
Metodi	di	Shrinkage



Tikhonov–Phillips	regularization

Tikhonov,	Andrey	Nikolayevich (1943).	"Об	устойчивости	обратных	задач"	[On	the	stability of	inverse	
problems].	Doklady Akademii Nauk SSSR.	39	(5):	195–198.

Tikhonov,	A.	N.	(1963).	"О	решении	некорректно	поставленных	задач	и	методе	регуляризации".	Doklady
Akademii Nauk SSSR.	151:	501–504..	Translated in	"Solution	of	incorrectly formulated problems and	the	

regularization method".	Soviet	Mathematics.	4:	1035–1038.

Ridge	regression

Hoerl,	A.	E.;	R.	W.	Kennard	(1970).	"Ridge	regression:	Biased	estimation	for	nonorthogonal problems".	
Technometrics.	12	(1):	55–67.	



Shrinkage	Methods:	 Ridge	regression
LASSO	regression
Elastic	Net	

Warnings:

ü they	can	also	produce	models	that	make	no	sense.
ü they	ignore	nonsignificant	variables	that	may,	nevertheless,	be	interesting	
or	important.

ü they	don’t	follow	any	hierarchy	principle.	



1.	RIDGE	REGRESSION



Consider	the	standard	model	for	multiple	linear	regression:

With: X = 𝑟𝑎𝑛𝑘 𝑝
𝛽 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝐸 𝜀 = 0 𝐸 𝜀𝜀! = 𝜎"𝐼#$#

The	usual	approach	to	solve	this	problem	is	to	use	the	Gauss-Markov	linear	
estimator:

That	solve	the	minimization	problem:
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Accuracy	(bias)	and	Precision	(variance):

Accuracy	refers	to	the	closeness	of	a	measured	value	to	a	standard	or	known	value.	
Precision	refers	to	the	closeness	of	two	or	more	measurements	to	each	other.	



1. Predictive	ability:		Linear	regression	has	low	bias	(zero	bias)	but	suffers	from	
high	variance.	So	it	may	be	worth	sacrificing	some	bias	to	achieve	a	lower	
variance

2. Interpretative	ability:	with	a	large	number	of	predictors,	it	can	be	helpful	to	
identify	a	smaller	subset	of	important	variables.

Linear	regression	doesn't	do	this

Also:	linear	regression	is	not	defined	when	p	>	n



Ridge	regression	is	like	least	squares	but	shrinks	the	estimated	coefficients	towards	zero:

𝜆 ≥ 0 is	the	regularization	coefficient,	i.e.	a	tuning	parameter,	which	controls	the	strength	
of	the	penalty	term.	Note	that:

when	𝜆 =	0,	we	get	the	linear	regression	estimate
when	𝜆®∞,	we	get	𝛽&'()*=0
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Ridge	regression	is	biased:



IMPORTANT	DETAILS

When	including	an	intercept	term	in	the	regression,	we	usually	leave	this	coefficient	
unpenalized.	

Hence	ridge	regression	with	intercept	solves

If	we	center	the	columns	of	X,	then	the	intercept	estimate	ends	up	just	being	𝛽+ = f𝑌,	so	it	
is	usually	assumed	that	Y,	X	have	been	centered	and	we	don't	include	an	intercept

Also,	the	penalty	term	 𝛽 "
" = ∑,-.

/ 𝛽," is	unfair	is	the	predictor	variables	are	not	on	the	
same	scale.	Therefore,	if	we	know	that	the	variables	are	not	measured	in	the	same	units,	
we	typically	scale	the	columns	of	X	(to	have	sample	variance	1),	and	then	we
perform	ridge	regression.

𝛽9, 𝛽-./01 = arg min
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Methods	for	l selection:

1. ridge	traces	(in	their	original	paper,	Hoerl and	Kennard)
2. Discrepancy	Principle	(DP)
3. Generalized	cross	validation	(GCV)
4. The	L-curve	criterion
5. The	NCP	method
6. Leave-one-out	Cross	Validation



CROSS	VALIDATION

E’	una	tecnica	statistica	usata	per	valutare	la	bontà	di	performance	di	un	modello	(e	non	
solo).	Il	concetto	fondamentale	è	quelo di	suddividere	il	data	set	in	due	parti:

training	set	
validation set

Il fit del modello viene eseguito nel training set (𝑌.), i parametri fissati alle stime ottenute, e il 
modello ri-utilizzato non per la stima ma solo per il passo di predizione su 𝑌":

1) 𝑌. = 𝑋𝛽 + 𝜀 =⇒ x𝛽12
2) 𝑐𝑎𝑙𝑐𝑜𝑙𝑜 𝑖 𝑟𝑒𝑑𝑖𝑑𝑢𝑖 𝑌" − 𝑋 x𝛽12

3) 𝑐𝑎𝑙𝑐𝑜𝑙𝑜 𝑖𝑙 𝑀𝑆𝐸 = 𝑌" − 𝑋 x𝛽12
!
𝑌" − 𝑋 x𝛽12











LASSO	REGRESSION

Tibshirani (Journal of the Royal Statistical Society 1996) introduced the LASSO: 
least absolute shrinkage and selection operator





The	only difference is instead of	taking the	square of	the	coefficients,	magnitudes are	
taken into account.	

This type of	regularization (L1)	can	lead to	zero	coefficients i.e.	some	of	the	features
are	completely neglected for	the	evaluation of	output.	

So	Lasso	regression not only helps in	reducing over-fitting but it can	help	us in	feature
selection.	



LASSO	regression	is	like	least	squares	but	shrinks	the	estimated	coefficients	towards	
zero:

𝜆 ≥ 0 is	the	regularization	coefficient,	i.e.	a	tuning	parameter,	which	controls	the	strength	
of	the	penalty	term.	Note	that:

when	𝜆 =	0,	we	get	the	linear	regression	estimate
when	𝜆®∞,	we	get	𝛽13445=0

• Unlike	ridge	regression,	LASSO	has	no	closed	form
• Original	implementation	involves	quadratic	program	techniques	from	convex	
optimization
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ELASTIC	NET		REGRESSION






