Metodi di Shrinkage



Tikhonov-Phillips regularization

Tikhonov, Andrey Nikolayevich (1943). "06 ycTtonuuBOCTH 00paTHbIX 3aAa4" [On the stability of inverse
problems]. Doklady Akademii Nauk SSSR. 39 (5): 195-198.
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Akademii Nauk SSSR. 151: 501-504.. Translated in "Solution of incorrectly formulated problems and the
regularization method". Soviet Mathematics. 4: 1035-1038.
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Ridge regression

Hoerl, A. E.; R. W. Kennard (1970). "Ridge regression: Biased estimation for nonorthogonal problems".
Technometrics. 12 (1): 55-67.



Shrinkage Methods: Ridge regression
LASSO regression
Elastic Net

Warnings:

v" they can also produce models that make no sense.

v’ they ignore nonsignificant variables that may, nevertheless, be interesting
or important.

v' they don’t follow any hierarchy principle.



1. RIDGE REGRESSION



Consider the standard model for multiple linear regression:

Y = X [ +¢

A “ v

nx1 nxp
With: X = rank p pxl

f = unknown
E[e] = 0 E[ee!] = 0%1,,m

The usual approach to solve this problem is to use the Gauss-Markov linear
estimator:

IBLS — (XTx)—lXTY

That solve the minimization problem:

B = (XTX)"1XTY = arg min(Y — XB)T(Y — XB) = arg min||Y — XB||5
P ERP PERP



Accuracy (bias) and Precision (variance):

Accuracy refers to the closeness of a measured value to a standard or known value.
Precision refers to the closeness of two or more measurements to each other.

Low accuracy
Low precision

Low accuracy
High precision

High accuracy
Low precision

High accuracy
High precision




1. Predictive ability: Linear regression has low bias (zero bias) but suffers from
high variance. So it may be worth sacrificing some bias to achieve a lower
variance

2. Interpretative ability: with a large number of predictors, it can be helpful to
identify a smaller subset of important variables.

Linear regression doesn't do this

Also: linear regression is not defined when p >n



Ridge regression is like least squares but shrinks the estimated coefficients towards zero:

BR1A9e = arg min(Y — XB)T(Y — XB) + ABTp

BERP
= min||Y — XB||5 + 4 2
minlY — X3 + 24 15113
penalty

A = 0 is the regularization coefficient, i.e. a tuning parameter, which controls the strength
of the penalty term. Note that:

when A = 0, we get the linear regression estimate
when 1 — oo, we get gR149¢=()

BRIAge = (XTX 4+ AL)  XTY = (L, + AXTX)™1)BES



Ridge regression is biased: (n = 50, p = 30, and 0% = 1; 10 large true
coefficients, 20 small). Here is a visual representation of the ridge
regression coefficients for A = 25:
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IMPORTANT DETAILS

When including an intercept term in the regression, we usually leave this coefficient

unpenalized.

Hence ridge regression with intercept solves

Bo, BR9¢ = argmin ||Y — B, — XBII5 + 4 |I8]I5
BoER,LERP . y

Used in the
code

If we center the columns of X, then the intercept estimate ends up just being 8, = Y, so it

is usually assumed that Y, X have been centered and we don't include an intercept

Also, the penalty term ||S]|5 = Z?zl ,6’]-2 is unfair is the predictor variables are not on the
same scale. Therefore, if we know that the variables are not measured in the same units,

we typically scale the columns of X (to have sample variance 1), and then we

perform ridge regression.



@ A is the shrinkage parameter

@ )\ controls the size of the coefficients
@ A controls amount of regularization

@ As A | 0, we obtain the least squares solutions
~ rid _
@ As A T oo, we have ﬂ::g; = 0 (intercept-only model)



Methods for A selection:

ridge traces (in their original paper, Hoerl and Kennard)
Discrepancy Principle (DP)

Generalized cross validation (GCV)

The L-curve criterion

The NCP method

Leave-one-out Cross Validation

N Uk W



CROSS VALIDATION

E’ una tecnica statistica usata per valutare la bonta di performance di un modello (e non
solo). Il concetto fondamentale e quelo di suddividere il data set in due parti:

training set
validation set

Il fit del modello viene eseguito nel training set (Y;), i parametri fissati alle stime ottenute, e il
modello ri-utilizzato non per la stima ma solo per il passo di predizione su Y5:

1)Y,=XB+e == pS
2) calcolo i redidui Y, — XB%3

3) calcolo il MSE = [Yz — X,éLS]T[Yz — X/?LS]



Cross-validation

Cross-validation is a simple, intuitive way to estimate prediction
error

Given training data (x;,%;), ¢ = 1,...m and an estimator o,
depending on a tuning parameter 6

2.0

Even if 6 is a continuous parame-
ter, it's usually not practically fea-
sible to consider all possible values
of 6, so we discretize the range
and consider choosing 6 over some
discrete set {01,...0,}
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For a number K, we split the training pairs into K parts or “folds
(commonly K =5 or K = 10)

Tramn Tramn Validation Tramn Tramn

K-fold cross validation considers training on all but the kth part,
and then validating on the kth part, iterating over K =1,... K

(When K = n, we call this leave-one-out cross-validation, because
we leave out one data point at a time)



K-fold cross validation procedure:

» Divide the set {1,...n} into K subsets (i.e., folds) of roughly
equal size, F1,...Fk
» Fork=1,... K:
» Consider training on (z;,¥;), ¢ ¢ F}, and validating on
(3727 yz) 1 € by,
» For each value of the tunlng parameter 6 € {01,...0,,},
compute the estimate fe on the training set, and record
the total error on the validation set:

ex(0) =D (v — fy* (@)’

1€ F},

» For each tuning parameter value 6, compute the average error
over all folds,

1 K 1 K o 2
CV(9) = - 3" ex(8) = - D> (i — fyF (@)
k=1

k=1:1eF}




Having done this, we get a cross-validation error curve CV(0) (this
curve is a function of 0), e.g.,
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and we choose the value of tuning parameter that minimizes this
curve,

§ = argmin CV(6)
96{91,...9m}



LASSO REGRESSION

Tibshirani (Journal of the Royal Statistical Society 1996) introduced the LASSO:
least absolute shrinkage and selection operator



LASSO coefficients are the solutions to the #; optimization
problem:

p
minimize (y — Z8) ' (y — ZB) s.t. Z Bi| <t

j=1

Again, we have a tuning parameter A that controls the
amount of regularization

One-to-one correspondence with the threshhold t:

recall the constraint: >
> 1Bl <t
j=1



The only difference is instead of taking the square of the coefficients, magnitudes are
taken into account.

This type of regularization (L1) can lead to zero coefficients i.e. some of the features
are completely neglected for the evaluation of output.

So Lasso regression not only helps in reducing over-fitting but it can help us in feature
selection.



LASSO regression is like least squares but shrinks the estimated coefficients towards
ZEero:

Lasso _ : . 2
p=0 = min Iy — XBllz + 4 lﬂl

penalty

A = 0 is the regularization coefficient, i.e. a tuning parameter, which controls the strength
of the penalty term. Note that:

when A = 0, we get the linear regression estimate
when A — oo, we get fL4550=(

* Unlike ridge regression, LASSO has no closed form
* Original implementation involves quadratic program techniques from convex
optimization



Often, we believe that many of the 3;'s should be 0

Hence, we seek a set of sparse solutions

Large enough A (or small enough t) will set some coefficients
exactly equal to 0!

@ So the LASSO will perform model selection for us!



ELASTIC NET REGRESSION



Elastic-Net penalty is given by a combination of L; and L, penalties, and that
simultaneously does automatic variable selection, shrinks the coefficients and can
select groups of correlated variables, while LASSO usually tends to select only one
variable from these groups; hence it seems that Elastic-Net performs better than
LASSO in terms of prediction accuracy. .

The optimization problem to solve in this types of regression is
) p p
ﬁ—argmmg ZY XB:)? + Mo Z|ﬁj|—|— (1—a) Z

where o controls the influence of Li-penalty and Ls-penalty and A is the tuning
parameter. Notice that even in Elastic-Net regression we are working with a convex
objective function.



Moreover, we can write the optimization problem

A 1
B = argming S (Y — X B;)? subject to  a X F_ 1 6] + (1 — ) XF_1 B <t

Hence if « = 1 we perform the LASSO regression, if a = 0 the RIDGE regressmn
and if a € (0,1) the Elastic-Net regression.



