this script
is doing, have a look at the appendix of this document.

Once the virtual CAN interface is set up, you are now ready to send/receive the CAN packet in
this interface. Let’s now use one of the mini utilities from can-utils called cangen to generate the
dummy CAN packets.

cangen

cangen generates the CAN frames for testing purposes. To use cangen, you need to specify the
interface in which the CAN frame is to be generated.

vcan0 is the virtual CAN interface we recently created.

Since you have already generated CAN frames, there must be a way to look into the frames!
There are many utilities available, one among many available is Wireshark. Launch the Wireshark
after generating the CAN frames. If not installed, you can install Wireshark using apt.

You may see many interfaces available depending on how many interfaces are up, vcan0 is the
interface where your CAN frames are being generated.

Once you click on the interface you wish to look the packets into, this is how the CAN frame
looks like.

Also, there are other utilities inside vcan0 like cansniffer and candump which does more or less
the same stuff Wireshark does. You can use any tools or utility, whichever you feel more
comfortable with.

candump

To dump or log the frames using candump, you can use

cangen vcan0

candump vcan0

This will be the output from the candump.

In one of the terminals, the lower one is generating the CAN packets, whereas the terminal on
the top is running candump. If I have to break down the columns for you, the first one you see is
the CAN interface. The second is the arbitration ID, the third one is the size of CAN message,
and the fourth is the message itself.

candump can also log the can frame for you. If you wish to perform a replay attack, you can
first log the frames and then use mini utility like canplayer to replay the frames. Logging of
CAN frames can be enabled using -l flag.

When you log the CAN frames, a file will be created prefixed by candump followed by the date.
If you wish to see the contents of the dump file, you can always use cat command in Linux to
see the contents.

The frames we captured using candump can be replayed using a utility like canplayer.

canplayer

candump -l vcan0

As the name suggests, the canplayer will replay the can frames. Ideally, this is useful when you
have to do the replay attack. You would first dump/log the CAN frames and then playback the
CAN frame using the canplayer.

Imagine a scenario where you wish to spoof the tachometer, and you have no idea on which
arbitration ID the tachometer reading works, you have no idea what’s in the CAN message. So
ideally you would first dump and log the frames using candump with -l flag, and then use can
player to replay the frames that were logged.

canplayer requires -I option to accept the input file.

canplayer has several other really useful options, you can find out them using man canplayer.

cansniffer

CAN sniffer is used to see the change in CAN traffic. This is very useful to see a change in a
particular byte. cansniffer has an option -c very useful for seeing the byte change in a colorful
way. What this does is, it will compare the earlier byte and the current byte, if there’s a
difference then it is indicated by the change in the color of the byte. This is very useful when
you wish to know if there was a change when you had performed a certain operations in a car.

canplayer -I canfile.log

cansniffer -c vcan0

I find cansniffer very helpful because the cansniffer allows filter by IDs as well. So if you wish to
see the frames only from a particular ID, say 0x011, you can do that as well.

This can be done once you start sniffing, press - and then 000000. This will first clear all the
frames. Now, you can start adding the IDs using + and then the ID you want to display and hit
Enter. This way you can filter the frames of individual IDs.

cansend

cansend is used to send the CAN frames to a specific CAN interface. It’s usage is

We will use all of these utilities with ICSim. Let’s launch the ICSim as you already are able to do,
and sniff the CAN frames.

cansend interface frame

./icsim vcan0

./controls vcan0

If you have followed every step discussed in the earlier post, you should be able to see this.
Also, you can notice that the speedometer needle is moving back and forth, which is expected
behavior because of the noise present.

Sniffing the CAN frames generated by ICSim

We will use cansniffer, a utility provided by can-utils, to sniff the packets. You can open up a
new terminal and start cansniffer by

The -c option is used to highlight the change in bytes of the frame.

You can see very quick changes in the CAN frames, difficult to keep up with the rate at which
communication is happening. In a real car, this communication would happen fast. To keep up
with it, you can use arbitration ID filtering. If you only wish to see the frames from ID 40C , you
can always press - and then 000000 followed by Enter key. This will clear all the IDs from
cansniffer and you can then press + followed by ID to filter out and then press Enter key.

As an example, I have filtered the ID 40C only using the same steps mentioned above.

cansniffer -c vcan0

You can try playing around pressing the Up arrow key to increase the throttle and then notice
how quickly CAN frames are being changed. The change is again indicated by the coloring. You
can always play around with this and see how things are working under the hood.

Task 4: Replay Attack
Making sense of this huge data is going to be a difficult task. Also, finding the arbitration ID in
which you have to inject the frames is an impossible task to do from this big data.

So you would start sniffing the packets, then perform some action like turning on the turn signal
indicators or pushing the throttle, once it is logged, then divide the packets into two halves,
perform the replay attack on the first half and see if it works. If it doesn’t, move on to the other
half. This other half chunk of frames must work. Again this other half is still going to be huge, go
ahead and divide the frames into two halves again, repeat this until you are left out with a single
frame.

Now to perform replay attack with ICSim, you must have already started ICSim, you should be
able to see the frames using cansniffer. Now we will use candump with -l option to log and save
the frames, in the meanwhile we will increase the throttle, press <left> and <right> arrow keys
to turn on the turn signal indicator.

Now we will stop candump and you will see a file as candump-XXXXX.log being created.

Replaying the CAN frames

To replay those packets we will be using canplayer. Since we will be using a file as input for
canplayer, we need -I option to be enabled.

You can see that a replay attack has been performed, the turn signals, speedometer should be
working as you had done earlier.

Creative Packet Analysis

In a real car, CAN bus can be a lot noisier and CAN frames can appear a lot faster, so identifying
the arbitration ID could be a difficult task. So to easily identify arbitration ID, you can follow this
schema:

candump -l vcan0

canplayer -I candump-2019XXXXXX.log

Dividing the CAN frames and performing Replay

If you wanted to divide the CAN frames into two half and perform the replay on each of them,
the best way to do is capture the CAN frames using candump and use wc utility to count the
number of CAN frames, then use split to divide the log into two half equally:

Now, you can use the canplayer to replay these CAN frame independently.

Task 5: Reverse Engineering of CAN packets

Now you should have all the needed information to guess and reverse the meaning of different
packets you saw in the CAN bus.

For this task, the challenge is to identify the arbitration ID for throttle, doors, and turn signals.

To do so, you may follow the graph we saw before and fine-tune a recording up to having one
single packet. Another option could be to play with cansniffer and look for values chaining when
performing specific actions on the controller. You can use filters to help you during the process.

Task 6: Packet Injection

Now that you have reversed some of the packets, you can play as an attacker who has access
to the canbus of a victim's car. You can use cansend to send recordings and manipulate what
the car is doing without using the controller. If you prefer, you can also use cangen.

For this task, try to write a script that makes the vehicle press the throttle to the max without
using the controller. You can do it in a one-line bash script, but if you are more comfortable with
other languages, feel free to use them.

References
CSS Electronics https://www.csselectronics.com
Car Hacking 101: Practical Guide to Exploiting CAN-Bus using Instrument Cluster Simulator
— Part I: Setting Up https://medium.com/@yogeshojha/car-hacking-101-practical-guide-to-
exploiting-can-bus-using-instrument-cluster-simulator-part-i-cd88d3eb4a53
Car Hacking 101: Practical Guide to Exploiting CAN-Bus using Instrument Cluster Simulator
— Part II: Exploitation https://medium.com/@yogeshojha/car-hacking-101-practical-guide-
to-exploiting-can-bus-using-instrument-cluster-simulator-part-ee998570758

Appendix: setup the virtual canbus interface
What follows is what the ./setup_vcan.sh script is doing.

This will load the kernel module for CAN. Also, we need to load the kernel module for virtual can
as well.

If you wish to verify if the required kernel modules are loaded or not, you can use

This will display if CAN and VCAN have been loaded or not.

Let’s now set up the virtual interface

sudo modprobe can

sudo modprobe vcan

lsmod | grep can

sudo ip link add dev vcan0 type vcan

sudo ip link set up vcan0

https://www.csselectronics.com/
https://medium.com/@yogeshojha/car-hacking-101-practical-guide-to-exploiting-can-bus-using-instrument-cluster-simulator-part-i-cd88d3eb4a53
https://medium.com/@yogeshojha/car-hacking-101-practical-guide-to-exploiting-can-bus-using-instrument-cluster-simulator-part-ee998570758

You can verify if virtual CAN interface is set up or not using ifconfig vcan0 (or ip a show
vcan0 in novel Ubuntu versions).

