Master Degree in Computer Engineering

Final Exam for Automata, Languages and Computation

September 16th, 2024

1. [6 points] Consider the DFA A whose transition function is graphically represented below (arcs with double direction represent two arcs in opposite directions)

- (a) Provide the definition of equivalent pair of states for a DFA.
- (b) Apply to A the tabular algorithm for detecting pairs of equivalent states, reporting **all the** intermediate steps.
- (c) Specify the minimal DFA equivalent to A.
- 2. [9 points] Let $\Sigma = \{a, b\}$. Consider the following languages over Σ

$$L_1 = \{a^p b a^q b a^r b \mid p, q, r \ge 1, p = q \text{ and } q = r\};$$

$$L_2 = \{a^p b a^q b a^r b \mid p, q, r \ge 1, p = q \text{ or } q = r\}.$$

- (a) Prove that L_1 is not in CFL.
- (b) Prove that L_2 is not in REG.
- (c) Prove that L_2 belongs to CFL.
- 3. [5 points] With reference to push-down automata (PDA), answer the following questions.
 - (a) Provide the definition of language accepted by final state and language accepted by empty stack.
 - (b) Prove that if P_F is a PDA accepting by final state, then there exists a PDA P_N accepting by empty stack such that $L(P_F) = N(P_N)$.

(please turn to the next page)

- 4. [6 points] Assess whether the following statements are true or false, providing motivations for all of your answers.
 - (a) The class \mathcal{P} of languages that can be recognized in polynomial time by a TM is closed under complementation.
 - (b) The class \mathcal{P} defined as in (a) includes the class REG.
 - (c) Let L_1 be a finite language such that $|L_1| = 1$, that is, L_1 contains only one string. Let also L_2 be a language in CFL\REG. The language $L_1 \cap L_2$ is in CFL\REG.
 - (d) Let L_1 and L_2 be as in (c). The language $L_1 \cup L_2$ is in CFL\REG. Hint: this is more difficult that the previous questions; use a proof by contradiction and known properties of the class REG.
- 5. [7 points] We say that a string w_1 is a proper infix of a string w_2 if there exist strings $u, v \neq \epsilon$ such that $w_2 = uw_1v$. Consider the following property of the RE languages defined over the alphabet $\Sigma = \{0, 1\}$:
 - $\mathcal{P} = \{L \mid L \in \text{RE}, \text{ for no pair of strings } w_1, w_2 \in L \text{ we have that } w_1 \text{ is a proper infix of } w_2\}.$

Define $L_{\mathcal{P}} = \{ \mathsf{enc}(M) \mid L(M) \in \mathcal{P} \}.$

- (a) Provide an example of a finite language $L \in \mathcal{P}$.
- (b) Provide an example of an infinite language $L \in \mathcal{P}$.
- (c) Use Rice's theorem to show that $L_{\mathcal{P}}$ is not in REC.
- (d) Prove that $L_{\mathcal{P}}$ is not in RE.