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@ Context-free grammars : we consider devices defining structures
more complex than regular languages

© Parse trees : tree representation of a derivation

© CFGs and ambiguity : some strings might have more than one
parse tree

@ Relation with regular languages : CFGs can simulate FAs or
regular expressions
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Context-free grammars

Informal example of CFL

Let Loy = {w | we X* w = wR}, also called the language of all
p g
palindrome strings

Example : (ignore case, spaces, and punctuation characters)
"Madam I’m Adam" is a palindrome;
"A man, a plan, a canal, Panama!" is a palindrome
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Context-free grammars

Informal example of CFL

Let ¥ = {0,1} and assume L, is a regular language

Let n be the constant from the pumping lemma. We pick
w =0"10"€ Lpy, w=n

Let w = xyz be such that y # € and |xy| < n

If k=0, xz¢ Lpa : the number 0's to the left of 1 is smaller than
the number of Q’s to its right
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Context-free grammars

Informal example of CFL

We inductively define L,
Base ¢, 0, and 1 are palindrome strings

Induction

If w is a palindrome strings, then Ow0 and 1wl are also
palindrome strings

Nothing else is a palindrome string
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

CFG example

CFGs are a formalism for recursively defining languages such
as Ly, using rewriting rules

P—e
P—0
P—1
P — 0PO
P—1P1

M N

P is a variable representing strings of a language. In this grammar
P is also the initial symbol

Compare variables with recursive functions in programming languages
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Context-free grammars

Definition

A context-free grammar (CFG for short) is a tuple
G=(V,T,PS)

where
e V is a finite set of variables (also called nonterminals)

e T is a finite set of terminal symbols, representing the
language alphabet

@ P is a finite set of productions having the form A — «,
where A (head, or left-hand side) is a variable and « (body or
right-hand side) is a string in (V u T)*

@ S is a variable called initial symbol
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Example

A CFG for palindrome strings is
Gpal = ({P}7 {07 1}7 A7 P)
with

A={P—¢P—0,P—1P—0P0,P—1P1}
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Example

The language of all regular expressions over the alphabet {0, 1}
can be defined by the CFG

Gregex = ({E}, T, P, E)
where T is defined as (e overloaded !)
{d, e 0,1, + % ()}
and P is defined as

{E—>J,E—¢ E—0,E—>1,
E—-EE E—->E+E E—E*E— (E)}

Don't get confused: this defines the syntax of regular expressions, not the

generated language
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Context-free grammars

Example

Consider a simplified form of the arithmetic expressions as used
in most common programming languages

+ and = are arithmetic operators; operands are identifiers
generated by the regular expression

(a+b)(a+b+0+1)"

We use the CFG
G=({E,I},T,P,E)

where
@ variabile E represents arithmetic expressions

@ variabile / represents identifiers
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Example

T is defined as
{+7 *7 (7 )7 a’ b7 07 1}

P contains the following productions

1. E—> | 6. /| > b
2. E>E+E 7.1 —1a
3. ESExE 8. 1—1b
4. E — (E) 9.1—-10
5. | > a 10. 1 - 11

We will later present several examples using this CFG
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Context-free grammars

Compact notation

Usually, productions with a common head are grouped together

Example : Productions A — a1, A — ap, ..., A— «, can be
written in a more compact notation

A-ar|ax | | ap
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Test

Define a CFG for each of the following languages
o L={a"b" | n>1}

o L={a"b" | n=m=>=1}



Context-free grammars

Derivation

In order to generate strings using a CFG, we define a binary
relation = over (V.U T)*, called rewrites

Let G = (V,T,P,S)beaCFG, Ae V, {a,f}c (VU T)* If
A — v € P then
aAf = ayp

and we say that aAS derives in one step avy(

If G is understood from the context, we use the simplified notation

aAB = avf
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Context-free grammars

Derivation

We define = as the reflexive and transitive closure of =

Base Let a € (V U T)*. Then « 5 a
Induction If o = 3 and 3 = ~, then a = ~

. b . N .
Relation = is called derivation

We often write derivations by indicating all of the intermediate
steps
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Example

A possible derivation of a * (a + b00) from E in the CFG for
arithmetic expressions :

E = ExE = ax(E+10)
= E=x(E) = ax(E+1/00)
= (E) = a= (E + b00)
= ax(E) = a=x (I + b00)
= ax(E+E) = a=x(a+ b00)
= ax(E+1)

Contrast with regular expressions, which do not have derivations for individual

strings
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Context-free grammars

Example

At each step in a derivation there might be several variables to
which we can apply the rewrite relation :

| «E=axE= ax(E)
| «E= 1% (E)= a=(E)

Not all choices lead to a derivation of the desired string :
|«E=axE=axE+E

does not lead to a derivation of a* (a + b00)
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Context-free grammars

Leftmost derivation

In derivations, we can avoid the choice of variables to be rewritten
if we stick to some canonical derivation form

The relation = always rewrites the leftmost variable with some
m

production

We also use the reflexive and transitive closure of =, written =,
Im Im

and call it leftmost derivation

Automata, Languages and Computation Chapter 5



Context-free grammars

Example

Leftmost derivation of a* (a + b00) :

E=E+«E=|+xE=a+xE=ax(E)=ax(E+E)
Im Im Im Im Im

I:>a*(/+E)l:>a*(a+E)I:>a*(a+l)l:>a*(a+/0)

/:>a*(a+I00):>a*(a+b00)
m

Im

We conclude that E % a = (a+ b00)
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Context-free grammars

Rightmost derivation

The relation = always rewrites the rightmost variable with the

rm
body of a production

We use the reflexive and transitive closure of =, written =, called
rm rm
rightmost derivation
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Context-free grammars

Example

Rightmost derivation :

E=E«E=E«(E)=>Ex«(E+E)= Ex(E+1)
— E % (E+10) = E « (E + 100) = E « (E + b00)
= E % (I + b00) = E * (a+ b00) = [ * (a + b00)

= a* (a+ b00)

We conclude that E = a = (a + b00)
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Context-free grammars

Notation for CFGs

We use the following conventions

a,b,c,... terminal symbols

A, B, C,... variables (nonterminal symbols)
u,v,w,x,y,z terminal strings

X, Y, Z terminal or nonterminal symbols

a, 3,7, ... strings over terminal or nonterminal symbols
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Context-free grammars

Language generated by a CFG

Let G = (V,T,P,S) be some CFG. The generated language of
Gis

L(G)={weT"| S%W}

that is, the set of all strings in T* that can be derived from the
start symbol

L(G) is a context-free language, or CFL for short

Example : L(Gpy) is a CFL
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Context-free grammars

Test

Consider the language L of all strings over “(" and ")" where
parentheses are always well balanced (assume € ¢ L)

o for the following CFG

G = ({5},{(,)},P,S)

specify the set P such that L(G) = L

@ produce a derivation for string

w o= (()(0)))
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Context-free grammars

Language generated by a CFG

Gpal = ({P}7{0;1},A, P), where
A={P—e|0]|1]0P0|1P1}
Theorem L(Gpy) = {w | we {0,1}*, w = WR}

Proof (2 part) Assume w = wR. Using induction on |w|, we
show w € L(Gpa)
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Context-free grammars

Language generated by a CFG

Base |w| =0or |w| =1. Then wis €,0, or else 1. Since P — &,
P — 0, and P — 1 are productions of the grammar, we conclude
that P % w

Induction Assume now |w| > 2. Since w = wR, we must have

w = 0x0 or else w = 1x1, with x = x®. From the inductive
hypothesis we then have P Z x.

If w = 0x0, we can write
P = 0P0 = 0x0 = w

Therefore w € L(Gpa))
Case w = 1x1 can be dealt with similarly
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Context-free grammars

Language generated by a CFG

(S part) Assume now w € L(Gpa). We show w = wf

Since w € L(Gpa/), we have P = w. We use induction on the
number of steps of the derivation

Base The derivation P = w has 1 step. Then w must be ¢, 0,
or 1. All the three generated strings are palindrome
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Context-free grammars

Language generated by a CFG

Induction Let n > 2 be the number of steps in the derivation. At
the first step only two cases are possible :

P = 0P0 % 0x0 = w
or else

P=1P1% 1xl=w

In both cases, the second part of the derivation implies P L xin
n — 1 steps (this will be explained later in more detail)

By the inductive hypothesis, x is a palindrome string. Then also w
is a palindrome string O
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Context-free grammars

Proofs about CFGs

We need to show that a given CFG generates a desired language

For each variable A in the CFG, define some property P4 for
strings w over the alphabet

Show that, for every A, we have

A Z w if and only if Pa(w) holds true
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Context-free grammars

Proofs about CFGs

If part : if Pa(w) then A = w

Use mutual induction on |w|

@ using P4 definition, choose a factorization w = x1xo - - - X
such that Pg.(x;) holds for each i

e use the inductive hypothesis on Pg.(x;) to obtain B; % x;, for
each i

@ choose a production A — B1 B, - - B, and obtain
A= BlBg cee Bk

*
:>X132--'Bk

%
= X1X2 "Xk = W
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Context-free grammars

Proofs about CFGs

Only if part : if A= w then P4(w) holds true

Use mutual induction on the length of derivation A Zw

@ focus on the first production of the derivation

A= BB, By

*
:>X132---Bk

*
= X1X2 Xk = W

@ use the inductive hypothesis on B; = X; to obtain that
Pg.(xi) holds, for each i

@ use Py definition to show that Pa(w) holds true
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Context-free grammars

Sentential form

Let G=(V,T,P,S)beaCFGandletae (VuT)*

0 if S= o we say that « is a sentential form

o ifS /;} o we say that « is a left sentential form
m

0 if S= awe say that « is a right sentential form
rm

Note : L(G) contains the sentential forms in T*
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Context-free grammars

Examples

Consider previous CFG G for a fragment of arithmetic expressions.
Then E = (I + E) is a sentential form, since

E=E+«E=E«(E)=E+«(E+E)=E=(I+E)

This derivation is neither leftmost nor rightmost

ax* E is a leftmost sentential form, since

E=ExE=[|+xE=axE

Im Im Im

E « (E + E) is a rightmost sentential form, since

E=E+«E=E=x(E)=E=x(E+E)
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Context-free grammars

Test

Define a CFG for each of the following languages, describing for
each variable the set of generated strings

o L={w | w=x2x" xe{0,1}*}

o L={w | w=abck ij k=1, j+k}
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Context-free grammars

Test

Describe in words the language generated by the following CFG
G = ({S,7},{0,1},P,S)

where
P={5—-051]|0Z1, Z—0Z | ¢
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Context-free grammars

Derivation composition

We can always compose two derivations A = aBp and B z ol
into a single derivation

A;aBﬁ;a’yﬁ

This follows from the hypothesis about rewriting being
independent from the context (context-free)

Automata, Languages and Computation Chapter 5



Context-free grammars

Example

Consider our CFG for generating arithmetic expressions. Starting
with

E=E+E=E+(E)
E=I=Ib= ab

we can compose at the rightmost occurrence of E, obtaining

E=E+E=E+(E)=E+ ()= E+ (Ib)=E + (ab)
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Context-free grammars

Derivation factorization

* .
Assume A = X1 X5+ X, = w. We can factorize w as
* .
wiwy - - - Wy such that Xi = w;, 1 <7< k

As a special case, we can have Xi = w; e T

Substring w; can be identified from derivation A w by
considering only those derivation steps that rewrite X;
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Context-free grammars
Parse trees

CFGs and ambiguity
Relation with regular languages

Example

Consider E—= E+E = axb+a

We have
a * b+a
—_— —— ——
E ® E
and we can write
E*:a
*
k = k
*
E=b+a



Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Parse trees

Parse trees are a graphical representation alternative to
derivations

Intuitively, parse trees represent the syntactic structure of a
string according to the grammar

In compilers, parse trees are the structure of choice when
translating into executable code
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Parse trees

Parse trees

Let G = (V, T,P,S) be a CFG. An ordered tree is a parse tree
of G if:

@ each internal node is labeled with a variable in V

e each leaf node is labeled with a symbol in V U T U {e};
each leaf labeled with € is the only child of its parent

e if an internal node is labeled A and its children (from left to
right) are labeled

X17X27"'7Xk
then A —> X1 X5 --- X e P
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Parse trees

Example

CFG for arithmetic expressions and parse tree associated with the
derivation E=E+ E= |+ E

1. E—> 1 E

2 E—>E+E N
3. E>ExE E + E
4. E - (E)
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Parse trees

Example

CFG for palindrome strings and parse tree associated with the
derivation P = 0P0 = 01P10 = 0110

P—e /\\
P—0

P — 0PO ‘
P-’].Pl €

BAREE o
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Parse trees

Parse tree terminology

We use the following terms associated with parse trees
node and arc
parent node and child node

°
°
@ ancestor node and descendant node

@ root node, inner node (including the root) and leaf node

Recall : For each internal node, the child nodes are ordered
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Parse trees

Yeld of a parse tree

The yield of a parse tree is the string obtained by reading the
leaves from left to right

Of special importance are the complete parse trees, where :
@ the yield is a string of terminal symbols

@ the root is labeled by the initial symbol

The set of yields of all complete parse trees is the language
generated by the CFG
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Example
IE /\\
| /\\

Complete parse tree. The yield is a* (a + b00)
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Parse trees

Derivations and parse trees

Let G=(V,T,P,S) bea CFG, Ae V and w e T*. The following
statements are equivalent (statements must all be true or must all
be false) :

o A w

*
o A= w
Im

o A w
rm
@ there exists a parse tree for G with root label A and yield w
Proof not required for these theorems

Relation between derivations and parse trees is not one-to-one
(see next slides)
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Parse trees

Derivations and parse trees

A parse tree can be associated with several derivations

Example : Consider the CFG with productions S — AB, A — a,
B — b. The parse tree

S
/\
g
a b

is associated with two derivations

S= AB = aB = ab
S= AB = Ab= ab
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Parse trees

Derivations and parse trees

A derivation can be associated with several parse trees

Example : Consider the CFG with productions S — SS | a.
The derivation

S = S§S = SS5S = aSS = aaS = aaa

is associated with two parse trees

s s
/\

S s s s

a S s S s a2

a a a a

Automata, Languages and Computation Chapter 5



CFGs and ambiguity

Ambiguous CFGs

In the CFG
1. E— | 6.
2. E->E+E 7.
3. E->E=xE 8.
4. E — (E) 9.
5. 1 - a 10.

| —> b

I —>1a
I —>1b
I —-10
I —11

the sentential form E + E % E has two derivations

E=E+E=E+E+E

E=E+«xE=E+ExE
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CFGs and ambiguity

Ambiguous CFGs

Associated parse trees for the derivations of E + E = E

/\\ /\\
/\\ /\\

@ (b)

The two derivations correspond to different precedences for
operators sum and multiplication
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CFGs and ambiguity

Ambiguous CFGs

The existence of different derivations for a string is not
problematic, if these correspond to a single parse tree

Example : In our CFG for arithmetic expressions, the string a + b
has at least two derivations

E=E+E=|+E=a+E=a+1=a+b
E=E+E=E+I=I1+]l=I]+b=a+0b

However, the associated parse trees are the same, and string a + b
is not ambiguous
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CFGs and ambiguity

Ambiguous CFGs

Let G = (V,T,P,S) be a CFG. G is ambiguous if there exists a
string in L(G) with more than one parse tree

If every string in L(G) has only one parse tree, G is said to be
unambiguous

The ambiguity is problematic in many applications where the
syntactic structure of a string is used to interpret its meaning

Example: compilers for programming languages
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CFGs and ambiguity

Example

In the CFG for arithmetic expressions, the terminal string a + a = a
has two parse trees

/\\ /\\
| /\\ /\\ |

@ (b)
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CFGs and ambiguity

Canonical derivations

A parse tree is associated with a unique leftmost derivation
A leftmost derivation is associated with a unique parse tree

More than one leftmost derivations always imply more than one
parse trees

Similary for rightmost derivations
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CFGs and ambiguity

Inherent ambiguity

A CFL L is inherently ambiguous when every CFG such that
L(G) = L is ambiguous

Example : Let us consider the language
L={a"b"c"d™ | n=1, m=1}u{a"b"c™d" | n=1, m=>1}

L can be generated by a CFG with the following productions

S—>AB| C

A — aAb | ab
B — cBd | cd
C — aCd | aDd
D — bDc | bc
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Inherent ambiguity

There are two parse trees for the string aabbccdd

/S\ ]
/\\ /\\ RN
/\ /\ NN
N
b b/D\ -

(@ (b)
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CFGs and ambiguity

Inherent ambiguity

Associated leftmost derivations

S Iﬁ AB /: aAbB I:> aabbB Iﬁ aabbcBd I=> aabbccdd
S = C = ald = aaDdd = aabDcdd = aabbccdd
Im Im Im Im Im

It is possible to show that every CFG generating L provides a
similar ambiguity for the string aabbccdd (not in the textbook)

Language L is therefore inherently ambiguous
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CFGs and ambiguity

Exercises

@ Provide an example showing that the CFG with productions
S—aS | aSbS | €

is ambiguous. Hint: consider some string of length 3

@ Provide an example showing that the CFG with productions
S — aSbS | bSaS | €

is ambiguous. Hint: consider some string of length 4
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Reguar languages and CFL

A regular language is always a CFL

From a regular expression or from an FA we can aways construct a
CFG generating the same language

This is not in the textbook!
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Relation with regular languages

From regular expression to CFG

Let E be any regular expression. We use a variable for E (start
symbol) and a variable for each subexpression of E

We use structural induction on the regular expression to build the
productions of our CFG

e if E = a, then add production E — a

if E = ¢, then add production E — ¢

if E = (&, then production set is empty

if E = F + G, then add production E — F | G
if E = FG, then add production E — FG

if E = F*, then add production E — FE | €

if E = (F), then add production E — F
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Context-free grammars

Parse trees

CFGs and ambiguity

Relation with regular languages

Example

Regular expression : 0%1(0 + 1)*

Use left-associativity for concatenation

CFG :

E - AR
R — BC
A—0A|e
B—-1
C—DC|e
D—-0]1



Relation with regular languages

From FA to CFG

We use a variable @ for each state g of the FA. Initial symbol is Qg

For each transition from state p to state g under symbol a, add
production P — a @

If g is a final state, add production @ — ¢

Automata, Languages and Computation Chapter 5



Relation with regular languages

Example
Automaton :
1 0
Sat ¢ ) o ¥ 1
e @) o
CFG :
Q — 1Qo | 0Q2
Q — 0@ | 1y

Qr—>0Q1 | 11 | €

String 1101 is accepted by the automaton. In the equivalent CFG,
1101 has the following derivation :

Qo= 1Qy = 11Qy = 110Q2 = 1101Q; = 1101
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