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Abstract

These notes are intended for the first year students of the PhD course in Statistics, at
University of Padova. They are not exhaustive, nor complete, but they could serve as a
basis of the study of the arguments presented during the course of Functional Analysis. The
topics are presented in a quite informal way, trying to reach also students without a specific
preparation in mathematics. Only few proofs are provided and for the others bibliographical
references are provided. At the end of each section some exercises are proposed, more or less
simple to solve. In the appendix there are the (sketchy) solutions to the problems.
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1 Measure theory and integration

1.1 Measure space

We fix a set X and we define P(X) the set of all subsets of X.

Definition 1.1. Σ ⊂ P(X) is a σ−algebra on X if

– it is closed by complement, that is if A ∈ Σ then X \A ∈ Σ,

– it is closed by countable union, that is if (Ai)i is a sequence of elements in Σ then ∪∞i=1Ai ∈ Σ.

Let C ⊆ P(X), then Σ(C), the σ-algebra generated by C is the smallest σ−algebra which contains
all the elements in C (and then all countable intersections and countable unions of elements in C).

The smallest possible σ-algebra on X is given by Σ = {∅, X}, and the largest possible σ-algebra
on X is Σ = P(X).

Definition 1.2. B(R) is the σ-algebra on R generated by all the intervals C = {(a, b) | a, b ∈ R}.
B(RN ) is the σ-algebra on RN generated by all the pluri-rectangulars C = {ΠN

i=1(ai, bi) | ai, bi ∈ R}.

Remark 1.3. Note that σ(C) = B(R) also when C = {(a, b] | a, b ∈ R}, since (a, b) = ∪n
(
a, b− 1

n

]
,

or when C = {[a, b) | a, b ∈ R}, since (a, b) = ∪n
[
a+ 1

n , b
)
, or when C = {[a, b] | a, b ∈ R} again

because (a, b) = ∪n
[
a+ 1

n , b−
1
n

]
. Analogously σ(C) = B(R) when C = {(a,+∞) | a ∈ R}, since

(a, b] = (a,+∞) ∩ (−∞, b], and (−∞, b] = R \ (b,+∞) and so on.

Definition 1.4. Let Σ be a σ-algebra on X. A function µ : Σ→ [0,+∞] is a measure if

– µ(∅) = 0,

– it is σ-additive, that is if (Ai)i is a sequence of elements in Σ with Ai ∩ Aj = ∅ for i 6= j

then µ(∪∞i=1Ai) =
∑+∞
i=1 µ(Ai).

(X,Σ, µ) is called a measure space.
If µ(X) < +∞, then µ is a finite measure (a probability measure if µ(X) = 1). Usually

measure spaces with probability measures are denoted with Ω (in place of X), the σ-algebra is F
(in place of Σ) and the measure is P (in place of µ).

If X = ∪iAi, with µ(Ai) < +∞ for all i, µ is σ-finite.
If X = Rn, n ≥ 1 and Σ = B(Rn), then µ is called a Borel measure.
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Example 1.5. Let x0 ∈ R, and define the measure on P(R) as δx0(A) =

{
1 x0 ∈ A
0 x0 6∈ A

.

Then δx0
is called Dirac measure centered at x0.

Proposition 1.6 (Monotonicity, subadditivity, continuity). Let µ be a measure on Σ. Then

(i) if A ⊂ B, A,B ∈ Σ, then µ(A) ≤ µ(B) (monotonicity with respect to inclusion);

(ii) if (Ai)i is a sequence of elements in Σ then µ(∪∞i=1Ai) ≤
∑+∞
i=1 µ(Ai);

(iii) if (Ai)i is a sequence of elements in Σ with Ai ⊆ Ai+1 then µ(∪∞i=1Ai) = limi→+∞ µ(Ai);

(iv) if (Ai)i is a sequence of elements in Σ with Ai ⊇ Ai+1 and µ(Ai0) < +∞ for some i0, then
µ(∩∞i=1Ai) = limi→+∞ µ(Ai).

Proof. (i) Observe that B = A ∪ (B \A), so by σ-additivity µ(B) = µ(A) + µ(B \A) ≥ µ(A).

(ii) Let B1 = A1 and Bi = Ai \ ∪i−1
k=1Ak then Bi are disjoint and

µ(∪iAi) = µ(∪iBi) =

+∞∑
i=1

µ(Bi) ≤
+∞∑
i=1

µ(Ai).

(iii) Let B1 = a1 and Bi = Ai \Ai−1 then

µ(∪iAi) = µ(∪iBi) =

+∞∑
i=1

µ(Bi) = lim
n→+∞

n∑
i=1

µ(Bi) = µ(An).

(iv) Let Fi = Ai0 \Ai for i > i0. Then µ(Ai0) = µ(Fi)+µ(Ai), Fi ⊆ Fi+1 and ∪iFi = Ai0 \∩iAi.
Therefore by 1), we get

µ(Ai0) = µ(∩iAi) + lim
i
µ(Fi) = µ(∩iAi) + lim

i
(µ(Ai0)− µ(Ai))

and we cancel µ(Ai0) from both sides.

Definition 1.7. Let (X,Σ, µ) a measure space. The completion of Σ with respect to µ is the
σ-algebra

M = {A ⊆ X | ∃B,C ∈ Σ, µ(C) = 0, B ⊆ A,A \B ⊆ C}.

Definition 1.8. Let (X,Σ, µ) a measure space. A property holds almost everywhere if there
exists N ∈ Σ with µ(N) = 0 such that the property holds for all x ∈ X \N .

Proposition 1.9. Let Σ be a σ-algebra on X and µ : Σ→ [0,+∞] with µ(∅) = 0. Then they are
equivalent:

(i) µ is σ-additive: if (Ai)i is a sequence of elements in Σ with Ai ∩ Aj = ∅ for i 6= j then

µ(∪∞i=1Ai) =
∑+∞
i=1 µ(Ai),

(ii) µ is additive: if A,B ∈ Σ and A ∩B = ∅ then µ(A ∩B) = µ(A) + µ(B)
and
µ is countable subadditive: if (Ai)i is a sequence of elements in Σ then µ(∪∞i=1Ai) ≤∑+∞
i=1 µ(Ai);

(iii) µ is additive: if A,B ∈ Σ and A ∩B = ∅ then µ(A ∩B) = µ(A) + µ(B)
and
µ is continuous on increasing sequence of sets: if (Ai)i is a sequence of elements in Σ with
Ai ⊆ Ai+1 then µ(∪∞i=1Ai) = limi→+∞ µ(Ai).
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Proof. The fact that (i) implies (ii) and that (i) implies (iii) has been proved in Proposition 1.6.
We prove that (ii) implies (i). We consider a sequence (Ai)i of elements in Σ with Ai ∩ Aj = ∅
for i 6= j. Then by (ii) we get that µ(∪∞i=1Ai) ≤

∑+∞
i=1 µ(Ai). On the other hand by additivity

and monotonicity (which is a consequence of additivity) we get that for every n, µ(∪∞i=1Ai) ≥
µ(∪ni=1Ai) =

∑n
i=1 µ(Ai). Sending n→ +∞ we conclude µ(∪∞i=1Ai) ≥

∑+∞
i=1 µ(Ai).

We prove that (iii) implies (i). We consider a sequence (Ai)i of elements in Σ with Ai∩Aj = ∅
for i 6= j. We define Bi = ∪ij=1Aj . Then ∪iBi = ∪iAi. Note that by additivity µ(Bi) =∑i
j=1 µ(Aj) and that B1 ⊆ B2 ⊆ B3 . . . . Therefore by (iii) and additivity we get

µ(∪∞i=1Ai) = µ(∪∞i=1Bi) = lim
i→+∞

µ(Bi) = lim
i→+∞

i∑
j=1

µ(Aj) =

+∞∑
j=1

µ(Aj).

1.2 Borel measures on R and cumulative distribution functions

Let F : R→ R be an increasing function which is right continuous, that is limx→a+ F (x) = F (a).
We define for all a, b ∈ R,

µF (a, b] = F (b)− F (a) µF (∅) = 0.

Then for every set C ⊂ R we define

µ∗F (C) = inf{
∑
i

F (bi)− F (ai) | C ⊆ ∪i(ai, bi]}.

Note that since F is increasing, we get that for sequences a1 < b1 < a2 < b2 < · · · < ai < bi <
ai+1 < bi+1 . . . , we obtain

µ∗F (∪i(ai, bi]) =
∑
i

F (bi)− F (ai).

Observe that if we define C = {(a, b], a, b ∈ R}, then Σ(C) = B(R). Note that if F1 = F2 + c for
some constant then µ∗F1

= µ∗F2
. Also the viceversa is true: if µ∗F1

= µ∗F2
, then F1 = F2 + c for some

constant c.

Remark 1.10. Note that F monotone increasing implies that µF (a, b] ≥ 0, and moreover, since
F is right continuous, then

µF (∪n(a+ 1/n, b]) = µF (a, b] = F (b)− F (a) = F (b)− lim
n
F (a+ 1/n) = lim

n
µF (a+ 1/n, b].

Reasoning as before, it is possible to see that, at least when restricted to C, there holds that µF has
positive values, is additive and is continuous with respect to increasing sequences of sets (which
is enough to get σ-additivity if µF is defined on a σ-algebra, see Proposition 1.9).

We recall that F is monotone increasing and then limx→+∞ F (x) = supF and limx→−∞ F (x) =
inf F (we say that if F (R) is unbounded from above, supF = +∞ and if F (R) is unbounded from
below, inf F = −∞).

We may extend µ∗F to intervals obtained by unions and intersections of elements in C, and
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using additivity and continuity. In particular we get

µ∗F (a,+∞) = µ∗F (∪n(a, a+ n]) = lim
n
F (a+ n)− F (a) = supF − F (a)

µ∗F (−∞, b] = µ∗F (∪n(b− n, b]) = lim
n
F (b)− F (b− n) = F (b)− inf F

µ∗F (a, b) = µ∗F (∪n≥n0(a, b− 1/n]) = lim
n
F (b− 1/n)− F (a) = lim

x→b−
F (x)− F (a)

µ∗F (−∞, b) = µ∗F ((−∞, b− 1] ∪ (b− 1, b)) = µ∗F ((−∞, b− 1]) + µ∗F ((b− 1, b))

= lim
x→b−

F (x)− F (b− 1) + F (b− 1)− inf F = lim
x→b−

F (x)− inf F

µ∗F [a, b) = = µ∗F [(a− 1, b) \ (a− 1, a)] = µ∗F (a− 1, b)− µ∗F (a− 1, a)

= lim
x→b−

F (x)− F (a− 1)− lim
x→a−

F (x) + F (a− 1) = lim
x→b−

F (x)− lim
x→a−

F (x)

µ∗F [a, b] = µ∗F [[a, b+ 1) \ (b, b+ 1)] = µ∗F [a, b+ 1)− µ∗F (b, b+ 1)

= F (b)− lim
x→a−

F (x)

µ∗F [a,+∞) = sup
F
− lim
x→a−

F (x).

Note that

µ∗F (R) = µ∗F (∪n(a− n, b+ n]) = lim
n
F (b+ n)− F (a− n) = supF − inf F

µ∗F ({a}) = µ∗F ((c, a] \ (c, a))

= µ∗F ((c, a])− µ∗F ((c, a)) = F (a)− F (c)− ( lim
x→a−

F (x)− F (c) = F (a)− lim
x→a−

F (x).

Theorem 1.11. (i) There exists a unique Borel measure µF which coincides with µ∗F on inter-
vals (a, b]. This measure is σ-finite and it is finite if and only if supF − inf F < +∞.

(ii) Given a Borel measure on R which is σ-finite, there exists F monotone increasing and right
continuous such that µ = µF . F is unique up to addition of constants: that is if µ = µF = µG
then there exists c ∈ R such that F (x) = G(x) + c for all x. t

Proof. (i) The proof is based on the Caratheodory criterion, and we refer to [2, Theorem 1.14,
Theorem 1.16 ]. As for the σ- finiteness it is sufficient to observe that µF (−n, n] = F (n)−
F (−n) < +∞ and R = ∪n(−n, n]. Moreover, since µF (R) = supF − inf F , we conclude that
F is finite iff supF − inf F < +∞.

(ii) We want to construct F . Put F (0) = 0 and

F (x) =

{
µ(0, x] x > 0

−µ(x, 0] x < 0.

Observe that if b > a ≥ 0, F (b) − F (a) = µ(0, b] − µ(0, a] = µ(0, b] \ (0, a] = µ(a, b] ≥ 0, if
0 ≥ b > a, then F (b)− F (a) = −µ(b, 0] + µ(a, 0] = µ(a, 0] \ (b, 0] = µ(a, b] ≥ 0 and finally if
a < 0 < b, then F (b)− F (a) = µ(0, b] + µ(a, 0] = µ(a, b] ≥ 0. So F is increasing.

We check that it is right continuous. First of all observe that for a > 0, limx→a+ F (x) =
limn F (a + 1/n) = limn µ(0, a + 1/n] = µ(∩n(0, a + 1/n]) = µ(0, a] = F (a). If a = 0
limx→0+ F (x) = limn F (1/n) = limn µ(0, 1/n] = µ(∩n(0, 1/n]) = µ(∅) = 0 = F (0). Finally if
a < 0, then limx→a+ F (x) = limn F (a+ 1/n) = − limn µ(a+ 1/n, 0] = −µ(∪n(a+ 1/n, 0]) =
−µ(a, 0] = F (a).

Finally we already checked that µ(a, b] = F (b)− F (a) and then we conclude that µ = µF .

Assume now that there exists a right continuous increasing function G such that µ = µG.
Then for x > 0, F (x) = µ(0, x] = µG(0, x] = G(x) − G(0) and for x < 0 then F (x) =
−µ(x, 0] = µG(x, 0] = −(G(0) − G(x)) = G(x) − G(0). So, this implies that F (x) =
G(x)−G(0) (for x = 0 this is trivially verified).
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Definition 1.12. Let µ be a finite Borel measure. The function F (x) associated to the measure
µ and normalized in order to have inf F = 0 is called the cumulative distribution function of the
measure µ. It is easy to check that F (x) := µ(−∞, x].

1.3 The Lebesgue measure on R and Rn.

Definition 1.13. Let F (x) = x for all x, then µF is called Lebesgue measure. We indicate with
L. We denote with M(R) the completion of B(R) with respect to L, and we call it the Σ-algebra
of Lebesgue measurable sets.

Proposition 1.14. The Lebesgue measure

(i) associates to each interval its length,

(ii) is translation invariant, that is L(A+ x) = L(A) for all x ∈ R, A ∈M,

(iii) is homogenous, that is L(λA) = λL(A) for all λ > 0, A ∈M,

(iv) assigns measure 0 to points, and so also to countable sets (e.g. Q),

(v) it is σ-finite, since R = ∪n∈N(−n, n) and L(−n, n) = 2n.

Proof. The proof is immediate by definitions and σ-additivity. Exercise.

Measurable sets in R which contain at least one interval (they are called sets with non empty
interior) have positive measure. On the other hand sets which are given by countable union of
isolated points have measure zero. Nevertheless there are sets with empty interior in R (so that
do not contain any interval) and with positive measure (almost full measure).

Example 1.15 (A set of positive measure which does not contain any interval). Let (rn) be an
enumeration of Q ∩ [0, 1] and fix ε > 0 small.

Set A = ∪n(rn − ε2−n, rn + ε2−n). Then by subadditivity, L(A) ≤
∑
n 2ε2−n = 4ε. Moreover

B = [0, 1]\A is a set which does not contain any interval (otherwise it should contain some rational
number but Q ∩ [0, 1] ⊆ A), and moreover L(B) ≥ 1− 4ε > 0.

Not all the subsets of R are contained in M(R), so there are sets which are not measurable.
This is due to the fact that if we want to define a measure µ on the intervals of R such that
µ([0, 1]) = 1, µ(A ∪ B) = µ(A) + µ(B) if A ∩ B = ∅ and µ(A) = µ(B) if B can be obtained
translating and rotating A, then the σ- algebra of measurable sets cannot be P(R).

Example 1.16 (A set which is not (Lebesgue) measurable). We say that x, y ∈ [0, 1] are equivalent
if x−y ∈ Q. Let P ∈ [0, 1] a set such that P consists of exactly one representative point from each
equivalence class (this set exists by the axiom of choice). In particular this means that if p, p′ ∈ P ,
p 6= p′, then p− p′ 6∈ Q. We claim that P provides the required example of a non measurable set.
We prove it by contradiction, showing that it is not possible for P to be measurable.

For each q ∈ Q ∩ [0, 1], define

Pq = [(P+q)∩[0, 1)]∪[(P+q)\[0, 1))−1] = {p+q, p ∈ P ∩[0, 1−q)}∪{p+q−1, p ∈ P ∩[1−q, 1)}.

So Pq is obtained by considering P + q and then shifting back of 1 unit the part of P + q which is
outside the interval [0, 1).

First of all we observe that L(P ) = L(Pq). Indeed [(P + q)∩ [0, 1)]∩ [(P + q) \ [0, 1))− 1] = ∅,
since if p + q ∈ [0, 1) for some p ∈ P and p′ + q − 1 ∈ [0, 1) for some p′ ∈ P , then necessarily
p+ q 6= p′ + q − 1, since p, p′ ∈ [0, 1).

Moreover we observe that if r 6= q ∈ Q ∩ [0, 1), then Pr ∩ Pq = ∅. Indeed assume it is not true
and x ∈ Pr ∩Pq, this means that x = p+ r = p′+ q, for some p, p′ ∈ P or x = p+ r = p′+ q−1, or
x = p+ r− 1 = p′ + q. In any case we get that p− p′ ∈ Q, which implies that p = p′ by definition
of the set P and so r = q.
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Finally we observe that ∪q∈Q∩[0,1)Pq = [0, 1). Indeed take x ∈ [0, 1), then there exists p ∈ P
such that x is equivalent to P , which means that there exists q ∈ Q such that x = p + q. In
particular this implies that q ∈ (0, 1] and x ∈ Pq.

We conclude by σ-additivity that

1 = L([0, 1)) = L(∪q∈Q∩[0,1)Pq) =
∑

q∈Q∩[0,1)

L(Pq) =
∑

q∈Q∩[0,1)

L(P ) =

{
0 if L(P ) = 0

+∞ if L(P ) > 0

which is not possible.

It is possible to define the Lebesgue measures on Rn as the product measure of the Lebesgue
measure on R. It is a Borel maesure and we denote withM the Σ-algebra of Lebesgue measurable
sets. We refer to [2, Section2.6].

Proposition 1.17. The Lebesgue measure on Rn

(i) associates to each set its volume,

(ii) is translation invariant, that is L(A+ x) = L(A) for all x ∈ Rn, A ∈M,

(iii) is n-homogenous, that is L(λA) = λnL(A) for all λ > 0, A ∈M, in particular L(B(0, r)) =
rnL(B(0, 1)), where B(0, r) is the ball if radius r centered at 0,

(iv) it is σ-finite, since Rn = ∪k∈NB(0, k) and LB(0, k) = knL(B(0, 1)).

1.4 Measurable functions

Definition 1.18. Let (X,Σ, µ) be a measure space, and let f : X → R be a function. Then f is
measurable if for all t ∈ R,

A(t) := {x ∈ X | f(x) > t} = f−1(t,+∞) ∈ Σ.

In particular we will be interested in the case in which (X,Σ, µ) = (Rn,M,L). In this case
saying that f : Rn → R is measurable is equivalent to require that for all A ∈ B(R), f−1(A) ∈M.

Example 1.19. Let A ∈M and define the characteristic function of A as

χA(x) =

{
1 x ∈ A
0 x 6∈ A.

Then χA is measurable. Indeed A(t) = ∅ for t ≥ 1, A(t) = Rn for t ≤ 0 and A(t) = A for t ∈ (0, 1).

Example 1.20 (Random variables). If (Ω,F ,P) is a probability space (that is a measure space
endowed with a probability measure), the measurable functions, that is functions f : Ω→ R such
that for all t ∈ R, A(t) := {ω ∈ Ω | f(ω) > t} ∈ F , are called random variables. Usually
random variables are indicated with X instead of f .

There is a notion of convergence of measurable functions which is quite used in probability.

Definition 1.21 (Convergence in measure). Let fn, f be measurable functions defined on the
measure space (X,Σ, µ). Then fn converge to f in measure if for every ε > 0

lim
n
µ{x ∈ X | |fn(x)− f(x)| ≥ ε} = 0.

If we are in a probability space, this convergence is called convergence in probability, since
it reads

lim
n

P{ω ∈ Ω | |Xn(ω)−X(ω)| ≥ ε} = 0.
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1.5 Integration with respect to the Lebesgue measure

Definition 1.22. Let k ≥ 1, A1, . . . AK a finite family of disjoint sets in M and c1, . . . ck > 0.
The function φ(x) =

∑k
i=1 ciχAi(x) is called simple function. It is a measurable (positive)

function and we define its integral as∫
RN

φ(x)dx =

k∑
i=1

ciL(Ai).

Definition 1.23 (Lebesgue integral). Let f : Rn → R be a measurable function such that f(x) ≥ 0
for all x. Then ∫

Rn
f(x)dx = sup

{∫
Rn
φ(x)dx | φ simple function with φ ≤ f

}
.

If f is not positive we define its positve part f+(x) = max(f(x), 0) and its negative part
f−(x) = max(−f(x), 0) and we define∫

Rn
f(x)dx =

∫
Rn
f+(x)dx−

∫
Rn
f−(x)dx.

Note that
∫
Rn |f(x)|dx =

∫
Rn f

+(x)dx+
∫
Rn f

−(x)dx.
Since f+ ≤ |f |, f− ≤ |f |, we have that∣∣∣∣∫

Rn
f(x)dx

∣∣∣∣ < +∞ iff

∫
Rn
|f(x)|dx < +∞.

We denote

L1(Rn) := {f : Rn → R | f is measurable and

∫
Rn
|f(x)|dx < +∞}.

If A ∈M, then we define

L1(A) =

{
f : Rn → R |f is measurable and

∫
Rn
|f(x)|χA(x) =

∫
A

|f(x)|dx < +∞
}
.

Proposition 1.24. The following properties hold.

– If f = 0 almost everywhere then
∫
Rn f(x) = 0. If

∫
Rn |f(x)|dx = 0 then f = 0 almost

everywhere.

– If f, g are measurable functions such that f = g almost everywhere, then
∫
Rn f(x)dx =∫

Rn g(x)dx.

– If f, g ∈ L1(Rn), α, β ∈ R, then
∫
Rn αf(x) + βg(x)dx = α

∫
Rn f(x)dx+ β

∫
Rn g(x)dx.

– If f, g ∈ L1(Rn), and f ≤ g then
∫
Rn f(x)dx ≤

∫
Rn g(x)dx.

Proof. The proof is obtained by exploiting definitions, see [2, Section 2..2]

Remark 1.25. [On the definition of L1] Note that due to the previous proposition, in particular
the fact that if f, g are measurable functions such that f = g almost everywhere, then

∫
Rn f(x)dx =∫

Rn g(x)dx, we identify functions in L1(Rn) which coincide almost everywhere. So a
function f in L1(Rn) is actually a class of equivalence of functions, we do not distinguish functions
which are different on sets of measure zero.

Theorem 1.26 (Monotone convergence). Let fk : Rn → R measurables , positive, i.e. fk ≥ 0 for
all k, and such that fk(x) ≤ fk+1(x) for all x and for all k. Then

lim
k

∫
Rn
fk(x)dx =

∫
Rn

lim
k
fk(x)dx.
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Proof. See [2, Theorem 2.14].

Proposition 1.27. An equivalent definition of the Lebesgue integral (which can be very useful)
is the following. Let f : Rn → R measurable and positive. Let for every t > 0 F (t) = L(A(t)) =
L{x | f(x) > t}. F is called the repartition function of f . Then∫

Rn
f(x)dx =

∫ +∞

0

F (t)dt.

Proof. See [2, Proposition 6.24]

1.6 Decomposition of measures

Definition 1.28. Let ν, ρ be measures defined on (Rn,B(Rn)).
ν is absolutely continuous with respect to L, and we write ν << L if ν(A) = 0 for all A ∈ B

such that L(A) = 0.
ρ is singular with respect to L, and we write ρ ⊥ L, if there exist A,B ∈ B, A ∩ B = ∅,

A ∪B = Rn, such that L(A) = 0 and ρ(B) = 0.

Example 1.29. Let x0 ∈ R and consider the Dirac measure δx0 centered at x0. Then it is singular
with respect to L. Indeed fix A = R\{x0}, B = {x0}, and observe that L(B) = 0 and δx0(A) = 0.

Proposition 1.30. Let f ≥ 0, measurable and such that
∫M
−M f(x)dx < +∞ for all M > 0.

Define the function

νf :M→ [0,+∞] as νf (A) =

∫
A

f(x)dx.

Then νf is a measure on (Rn,M), which is σ-finite and which is absolutely continuous with respect
to L. If f ∈ L1(Rn) the measure is finite.

Proof. First of all we show that it is a measure. Observe that f(x)χ∅(x) = 0 almost everywhere,
then νf (∅) = 0. Let Ai ∈ M which are pairwise disjoint. Define the simple function φk(x) =∑k
i=1 χAi(x). Note that limk φk(x) = χ∪iAi(x). Moreover 0 ≤ f(x)φk(x) ≤ f(x)φk+1(x) and so

by the monotone convergence theorem we get

lim
k

∫
Rn
φk(x)f(x)dx =

∫
Rn

lim
k
φk(x)f(x)dx.

Observe that

lim
k

∫
Rn
φk(x)f(x)dx = lim

k

∫
Rn

k∑
i=1

φi(x)f(x)dx = lim
k

k∑
i=1

∫
Rn
φi(x)f(x)dx

= lim
k

k∑
i=1

∫
Ai

f(x)dx = lim
k

k∑
i=1

νf (Ai) =

+∞∑
i=1

νf (Ai)

and ∫
Rn

lim
k
φk(x)f(x)dx =

∫
Rn
χ∪iAi(x)f(x)dx = νf (∪iAi).

Therefore we get that νf is a measure.
Since νf (B(0, k)) =

∫
B(0,k)

f(x)dx < +∞ by assumption, then νf is σ-finite.

Finally, note that if A ∈ M and L(A) = 0, this implies that χA(x) = 0 almost everywhere.
Therefore also f(x)χA(x) = 0 almost everywhere, which implies νf (A) = 0.

Example 1.31. Let f(x) = e−|x|
2

. Then f ∈ L1(Rn) and the measure νf is called the Gaussian

measure. Note that it is a finite measure, and
∫
Rn e

−|x|2dx = πn/2, see [2, Prop. 2.53].
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Theorem 1.32 (Lebesgue-Radon-Nikodym theorem). Let µ a Borelian measure on Rn which is
σ−finite. Then there exist a unique ν << L (absolutely continuous part) and a unique ρ ⊥ L
(singular part) such that µ = ν + ρ.

Moreover there exists f ≥ 0, measurable and such that
∫
BR

f(x)dx < +∞ for all R > 0, for
which ν = νf .
f is called the density of ν, or the Radon-Nikodym derivative of ν and can be obtained (if the

measure ν is regular) as f(x) = limr→0
ν(B(x,r))
L(B(x,r)) .

Proof. For the proof we refer to [2, Section 3.2].

1.7 Distributions of random variables

Let (Ω,F ,P) be a probability space and X : Ω→ R be a random variable (see Section 2.4). Then
the distribution PX of X is the Borel measure induced on R by X, defined as follows: for every
A ∈ B(R),

PX(A) = P({ω |X(ω) ∈ A}).
The cumulative distribution function associated to such Borel measure is defined as

FX(x) = P({ω |X(ω) ≤ x}).

The distribution identifies the random variable, and often the random variables are described just
in terms of their distributions.

Remark 1.33 (The cumulative distribution function). If X is an (absolutely) continuous random
variable, PX is an absolutely continuous measure and FX is an absolutely continuous function.
The density of PX with respect to the Lebesgue measure is

fX(x) = F ′X(x) = lim
h→0

F (x+ h)− F (x)

h
for a.e.x ∈ R.

If X is a discrete random variable, PX is a singular measure with respect to the Lebesgue
measure and FX is a monotone piecewise constant function.

More generally if FX is the cumulative distribution function associated to a random variable,
then F a right continuous, monotone increasing function, which we normalize to have inf FX = 0
(and obviously supF = 1). FX has at most countably many discontinuity points, that are those
for which F (a) > limx→a− F (x), or equivalently for which

P({ω |X(ω) = a}) > 0.

We define
F dX(x) :=

∑
y≤x

P({ω |X(ω) = a}).

Note that Fd is a monotone increasing function, which is a.e. constant and has jumps only at
discontinuity points of FX .

So the function FX − F dX is a continuous function, and it is easy to check it is still mono-
tone increasing. A deep result in mathematical analysis (see [2, Thm 3.23]) states that mono-
tone increasing functions F are differentiable a.e.- that is for a.e. a ∈ R there exists F ′(a) =

limh→0
F (a+h)−F (a)

h and moreover F ′(a) ≥ 0 a.e. So we define the absolutely continuous part of
FX as

F acX (x) =

∫ x

−∞
F ′X(y)dy =

∫ x

−∞
(FX − F dX)′(y)dy.

So, F ′X(x) is the density of the absolutely continuous measure µFacX .
It is possible to prove that in general

FX(x) = F dX(x) + F acX (x) + F sX(x)

10



where F sX is a continuous and increasing function, whose derivative is zero in almost all x, but
it can be not identically zero (a typical example is the devil’s staircase function, or the Cantor
function).

The three functions F dX , F acX , F sX are all increasing, but are of very different nature:

– F dX can only increase by jumps and it is constants between two consecutive jumps,

– F acX is a “nice” function with the property of being the integral of its derivative, which
coincide with the distribution density,

– F sX is quite weird function, indeed quite hard to imagine (continuous, increasing with zero
derivative a.e.).

We typically deal with real random variables such that the singular part F sX of their distribution
function is identically zero.

Moreover, we see that a real random variable is discrete if and only if FX = F dX and it is
absolutely continuous if and only if FX = F acX and in this case fX(x) = F ′X(x).

Remark 1.34 (Joint distribution). If X,Y are random variables on the same probability space,
that is X,Y : (Ω,F ,P)→ R, we may define the joint cumulative distribution function as

FX,Y (x, y) = P({ω |X(ω) ≤ x} ∩ {ω |Y (ω) ≤ y}).

If X,Y are independent then FX,Y (x, y) = FX(x)FY (y). Two random variables X and Y are
jointly continuous if there exists a nonnegative function fX,Y : R2 → R such that for any measur-
able set A ⊆ R2 there holds

P({ω |(X(ω), Y (ω)) ∈ A}) =

∫
A

fa,y(x, y)dxdy.

The function fX,Y (x, y) is called the joint probability density function and is obtained as

fX,Y (x, y) =
d2

dxdy
FX,Y (x, y) a.e..

Given the joint probability density function it is possible to recover the density functions of X
and Y as the marginals:

fX(x) =

∫ +∞

∞
fX,Y (x, y)dy fY (y) =

∫ +∞

∞
fX,Y (x, y)dx.

On the other hand, given the marginals fX , fY , there is not a unique associated joint probability
density function (apart from the case in which X,Y are independent, in which case fX,Y (x, y) =
fX(x)fY (y)).

Remark 1.35. Some examples of widely used random variables/distributions:

– the Dirac measure δc centered at c is the distribution associated to the constant random
variable c (so the random variable X such that X(ω) = c almost surely).

– the gamma distribution with parameters a, b is an absolutely continuous measure with
density f(x) = Γ(a)−1baxa−1e−bxχ(0,+∞)(x)

– the chi-square distribution is a gamma distribution with parameters n/2, 1/2,

– the normal or Gaussian distribution with parameters µ, σ is an absolutely continuous

random variable, with density f(x) = 1
σ
√

2π
e−

(x−µ)2
2σ ,

– the standard normal distribution is a normal distribution with parameters 0, 1, that is

an absolutely continuous measure with density f(x) = 1√
2π
e−

x2

2 ,
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– the binomial distribution of parameters n, p is a singular measure, and it is given by∑n
k=0

n!
k!(n−k)!p

k(1− p)n−kδk where δk is the Dirac measure centered at k,

– the Poisson distribution of parameter λ is a singular measure, and it is given by

e−λ
∑+∞
k=0

λk

k! δk where δk is the Dirac measure centered at k.

Definition 1.36. The nth-moment of a random variable X is given by E(Xn), more precisely

– if X is a (asbsolutely) continuous random variable (whose associated distribution has density
f) then

E(Xn) =

∫
R
xnf(x)dx.

– if X is a discrete random variable (taking values on Z),

E(Xn) =
∑
k∈Z

knP (ω | X(ω) = k).

Note that E(Xn) < +∞ if and only if E(|X|n) < +∞.
We recall that the moment for n = 1, that is E(X), is called the mean, whereas E(X2) −

(E(X))2 is called the variance.

1.8 Problems

(i) Let f : R→ R be a monotone function. Show that f is Lebesgue measurable.

(ii) Consider the right continuous increasing function on R

F (x) =

{
x x < 0

x+ 1 x ≥ 0.

Which is the Borel measure associated to this function?

2 Lp spaces and spaces of random variables with finite p-
moment.

2.1 Banach spaces

Let X be a vectorial space on R (this means that it is closed by summation and by multiplication
by scalars, that is if x, y ∈ X, λ, µ ∈ R, then λx+ µy ∈ X).

Definition 2.1. A norm ‖ · ‖ : X → [0,+∞) is a function such that

– ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 iff x = 0 (positivity);

– ‖λx‖ = |λ|‖x‖ for all x ∈ X,λ ∈ R (homogeneity);

– ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangular inequality).

(X, ‖ · ‖) is a normed space.

Example 2.2. On Rn we may define the euclidean norm |x| =
√
x2

1 + · · ·+ |xn|2.

A norm induces on X a metric structure on X in the following way.
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Definition 2.3 (Metric structure and notion of convergence). Let (X, ‖ · ‖) be a normed space.
We define a distance between elements in X as

d(x, y) = ‖x− y‖.

Note that this is a good definition, since it is positive, zero only if x = y, and satisfies the triangular
inequality, that is d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.

We define the balls associated to this distance as follows: we fix a center x0 ∈ X and a radius
r > 0 and we set

B(x0, r) = {x ∈ X |‖x− x0‖ < r}.

A set A ⊆ X is open if for all x ∈ A there exists r > 0 such that B(x, r) ⊆ A. A set C is
closed is X \ C is open.

Let (xn)n a sequence of element in X and x ∈ X. Then

lim
n
xn = x iff lim

n→+∞
‖xn − x‖ = 0.

Proposition 2.4. The following are equivalent:

i) C is closed

ii) for every sequence (xn) of elements in C such that there exists x ∈ X with limn xn = x,
there holds that x ∈ C.

Proof. Assume that C is closed and ii) is false. Then there exists (xn) of elements in C such that
limn xn = x 6∈ C. This implies that there exists r > 0 such that B(x, r) ⊆ X \ C. Therefore
xn 6∈ B(x, r) for all n, which means that ‖xn−x‖ ≥ r for all n, in contradiction with the fact that
limn xn = x.

Assume that ii) holds and assume that C is not closed. So there exists x 6∈ C such that for all
r > 0 there holds that B(x, r)∩C 6= ∅. Let xn ∈ C such that xn ∈ B(x, 1

n )∩C. So ‖xn − x‖ < 1
n

and then limn xn = x. But this would imply x ∈ C.

Definition 2.5 (Banach space).
A sequence (xn)n in X is a Cauchy sequence if limn,m ‖xn − xm‖ = 0.
A normed space is called a Banach space if all the Cauchy sequences have limit in X.

Remark 2.6. Note that if (xn)n is a sequence which converge to x ∈ X, then it is also a
Cauchy sequence, since by triangular inequality ‖xn − xm‖ ≤ ‖xn − x‖ + ‖x − xm‖ and then
0 ≤ limn,m→+∞ ‖xn − xm‖ ≤ limm,n→+∞ ‖xn − x‖+ ‖x− xm‖ = 0.

The viceversa is not always true. Let’s think e.g. of the case X = Q and the euclidean
norm. Define (xn) as follows: x0 = 1, x1 = 1, 01, x2 = 1, 01001, x3 = 1, 010010001, x4 =

1, 01001000100001 and so on, that is xn = 1, 1010010001 . . . 1
n

0 . . . 0 1. It is easy to check that
xn ∈ Q for all n, that xn → x (so (xn)n is a Cauchy sequence, but this can also be checked
directly) and that x 6∈ Q. This implies that (Q, | · |) is not a Banach space.

An important theorem in Banach spaces (more generally in complete metric spaces) is the
contraction lemma, or Banach-Caccioppoli theorem:

Theorem 2.7. Let (X, ‖ · ‖) a Banach space and F : X → X such that there exists 0 < a < 1 for
which

‖F (x)− F (y)‖ ≤ a‖x− y‖ ∀x, y ∈ X.

(F is a contraction) Then the map F admits a unique fixed point, that is a point such that
x̄ = F (x̄).

Proof. See problem 1 at the end of the chapter.
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2.2 Bounded linear operators

Definition 2.8. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two Banach space.
A linear operator is a map T : X → Y such that T (αx + βy) = αT (x) + βT (y) for all

α, β ∈ R, x, y ∈ X.
A bounded operator is a map T : X → Y such that

‖T‖ = sup
{x∈X‖x‖≤1}

‖Tx‖ < +∞.

If this quantity if finite, it is called the norm of T .
A continuous operator is a map T : X → Y such that

limTxn = Tx for all sequences xn such that lim
n
xn = x.

Proposition 2.9. A linear operator T : X → Y is continuous if and only if it is bounded.

Proof. Assume that T is bounded, then

‖Txn − Tx‖ = ‖T (xn − x)‖ = ‖xn − x‖T
(

xn − x
‖xn − x‖

)
≤ ‖xn − x‖‖T‖.

Therefore if ‖xn − x‖ → 0, then also ‖Txn − Tx‖ → 0.
Assume that T is continuous, and we want to prove that T is bounded. Assume by contradiction

that it is not true. So for every n ∈ N there exists xn ∈ X such that ‖xn‖ = 1 and ‖Txn‖ ≥ n.

Define yn = xn
n . Then ‖yn‖ = ‖xn‖

n = 1
n → 0. This implies that yn → 0. Observe that by

linearity Tyn = 1
nTxn and then ‖Tyn‖ = 1

n‖Txn‖ ≥
n
n = 1. Therefore yn → 0 but Tyn 6→ 0, in

contradiction with continuity.

Theorem 2.10. The set of all bounded linear operators between two Banach spaces X,Y , is a
Banach space B(X,Y ), with norm ‖T‖ as defined above.

Proof. See [1, Theorem 2.12].

Example 2.11. Let X = Rn and Y = Rm both with the euclidean norm. Let A ∈Mm×n(R) be
a n×m matrix. Then

Tx = Ax = (

n∑
j=1

aijxj)i=1,...,m

is a bounded linear operator from Rn to Rm.

Theorem 2.12 (Uniform boundedness principle, or Banach-Steinhaus theorem). Let Tn be a
sequence of bounded linear operators between the Banach spaces X and Y , that is Tn ∈ B(X,Y )
for all n. Assume that for all x ∈ X there exists Cx ∈ R such that supn ‖Tnx‖ ≤ Cx.

Then there exists C ∈ R such that ‖Tn‖ ≤ C for all n.
In particular this implies that if the sequence Tnx is convergent for every x ∈ X, then Tx :=

limn Tnx defines a bounded linear operator.

Proof. See [1, Theorem 4.1].

2.3 Lp spaces

We consider the Lp spaces defined as follows

Definition 2.13 (Lp spaces). We define for p ≥ 1,

Lp(Rn) =

{
f : Rn → R |f is measurable and

∫
Rn
|f(x)|pdx < +∞

}
.
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Note that also functions in Lp which differ on sets of measure zero are identified.
If A ∈M, then we define

Lp(A) =

{
f : Rn → R |f is measurable and

∫
Rn
|f(x)|pχA(x) =

∫
A

|f(x)|pdx < +∞
}
.

We define

L∞(Rn) = {f : Rn → R |f is measurable and there exists c > 0 such that |f(x)| ≤ c for almost every x}

and analogously

L∞(A) = {f : Rn → R |f is measurable and there exists c > 0 such that |f(x)| ≤ c for almost every x ∈ A}.

Definition 2.14. Let p > 1. Then the conjugate exponent of p is the number q > 1 such that
1/p+ 1/q = 1. In particular the conjugate exponent of 2 is 2.

We say that the conjugate exponent of 1 is +∞.

Lemma 2.15 (Young inequality). Let p, q be conjugate exponents. Then xy ≤ xp/p+ yq/q for all
x, y ≥ 0.

Proof. Fix x > 0 and consider supy≥0(xy − yq/q). First of all observe that the supremum is
actually a maximum, since limy→+∞ xy−yq/q = −∞. Differentiating in y, we get that the unique
point where the derivative is 0 is given by y = x1/(q−1). This is the maximum. Therefore for all
y ≥ 0, xy − yq/q ≤ x1+1/(q−1) − xq/(q−1)/q = xp/p, since p = q/(q − 1).

Theorem 2.16 (Holder inequality). Let O ⊆ Rn be an open set (it can also be O = Rn), p ∈
[1,+∞] and q its conjugate exponent. Assume that f ∈ Lp(O), g ∈ Lq(O). Then f(x)g(x) ∈ L1(O)
and ∫

O

|f(x)g(x)|dx ≤
(∫

O

|f(x)|pdx
)1/p(∫

O

|g(x)|qdx
)1/q

.

Proof. Let f̃(y) = |f(y)|
(∫
O
|f(x)|pdx

)−1/p
and g̃(y) = |g(y)|

(∫
O
|g(x)|qdx

)−1/q
. We apply the

Young inequality to f̃(y) and g̃(y) and we get

|f(y)g(y)|
(∫

O

|f(x))p|dx
)−1/p(∫

O

|g(x))|qdx
)−1/q

≤ 1

p

|f(y)|p∫
O
|f(x)|pdx

+
1

q

|g(y)|q∫
O
|g(x)|qdx

Integrating in O both sides we conclude∫
O
|f(x)g(x)|dx(∫

O
|f(x))p|dx

)1/p (∫
O
|g(x))|qdx

)1/q ≤ 1

p
+

1

q
= 1.

Corollary 2.17 (Minkowski inequality). Let f, g ∈ Lp(O), then(∫
O

|f(x) + g(x)|pdx
) 1
p

≤
(∫

O

|f(x)|pdx
) 1
p

+

(∫
O

|g(x)|pdx
) 1
p

.

Proof. For p = 1,∞, the inequality is straightforward. We consider the case p ∈ (1,+∞). First
of all, we observe that if f, g ∈ Lp the f + g ∈ Lp. This is due to the fact that

|f(x) + g(x)|p

2p
=

∣∣∣∣f(x)

2
+
g(x)

2

∣∣∣∣p ≤ |f(x)|p

2
+
|g(x)|p

2

by the convexity of the function r 7→ rp on [0,+∞) when p ≥ 1. Now we observe that

|f(x) + g(x)|p = |f(x) + g(x)||f(x) + g(x)|p−1 ≤ |f(x)||f(x) + g(x)|p−1 + |f(x)||f(x) + g(x)|p−1
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and that |f(x) + g(x)|p−1 ∈ Lq where q = p
p−1 is the conjugate exponent of p. Moreover∫

O

(
|f(x) + g(x)|p−1

)q
dx =

∫
O

|f(x) + g(x)|pdx. (2.1)

So by Holder inequality applied to f and |f + g|p−1 we get∫
O

|f(x)||f(x) + g(x)|p−1dx ≤
(∫

O

|f(x)|pdx
) 1
p
(∫

O

|f(x) + g(x)|pdx
) p−1

p

and analogously by Holder inequality applied to f and |f + g|p−1 we get∫
O

|g(x)||f(x) + g(x)|p−1dx ≤
(∫

O

|g(x)|pdx
) 1
p
(∫

O

|f(x) + g(x)|pdx
) p−1

p

.

Integrating (2.1) and using the previous inequalities we get∫
O

|f(x) + g(x)|pdx ≤
(∫

O

|f(x)|pdx
) 1
p
(∫

O

|f(x) + g(x)|pdx
) p−1

p

+

(∫
O

|g(x)|pdx
) 1
p
(∫

O

|f(x) + g(x)|pdx
) p−1

p

=

(∫
O

|f(x) + g(x)|pdx
) p−1

p

[(∫
O

|f(x)|pdx
) 1
p

+

(∫
O

|g(x)|pdx
) 1
p

]

from which we deduce the statement by dividing both sides by
(∫
O
|f(x) + g(x)|pdx

) p−1
p .

Theorem 2.18. Let p ≥ 1.

The spaces Lp(O) are Banach spaces, with norm given by ‖f‖p =
(∫
O
|f(x))p|dx

)1/p
.

The space L∞(O) is a Banach space with norm given by ‖f‖∞ = inf{c > 0 |L{x | f(x) ≥ c} = 0}.

Proof. Proving that Lp is a vectorial space is an easy task only if p = 1,+∞, otherwise it is a
consequence of Minkowski inequality (which also gives that ‖·‖p satisfies the triangular inequality),
which is a consequence of the Holder inequality. For the proof see [2, Section 6.1].

A direct consequence of the Holder inequality is the following interpolation inequality.

Corollary 2.19 (Interpolation inequality). Let O ⊆ Rn be an open set (it can also be O = Rn),
p, r ∈ [1,+∞] such that p < r. Assume that f ∈ Lp(O) ∩ Lr(O). Then f ∈ Ls(O) for every
s ∈ [p, r] and moreover

‖f‖s = ‖f‖αp ‖f‖1−αr where α ∈ [0, 1] is such that
1

s
=
α

p
+

1− α
r

.

Proof. Take s ∈ (p, r) and α ∈ (0, 1) such that 1
s = α

p + 1−α
r . Since 1 = αs

p + (1−α)s
r we deduce

that p
αs > 1 and r

(1−α)s > 1 are conjugate exponents.

Since f ∈ Lp, we get that |f |αs ∈ L
p
αs and moreover since f ∈ Lr then f (1−α)s ∈ L

r
(1−α)s .

Therefore by the Holder inequality we get that |f |αs|f |(1−α)s = |f |s ∈ L1, which implies that
f ∈ Ls(O) and moreover

‖f‖ss =

∫
O

|f |sdx ≤
(∫

R
(|f |αs)

p
αs dx

)αs
p
(∫

R
(|f |(1−α)s)

r
(1−α)s dx

) (1−α)s
r

= ‖f‖αsp ‖f‖(1−α)s
r .
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Another consequence of the Holder inequality is the following:

Corollary 2.20. Let O be an open set with L(O) < +∞.Then Lp(O) ⊆ Lr(O) for every 1 ≤ r ≤ p,

and moreover ‖f‖r ≤ ‖f‖pL(O)
p−r
pr .

Proof. Fix p > 1 and f ∈ Lp(O). We want to prove that f ∈ L1(O). Note that since L(O) < +∞,
then χO ∈ Lq(Rn) for every q, so in particular it is in Lq(O) for q conjugate exponent of p. By
Holder inequality we get

‖f‖1 ≤ ‖f‖pL(O)1/q = ‖f‖pL(O)
p−1
p

which give the conclusion of the theorem for r = 1. The case r ∈ (1, p) is obtained just using the

interpolation inequality, proved in the previous corollary: indeed 1
r = α

p + 1− α, with α = p(r−1)
r(p−1)

and then
‖f‖r ≤ ‖f‖αp ‖f‖1−α1 ≤ ‖f‖αp ‖f‖1−αp L(O)

p−1
p (1−α) = ‖f‖pL(O)

p−r
pr .

Finally we present an important example of linear bounded operators from Lp to R.

Example 2.21. Let g ∈ Lq(Rn) with q ≥ 1. Consider the following operator T : Lp(Rn) → R,
where p is the conjugate exponent of q, defined as

Tf =

∫
Rn
f(x)g(x)dx.

It is immediate to check that it is linear. Moreover, by Holder inequality we get, for all f ∈ Lp(Rn)
with ‖f‖p ≤ 1,

|Tf | =
∣∣∣∣∫

Rn
f(x)g(x)dx

∣∣∣∣ ≤ ∫
Rn
|f(x)g(x)|dx ≤ ‖f‖p‖g‖q ≤ ‖g‖q.

Therefore T is a bounded operator, with norm ‖T‖ ≤ ‖g‖q.
Define now fg(x) = |g(x)|q/p‖g‖−q/pq

g(x)
|g(x)| . Then fg ∈ Lp(Rn) and ‖fg‖p = ‖g‖q/pq ‖g‖−q/pq = 1.

We compute, recalling that q/p+ 1 = q

Tfg = ‖g‖q/pq

∫
Rn
|g(x)|q/p+1dx = ‖g‖q/pq

∫
Rn
|g(x)|qdx = ‖g‖q−q/pq = ‖g‖q.

Therefore ‖T‖ = ‖g‖q.

2.4 Convergence in Lp spaces

Note that fn → f in Lp(O) means that limn

∫
O
|fn(x)− f(x)|pdx = 0. Moreover fn → f in L∞ if

limn supO |fn − f | = 0.

Definition 2.22. fn → f almost everywhere if limn fn(x) = f(x) for almost every x.

It is not always true that convergence almost everywhere is sufficient for convergence in Lp as
the following example shows.

Example 2.23. Let

fn(x) =


0 x ≥ 1

n

n− nx 0 ≤ x ≤ 1
n

n+ nx − !
n ≤ x ≤ 0

0 x ≤ − 1
n .

Then limn fn(x) = 0 for almost every x, but
∫
R fn(x)dx = 2 6= 0.
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Theorem 2.24. Let p ≥ 1, (fn)n, f ∈ Lp(O) and assume that fn → f almost everywhere.
If there exists g ∈ Lp(O) such that |fn(x)| ≤ g(x) for almost every x and every n then limn fn =

f in Lp(O).
If limn fn = f in Lp(O), then up to passing to a subsequence fn → f almost everywhere.
If limn fn = f in Lp(O), then fn → f in measure.

Proof. The first part is the Lebesgue dominated convergence theorem, see [2, Theorem 2.24].
The second part is proven in [2, Corollary 2.32].
The third part is a consequence of the Chebycheff inequality (see Problem ii). Indeed

∀ε > 0 L ({x ∈ Rn | |fn(x)− f(x)| > ε})
1
p ≤ 1

ε
‖fn − f‖p.

By the Holder inequality we can multiply functions in Lp by functions in Lq. This gives another
notion of convergence.

Definition 2.25 (Weak convergence). Let 1 < p < +∞. Given (fn)n, f ∈ Lp(O), we say that
fn ⇀ f (weakly) in Lp(O) if for all g ∈ Lq(O), with q the conjugate exponent of p, (q = +∞ if
p = 1) there holds

lim
n

∫
O

fn(x)g(x)dx =

∫
O

f(x)g(x)dx.

Given (fn)n, f ∈ L∞(O), we say that fn ⇀? f (weakly star) in L∞(O) if for all function g ∈
L1(O), there holds

lim
n

∫
O

fn(x)g(x)dx =

∫
O

f(x)g(x)dx.

Given (fn)n, f ∈ L1(O), we say that fn ⇀ f (weakly) in L1(O) if for all continuous and
bounded functions g : O → R, there holds

lim
n

∫
O

fn(x)g(x)dx =

∫
O

f(x)g(x)dx.

If fn are densities of continuous random variables Xn, this convergence is also called convergence
in distribution of Xn.

Proposition 2.26. If fn converge to f in Lp then it also converge weakly in Lp, whereas the
viceversa is not true.

Proof. The statement is a consequence of Holder inequality: let fn, f ∈ Lp and g ∈ Lq (for p > 1)
or g continuous and bounded (if p = 1), then∣∣∣∣∫

O

(fn(x)− f(x))g(x)dx

∣∣∣∣ ≤ ∫
O

|fn(x)− f(x||g(x)|dx ≤ ‖fn − f‖p‖g‖q.

Therefore if ‖fn − f‖p → 0, then
∫
O

(fn(x)− f(x))g(x)dx→ 0.

The main examples of sequence of functions which are converging weakly but not strongly are
rapidly oscillating functions.

Example 2.27. [Weak convergence of periodic functions] Let f(x) be a continuous periodic
function (e.g, f(x) = sinx) in R with period T .

Define fn(x) = f(nx) (note that this is a periodic function with period T/n, so as n → +∞
this is more and more oscillating).

Then for every O ⊆ Rn borelian bounded set

fn ⇀
1

T

∫ T

0

f(x)dx in Lp(O) for all 1 ≤ p < +∞
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and moreover

fn ⇀
? 1

T

∫ T

0

f(x)dx in L∞(O).

For the proof see [1, Example 5.16].

Intuitively weak convergence is convergence of mean values.

2.5 Spaces of random variables with finite moments

We fix a probability space (Ω,F ,P) and we consider the random variables X : Ω → R. We
introduce the spaces of random variables with finite p-moment (see definition in Section 2.7)

Mp = {X random variable E(|X|p) < +∞}

ans we ‖X‖p = (E(|X|p))1/p.
First of all we have the following Holder inequality and Minkowski inequality

Proposition 2.28. Let X ∈Mp and Y ∈Mq, with q conjugate exponent of p, then

E(|XY |) ≤ E(|X|p))1/p(E(|Y |q))1/q.

Moreover if X,Z ∈Mp, then

E(|X + Z|p))1/p ≤ E(|X|p))1/p + E(|Z|p))1/p

Proof. It is sufficient to apply the Young inequality to |X|E(|X|p))−1/p and to |Y |E(|Y |q))−1/q

and proceed as for Lp spaces (instead of integrating in O one needs to take the average of both
side of the inequality). The proof of Minkowski also follows again as for the case of Lp spaces.

Theorem 2.29. The space Mp with the norm ‖X‖p for p ∈ [1,+∞) is a Banach space.

Similarly as for Lp(O) spaces, where L(O) < +∞ (see Corollary 2.20), the spaces Mp are
decreasing as we will show. First of all we recall the Jensen inequality:

Lemma 2.30 (Jensen’s inequality). Let g : R → R be a convex function, then for every random
variable X

E(g(X)) ≥ g(E(X)).

Theorem 2.31. There holds that Mk ⊆ Mn for every 1 ≤ n ≤ k. Moreover if X ∈ Mk then
(E(|X|n))

1
n ≤ (E(|X|k))

1
k for all n ≤ k.

Proof. Let 1 ≤ n ≤ k, g(x) = |x| kn . Since k
n ≥ 1, the function g is convex. Let X ∈ Mk and we

apply Jensen’s inequality to the random variable |X|n, observing that g(|X|n) = |X|k,

E(|X|k) = E(g(|X|n)) ≥ g(E(|X|n)) = (E(|X|n))
k
n .

Example 2.32. T : Mk → R such that T (X) = E(X) is a bounded linear operator.
If we consider X ∈ M2, then TX : M2 → R defined as TX(y) = E(XY ) is again a bounded

linear operator.
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2.6 Modes of convergence for random variables

Analogously to the case of measurable functions we have several notion of convergence in the space
of random variables (and in the associated space of distributions).

Definition 2.33. Let Xn be a sequence of real randos variables.

– Xn → X in probability if for every ε > 0, limn P(|Xn −X| > ε) = 0.

– Xn → X in M1 if E(|Xn −X|) → 0, that is convergence is mean and Xn → X in M2

M2 if E((Xn −X)2)→ 0, that is convergence is the mean square convergence.

– Xn → X in distribution if E(g(Xn)) → E(g(X)) for every bounded continuous function g.
Note that if Xn, X are continous random variables with associated densities fn, f , then this
is equivalent to say that fn converges weakly in L1 to f .

Theorem 2.34 (Prokhorov’s theorem). Let Xn be a sequence of random variables which are tight
in the following sense: for every ε > 0 there exist nε > 0 and a compact set Kε (so a bounded
closed set) such that P{ω,Xn(ω) ∈ Kε} ≥ 1 − ε for all n ≥ nε. Then, there exists a random
variable X such that, up to a subsequence, Xn → X in distribution.

2.7 Problems

(i) Let (X, ‖ · ‖) a Banach space and F : X → X such that there exists 0 < a < 1 for which

‖F (x)− F (y)‖ ≤ a‖x− y‖ ∀x, y ∈ X.

(F is a contraction)

(a) Show that the map F is continuous.

(b) Let x0 ∈ X. Define x1 = F (x0), x2 = F (x1) and so on xn = F (xn−1). Prove that

‖xn − xn+1‖ ≤ an‖x0 − x1‖.

Deduce that (xn)n is a Cauchy sequence.

(c) Let x̄ = limn xn, where (xn) has been defined in the previous step. Show that F (x̄) = x̄.
So, x̄ is a fixed point of F .

(d) Show that the map F admits a unique fixed point, that is a point such that x̄ = F (x̄).

This is called Banach-Caccioppoli theorem.

(ii) Let f ∈ Lp(Rn) and α > 0. Prove that

L ({x ∈ Rn | |f(x)| > α})
1
p ≤ 1

α
‖f‖p.

This is called Chebycheff inequality.

(iii) Prove that if f ∈ L2(−1, 1) then f ∈ L1(−1, 1) and moreover

‖f‖1 ≤
√

2‖f‖2.

Provide an example of a function f ∈ L1(−1, 1) such that f 6∈ L2(−1, 1).

(iv) Consider the following operator T : L2(0, 2)→ L2(0, 2) defined as

Tf(x) =

∫ x

0

f(y)dy.

Show that this is a bounded continuous operator.

Hint Recall the Jensen inequality:(
1

b− a

∫ b

a

f(x)dx

)2

≤ 1

b− a

∫ b

a

f(x)2dx.
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3 Hilbert spaces

3.1 Hilbert spaces

Hilbert spaces are spaces where it is possible to define the notions of length and orthogonality,
which allow to work with the elements geometrically, as if they were vectors in Euclidean space.
First of all we recalls some basic definitions.

Definition 3.1. A set X is a vector space on R (a real vector space) if it is a set equipped with
two operations, vector addition (which allows to add two vectors x, y ∈ X to obtain another vector
x+y ∈ X) and scalar multiplication (which allows us to “scale” a vector x ∈ X by a real number c
to obtain a vector cx ∈ X). Moreover we require that X contains a neutral element for the vector
addiction, that is an element 0 ∈ X such that 0 + x = x for every x ∈ X and x− x = 0.

A scalar product on X is a function (·, ·) : X ×X → R such that

– (x, x) ≥ 0 for all x and (x, x) = 0 iff x = 0;

– it is symmetric (x, y) = (y, x) for all x, y ∈ X;

– it is linear, that is (αx+ βy, z) = α(x, z) + β(y, z) for all x, y, z ∈ X,α, β ∈ R.

We associate to a scalar product a norm in this way ‖x‖ =
√

(x, x).

Proposition 3.2. The function ‖·‖ : X → [0,+∞) defined as ‖x‖ =
√

(x, x) is a norm. Moreover
the scalar product is continuous, that is if xn → x in X and y ∈ X, then (xn, y)→ (x, y) in R.

Proof. Positivity and homogeneity are obvious. To prove the triangle inequality one first need to
to prove the Cauchy Schwartz inequality |(x, y)| ≤ ‖x‖‖y‖. See [1, Theorem 5.1].

The continuity is an easy consequence of the Cauchy Schwartz inequality:

|(xn − x, y)| ≤ ‖xn − x‖‖y‖.

Definition 3.3 (Hilbert space). A space X with a scalar product which induces on X a norm
such that X is a Banach space is called Hilbert space.

Proposition 3.4 (Parallelogram identity). For every x, y ∈ H, there holds

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Proof. By definition and by linearity and symmetry of the scalar product ‖x+y‖2 = (x+y, x+y) =
(x, x)+2(x, y)+(y, y) = ‖x‖2 +2(x, y)+‖y‖2, and ‖x−y‖2 = (x+y, x+y) = ‖x‖2−2(x, y)+‖y‖2.
It is sufficient to sum.

Example 3.5. In Rn we define the scalar product (x, y) = x1y1 +x2y2 + · · ·+xnyn. The euclidean
norm is the norm associated to this scalar product. So Rn with this scalar product is a Hilbert
space. This is the basic example of Hilbert space of finite dimension.

3.2 Orthogonality and projections in Hilbert spaces

Definition 3.6 (Orthogonal space). We say that x, y ∈ X are orthogonal if (x, y) = 0.
If S ⊆ X is a subset of X, we define the orthogonal subspace

S⊥ = {x ∈ X | (x, s) = 0 ∀s ∈ S}.

This a vectorial subspace of X.

Example 3.7. If we consider S ⊂ M2 the subspace of constant random variables, then S⊥ =
{X ∈M2 |E(X) = 0}.
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Theorem 3.8 (Orthogonal projection). Let V ⊆ H be a closed subspace of a Hilbert space,
V 6= {0} and let h ∈ H.

Then there exists a unique element v ∈ V at minimal distance from h, that is such that
‖h− v‖ = minw∈V ‖h− w‖. Moreover there exists a unique element s ∈ V ⊥ such that h = v + s.

The map PrV : H → V which associate h → v is called the orthogonal projection of H in V
and it is a bounded linear operator of norm 1.

Proof. We consider the minimization problem minw∈V ‖h − w‖ and we show that it admits a
solution which is unique. Since ‖h−w‖ ≥ 0 we get that infw∈V ‖h−w‖ = δ ≥ 0. Let vn ∈ V such
that δ ≤ ‖vn − h‖ ≤ δ + 1/n. Then (vn)n is a Cauchy sequence, since by parallelogram identity
and linearity

‖vn−vm‖2 = 2‖vn−h‖2+2‖vm−h‖2−‖(vn+vm)−2h‖2 ≤ 2(δ+1/n)2+2(δ+1/m)2−4‖h−(vn+vm)/2‖2.

We conclude by recalling that since (vn + vm)/2 ∈ V then ‖h− (vn + vm)/2‖ ≥ δ,

‖vn−vm‖2 ≤ 2(δ+1/n)2+2(δ+1/m)2−4δ2 = 4δ/n+4δ/m+1/n2+1/m2 → 0 as n,m→ +∞.

Since H is a Banach space there exists v ∈ H such that limn vn = v and since V is closed then
v ∈ V . By continuity, we conclude that ‖v−h‖ = δ = infw∈V ‖h−w‖. v is the unique minimizer.
Indeed if it were not the case, there would exists v′ ∈ V with ‖v − h‖ = ‖v′ − h‖ = δ. By
parallelogram identity

‖v − v′‖2 = 2‖v − h‖2 + 2‖v′ − h‖2 − 4‖(v + v′)/2− h‖2 ≤ 2δ2 + 2δ2 − 4δ2 = 0

which implies ‖v − v′‖ = 0.
Let w ∈ V . We claim that (h − v, w) = 0. Since v is the point at minimum distance, then

the function λ → ‖h − v + λw‖2 has minimum in λ = 0. Differentiating the function in λ it

should be that the derivative in 0 is 0. ‖h−v+λw‖2
dλ = (h−v+λw,h−v+λw)

dλ = 2(h − v, w). Therefore
(h− v, w) = 0. This means that h− v ∈ V ⊥.

Let v = PrV (h), v′ = PrV (h′) and let α, β ∈ R. Then αv+βv′ ∈ V and αv+βv′−αh−βh′ ∈
V ⊥. Therefore by uniqueness PrV (αh + βh′) = αv + βv′. Then PrV is linear. Moreover since
(PrV h− h, PrV h) = 0,

‖h‖2 = ‖h−PrV h+PrV h‖2 = (h−PrV h+PrV h, h−PrV h+PrV h) = ‖h−PrV h‖2 +‖PrV h‖2.

This implies that for all h with ‖h‖ ≤ 1, ‖PrV h‖2 = ‖h‖2−‖h−PrV h‖2 ≤ 1. So PrV is bounded.
Moreover if h ∈ V , then PrV h = h. Therefore ‖PrV ‖ = 1.

Definition 3.9 (Orthonormal set). A set {ui, i ∈ I} of elements in H is an orthonormal set if
‖ui‖ = 1 for all i and (ui, uj) = 0 for all i 6= j.

Proposition 3.10. Let {ui, i ∈ I} be a orthonormal set. Then the following are equivalent

– if (x, ui) = 0 for all i, then x = 0

– ‖x‖2 =
∑
i |(x, ui)|2 for all x ∈ H,

– for all x ∈ H, x =
∑
i(x, ui)ui, (where the convergence is with respect to the norm of H).

An orthonormal set for which one of the previous conditions hold is called an orthonormal
basis. Every Hilbert space admits a orthonormal basis.

Proof. See [2, Proposition 5.28].

Definition 3.11 (Separable space). H is separable if it admits a countable orthonormal basis.
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Theorem 3.12 (Computation of the orthogonal projection). Let V be a closed subspace of H and
let {vi, i ∈ I} be an orthonormal basis of V . Then for all h ∈ H,

PrV (h) =
∑
i∈I

(h, vi)vi.

Proof. See [1, Theorem 5.10].

Theorem 3.13 (Parseval theorem). Let {ui, i ∈ I} be a countable orthonormal set in H. The
following are equivalent

– if (h, ui) = 0 for all i then h = 0,

– for each h ∈ H there holds h =
∑
i(h, ui)ui, which means that limn ‖h−

∑n
i=1(h, ui)ui‖ = 0,

– for each h ∈ H, ‖h‖2 =
∑
i |(h, ui)|2.

In particular {ui, i ∈ I} is an orthonormal basis of H.

3.3 Hilbert space of random variables and conditional expectation

We fix a probability space (Ω,P,F) and we define the space

M2 = {X : (Ω,P,F)→ R | X random variable with E(X2) < +∞}.

Recall that X is a random variable if X−1(A) ∈ F for every A ∈ B (so for every A in the
σ−algebra of Borel sets. Given X random variable, we define σ(X) ⊆ F , that is the σ-algebra
generated by X, as the minimal σ- algebra contained in F which contains all the elements
X−1(A) = {ω ∈ Ω | X(ω) ∈ A} for every A ∈ B. So it is the minimal σ-algebra which assures
that X is measurable.

Note that if X is a constant random variable, so X(ω) = c for all ω ∈ Ω, then X−1(A) = Ω
if c ∈ A, and X−1(A) = ∅ if c 6∈ A. So in this case σ(X) = {∅,Ω}, which is the minimal possible
σ-algebra.

We define on M2 the scalar product

(X,Y ) = E(XY )

and the induced norm is
‖X‖ =

√
E(X2).

It is possible to prove that M2 with this norm and this scalar product is a Hilbert space. Observe
that, as we did for Lp spaces, we are actually considering class of equivalence of random variables,
since we are identifying two random variables X,Y such that P(ω | X(ω) = Y (ω)) = 1.

We consider a σ-algebra G ⊆ F , and consider the probability space (Ω,P,G). On this space
we may define the space

M2
G = {X : (Ω,P,G)→ R | X random variable with E(X2) < +∞}.

Note that M2
G is a closed subspace of M2.

Definition 3.14 (Conditional expectation). We define the conditional expectation of X given
G as the orthogonal projection of X ∈M2 in the space M2

G as defined and characterized in Theorem
3.8 that is

E(X|G) = PrM2
G
(X),

or equivalently E(X|G) is the unique random variable in M2
G such that

E(X − E(X|G))2 = min
Z∈M2

G

E(X − Z)2.
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In particular E(X|G) is the minimum mean squared predictor of X based on the information
contained in G.

Note that X − E(X|G) is orthogonal to every element of M2
G that is

E(XY ) = E(E(X|G)Y ) ∀ Y ∈M2
G .

In particular, since constant random variables are in M2
G for every G, we get E(X) = E(E(X|G)).

Remark 3.15 (Conditioning with respect to a random variable X). A particular case of the
previous definition is the following. Let us consider a random variable X ∈M2, and let G = σ(X)
as before. It is possible to show that in this case every G measurable random variable is a Borel
function of X, which means that

M2
G := {h(X), for h : R→ R,borelian function}.

h : R→ R is a Borel function if for all borelian set B ⊆ B(R), the set h−1(B) := {x ∈ R h(x) ∈ B}
is in the Borel σ-algebra (Note that this condition is slightly stronger than asking that h is
measurable, since measurable functions satisfies h−1(B) := {x ∈ R h(x) ∈ B} ∈ M, that is are
elements of the σ-algebra of measurable sets (given by sets which differs from Borel sets by subsets
of sets of zero Lebesgue measure).

In this case E(Y |σ(X)) = E(Y |X) is the best predictor of Y given X. In particular E(Y |X)
the unique Borel function h(X) which minimizes E(Y − h(X))2:

E[(Y − E(Y |X))2] = E[(Y − h(X))2] = min
f :R→R,borelian

E[(Y − f(X))2]

and moreover
E(Y f(X)) = E(h(X)f(X)) ∀f : R→ R. borelian.

Note that solving this minimization problem can be very difficult, so in general we consider a
reduced problem, adding some conditions on the functions f on which we are minimizing.

The simplest case is the case in which we consider the minimization problem among linear
functions: that is

min
f :R→R,linear

E[(Y − f(X))2].

h : R → R is linear if and only if there exists a, b ∈ R such that h(r) = ar + b. So the problem
reduced to a finite dimensional problem: given X ∈ M2 we want to find for all Y , a, b ∈ R for
which it is minimal E((Y − a− bX)2). So, the linear least square estimator is given by

L(Y |X) = a+ bX,

where a, b are the optimal values which minimize E((Y −a− bX)2). This problem can be restated
exactly as a projection problem: we define S as the space generated by X, 1 in M2, that is
S = {Z = aX + b ∈M2, a ∈ R, b ∈ R} and we want to find PrS(Y ).

In order to solve the problem, first of all we choose an orthonormal basis of S. A basis
of S is given by {1, X}. Observe that if E(X) = (X, 1) 6= 0, we have that X and 1 are not
orthogonal, so we substitute X with the element X − E(X) which is orthogonal to 1. Moreover
we have to normalize this element by choosing c ∈ R such that c2E(X − E(X))2 = 1. Since
E(X − E(X))2 = E(X2) − (E(X))2 = V ar(X), it is sufficient to choose c =

√
V arX. Therefore

an orthonormal basis of S is given by 1, X−E(X)√
V ar(X)

. Recalling Theorem 3.12, we get

PrS(Y ) = (Y, 1)1 +

(
Y,
X − E(X)√
V ar(X)

)
X − E(X)√
V ar(X)

.

So the linear least square estimator coincides with

L(Y |X) = E(Y ) +
Cov(X,Y )

V ar(X)
(X − E(X)).
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Finally we compute the average error

E(Y − L(Y |X))2 = V ar(Y ) +
Cov2(X,Y )

V ar2(X)
V arX − 2

Cov(X,Y )

V ar(X)
Cov(X,Y )

= V arY − Cov2(X,Y )

V ar(X)
=
V ar(Y )V ar(X)− Cov2(XY )

V ar(X)
.

In general the best linear predictor is different from the general minimum mean squared pre-
dictor. Let Y = X2 + Z with X,Z independent and both normals with mean 0 and variance 1.
Then E(Y |X) = X2, whereas L(Y |X) = 1 (check it!).

Remark 3.16 (Conditioning with respect to a constant random variable). A very simple case to
compute E(Y |σ(X)) = E(Y |X) is the case in which X ≡ k (that is X is constant). In this case
σ(X) = {∅,Ω) and the space

M2
G := {constant random variables}.

So, E(Y |X) is the unique constant c such that

E[(Y − c)2] = min
λ∈R

E[(Y − λ)2]

and moreover
λE(Y ) = E(Y λ) = E(cλ) = cλ ∀λ ∈ R.

It is immediate to verify that c = E(Y |G) = E(Y ). Another simple case is the case in which
X = χA, for some A ∈ F which means that χA(ω) = 1 if ω ∈ A and χA(ω) = 0 if ω 6∈ A. It is
simple to see that in this case σ(χA) = {∅,Ω, A,Ω \A}. In this case

M2
G := {aχA + bχΩ\A = (a− b)χA + b a, b ∈ R}.

So, E(Y |A) is obtained by solving the finite dimensional minimization problem

min
a,b∈R

E[(Y − aχA − b)2].

Since M2
G is a finite dimensional space (of dimension 2), we compute a orthonormal basis of it. We

start from the basis given by {1, χA} and we orthonormalize it by Gram-Schmidt procedure. Let

X1 = 1 and X2 = χA−P(A)√
P(A)(1−P(A))

. Note that E|X1|2 = 1 = E|X2|2 and moreover E(X1X2) = 0.

Therefore by Theorem 3.12 we deduce that

E(Y |A) = E(Y X1)X1 + E(Y X2)X2 = E(Y ) +
E(Y χA)

P(A)(1− P(A))
χA − E(Y )

P(A)

P(A)(1− P(A))
=

=
E(Y χA)

P(A)(1− P(A))
χA −

P(A)

1− P(A)
E(Y ).

3.4 Bounded linear operators in Hilbert spaces

Let H be a Hilbert space. We consider linear bounded operators T : H → H.

Definition 3.17 (Adjoint of an operator). Let T : H → H be a bounded linear operator. The
adjoint of T is the operator T ∗ : H → H such that (Th, k) = (h, T ∗k) for all h, k ∈ H. T is
symmetric if T = T ∗.

Proposition 3.18. Let T be a linear bounded symmetric operator. Then ‖T‖ = sup‖x‖=1 |(Tx, x)|.
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Proof. By Cauchy Schwartz inequality we get

|(Tx, x)| ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2 = ‖T‖.

On the other hand take x ∈ H with ‖x‖ = 1 and Tx 6= 0 and define y = Tx/‖Tx‖. Then ‖y‖ = 1
and by symmetry and linearity of the operator

(Ty, x) =
1

‖Tx‖
(T (Tx), x) =

1

‖Tx‖
(Tx, Tx) = ‖Tx‖.

A simple computation gives that 4(Ty, x) = (T (x+ y), x+ y)− (T (x− y), x− y), and then we get

4‖Tx‖ = 4|(Ty, x) = (T (x+ y), x+ y)− (T (x− y), x− y) ≤ sup
‖z‖=1

|(Tz, z)|(‖x+ y‖2 + ‖x− y‖2)

= sup
‖z‖=1

|(Tz, z)|(2‖x‖2 + 2‖y‖2)

where at the end we used the parallelogram identity. So we deduce, recalling that ‖x‖ = 1 = ‖y‖
that ‖Tx‖ ≤ sup‖z‖=1 |(Tz, z)|. This gives the conclusion taking the supremum with respect to
x.

Definition 3.19 (Compact operators). Let T : H → H be a linear bounded operator. T is compact
if for every bounded sequence (hn)n, there exists a subsequence such that (Thn)n has a limit, that
is limn Thn = v.

Equivalently (it has to be proved though), an operator is compact if for every sequence hn ⇀ h
( hn is weakly converging to h), there holds that limn ‖Thn − Th‖ = 0, so Thn converge strongly
to Th.

Definition 3.20 (Point spectrum (eigenvalues) of an operator). The point spectrum σp(T ) of
a operator is given by the eigenvalues of T , that is by the elements λ ∈ R such that there exists
v ∈ H (called eigenvector) for which Tv = λv:

σp(T ) := {λ ∈ R | ∃v ∈ H,Tv = λv}.

Given λ ∈ σp(T ), every element v ∈ H such that Tv = λv is called eigenvector relative to the
eigenvalue λ.

The kernel of an operator is the subspace N of H composed by vectors h ∈ H such that Th = 0
(N is the space of eigenvectors relative to the eigenvalue 0).

Theorem 3.21 (Spectral theorem for compact symmetric operators). Let T be a symmetric
compact operator on H, separable Hilbert space.

If H is infinite dimensional, then T is not invertible (even if the kernel of T can be 0).
There exist xk ∈ H, λk ∈ R, such that {xk} is an orthonormal basis of H and Txk = λkxk

(that is λk are eigenvalues of T with associated eigenvectors xk) and the space {x ∈ H Tx = λkx}
for every λk 6= 0 has finite dimension (so the multiplicity of every non zero eigenvalue is finite).
Moreover the set of all the eigenvalues {λk} of T is either finite or countable, and in this case
limk λk = 0:

either σp(T ) = {λ1, . . . , λN} or σp(T ) = {λk, k ∈ N} and lim
k→+∞

λk = 0.

Finally, let
m = inf

{h∈H‖h‖=1}
(Th, h) M = sup

{h∈H‖h‖=1}
(Th, h).

Then m,M ∈ σp(T ) and σp(T ) ⊆ [m,M ].

Proof. For the proof we refer to [1, Theorem 6.3, Lemma 6.5].
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Remark 3.22. Let T be a symmetric compact operator and {λk} the set of all eigenvalues of T .
Let Vk = {x ∈ H,Tx = λkx} for every k, and Pk be the projection on Vk. Then

T =
∑
k

λkPk.

Definition 3.23 (Hilbert-Schmidt operator). Let H be a separable. Hilbert space and T a compact
symmetric operator. We say that T is an Hilbert Schmidt operator if∑

k

λ2
k =

∑
k

‖Tvk‖2 < +∞

where λk are the eigenvalues of T .

Actually it can be proved that if T is a Hilbert Schmidt operator, the value of the sum∑
k ‖Tvk‖2 does not depend on the choice of the orthonormal basis vk.

Proposition 3.24. Let H be a separable metric space with orthonormal basis ui and H be the
space of all Hilbert Schmidt operators. Then this space with the norm

‖T‖ =
∑
i

‖Tui‖

is a Hilbert space with scalar product given by

(S, T ) =
∑
i

(Sui, Tui).

Example 3.25. [Finite dimensional case] Let H = Rn and Tx = Ax for some n × n matrix A
with values in R. The adjoint of T is T ∗x = ATx, where AT is the traspose of the matrix A. T
is symmetric if and only if A is symmetric. Moreover the eigenvalues of T are the eigenvalues of
the matrix A.

Finally the spectral theorem for compact symmetric operators says that if A is a symmetric
matrix, then it can be reduced to diagonal form by a orthogonal transformation.

Remark 3.26. Let T be a Hilbert-Schmidt operator, such that 1 is not an eigenvalue of T . Then
for all f ∈ H, the equation

h− Th = f

admits a unique solution h ∈ H. Indeed, consider vk an orthonormal basis of H composed by
eigenvectors of T . Then we rewrite the equation as

h− Th =
∑
k

(h, vk)vk −
∑
k

(h, vk)λkvk =
∑
k

(1− λk)(h, vk)vk = f =
∑
k

(f, vk)vk.

Therefore the equation is satisfied if

(1− λk)(h, vk) = (f, vk) that is (h, vk) =
(f, vk)

1− λk
.

Then the solution h to the equation is given by

h :=
∑
k

(f, vk)

1− λk
vk.
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3.5 Problems

(i) Let Xn, Yn ∈ H such that Xn → X and Yn → Y . Show that

– E(Xn)→ E(X),

– (Xn, Yn) = E(XnYn)→ E(XY ) = (X,Y ),

– Cov(Xn, Yn) = E(XnYn)− E(Xn)E(Yn)→ Cov(XY ) = E(XY )− E(X)E(Y )

– V ar(Xn) = Cov(Xn, Xn)→ V ar(X) = Cov(X,X).

(ii) Consider H = L2(−1, 1).

(a) Let V1 = {a + bx |a, b ∈ R, x ∈ (−1, 1)} (the subspace of polynomials of degree less
than 1.) Find the orthogonal projection of x2 on V1.

(b) Let V2 = {a+ bx+ cx2 |a, b, c ∈ R, x ∈ (−1, 1)} (the subspace of polynomials of degree
less than 2). Find the orthogonal projection of x3 on V2.

(iii) Consider X,Y, Z ∈ H and assume X,Z are not constant. Compute the least linear quadratic
estimator L(Y |X,Z). Show that L(Y |X,Z) = L(Y |X) + L(Y |Z − L(Z|X))− E(Y ). (Hint:
look at Remark 3.15).

(iv) Let T : L2(0.1)→ L2(0, 1) defined as Tf(x) =
∫ x

0
f(y)dy.

Show that this is a compact operator and compute its adjoint.

4 Elements of Fourier Analysis

Fourier Analysis has several important applications in mathematics and statistics, in particular
in data analysis and estimation. Loosely speaking, Fourier analysis refers to the tool used to
compress complex data into exponential functions (or trigonometric functions). So, it permits to
analyze data in terms of their frequency components. Two of the central ingredients of Fourier
Analysis are the convolution operator and the Fourier transform.

In this last chapter we will consider also functions taking complex values, that is f : R → C.
In this case f can be written in terms of 2 real functions f1, f2 which correspond to the real and
imaginary part of f , that is f(x) = f1(x) + if2(x).

We recall also the formula for the complex exponential

eix = cosx+ i sinx.

4.1 Convolution operator

Let f, g : Rn → R be measurable functions and we define the convolution between f and g as the
function

f ∗ g(x) :=

∫
R
f(x− y)g(y)dy ( or equivalently =

∫
R
f(y)g(x− y)dy)

for all x such that the integral exists finite. Note that f ∗ g is a function of x!
Intuitively: let x ∈ Rn and consider the function y → f(x−y). This is the same as the function f ,
but we have to shift the graph of f by x and then flip it around the axis y = x. Assume that f is
a smooth function which is positive only in a neighborhood of 0 and null elsewhere, with integral
1. Computing f ∗ g(x) we are taking a sort of weighted average of the values of g near the point
x (weighted by the values of g)..

Basic properties of the convolution are the following. For the proof we refer to the Section 8.2
in [2].

(i) f ∗ g(x) = g ∗ f(x) and (f ∗ g) ∗ h(x) = f ∗ (g ∗ h)(x),
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(ii) The support of a function h is the closure of the set of points where h 6= 0. The support of
f ∗ g is contained in the closure of the sum of the support of f and the support of g.

(iii) Young inequality for convolutions. If f ∈ Lp(Rn) for some p ∈ [1,+∞] and g ∈ L1(Rn)
then f ∗ g ∈ Lp(Rn) and moreover ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

One of the main important features of the convolution operator is that it has regularizing properties.

Proposition 4.1. Let f ∈ L2(Rn) and g ∈ L2(Rn), then f ∗ g(x) is a continuous function such
that lim|x|→+∞ f ∗ g(x) = 0 (so it is also bounded). Moreover ‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2.

If f ∈ L1(Rn) and g ∈ Ck(Rn) bounded and with bounded derivatives up to order k, then
f ∗ g ∈ Ck(Rn) and for every i ∈ {1, . . . , n} and h ∈ {1, . . . , k}, ∂hxi(f ∗ g)(x) = f ∗ (∂hxig)(x).

Let

g(x) =

{
ce

1
|x|2−1 |x| ≤ 1

0 elsewhere

where c > 0 is chosen such that
∫
R g(x)dx = 1. Note that g ∈ C∞(R) and g(x) = 0 for |x| ≥ 1.

Let t > 0 and consider gt(x) = tg
(
x
t

)
. Then

∫
R gt(x)dx = 1 (by change of variable formula!)

and gt(x) = 0 if |x| ≥ t.
As t→ 0 gt becomes more and more concentrated at x = 0. Observe that by its properties, gt

is the density function of a continuous random variable Xt.

Proposition 4.2 (Approximation of the Dirac measure and regularization by convolution). Let Xt

be the continuous random variable with density given by gt as defined before. Then Xt converges
in distribution as t → 0+ to the discrete random variable X0 with associated distribution the
Dirac measure δ0 (that is X ≡ 0 almost surely).
Let f ∈ Lp(R) for p ∈ [1,+∞). Then gt ∗ f(x) is smooth (that is, it is in C∞) and moreover
gt ∗ f(x)→ f in Lp.

Proof. To prove the convergence in distribution we need to show that for every f which is contin-
uous and bounded there holds

lim
t→0+

∫
R
f(x)gt(x)dx = δ0(f) = f(0).

By definition and changing the variable posing y = x
t∫

R
f(x)gt(x)dx =

∫ t

−t
f(x)gt(x)dx = c

∫ 1

−1

f(ty)e
− 1
|y|2−1 dy.

Sending t→ 0 and applying the dominated convergence theorem we conclude.
The second part of the theorem is a consequence of the properties of convolutions. We refer

to [2, Chapt. 8.2].

The convolution is also useful to compute density functions of the sum of independent random
variables.

Theorem 4.3. Let X and Y be independent continuous random variables and let f, g the asso-
ciated density functions. So Z = X + Y is a continuous random variable with density function
given by f ∗ g.

Remark 4.4. The same statement holds also with discrete random variables, substituting the
integral with sum and convolution with a discrete convolution. That is if X,Y are discrete inde-
pendent random variables, then X + Y = Z is discrete random variable and the following holds:
for every n ∈ Z,

P(Z = n) =

+∞∑
−∞

P(X = k)P(Y = n− k).

The proof of this formula can be checked easily in the case of random variables taking a finite
number of values.
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Proof. Observe that for every a, b, by independence

P(X ≤ a, Y ≤ b) = P(X ≤ a)P(Y ≤ b) =

∫ a

−∞
f(x)dy

∫ b

−∞
g(y)dy.

So in particular we get

P(X + Y ≤ t) = P(X ≤ x, Y ≤ y, x+ y ≤ t) =

∫
(x,y)∈R2,x+y≤t

f(x)g(y)dxdy

where the integral is an integral computed in R2. We change variables to (z, w) where x = z and
w = x+ y (so y = w − z). So we get that z ∈ R and w ≤ t:

P(X + Y ≤ t) =

∫
(x,y)∈R2,x+y≤t

f(x)g(y)dxdy =

∫ t

−∞

∫
R
f(z)g(w − z)dwdz =

∫ t

−∞
f ∗ g(z)dz

where in the last equality we use the definition of convolution.

4.2 Fourier series

Assume that f is 2π periodic and bounded. Then we may reduce to consider it a function in
L2(−π, π). This is a Hilbert space and we may apply the theory discussed in Chapter 4.

Let L2(−π, π). It is possible to show that an orthonormal basis of this space is given by

{ 1√
2π
, cos(nx)√

π
, sin(nx)√

π
, n ∈ N}.

By Parseval theorem every function f ∈ L2(−π, π) can be written as

f(x) = a0 +

+∞∑
n=1

an cosnx+

+∞∑
n=1

bn sinnx,

where

a0 =
1

2π

∫ π

−π
f(x)dx an =

1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx.

This is called the Fourier serie of f . The equality holds in the sense that

lim
N

∥∥∥∥∥f − a0 −
N∑
n=1

an cosnx−
N∑
n=1

bn sinnx

∥∥∥∥∥
2

= 0. (4.1)

It is possibile to prove that if f is more regular than in L2, then the convergence holds also in
pointwise sense. We refer for the proof to [1].

Proposition 4.5. If f is differentiable at a point x̄, then the convergence in (4.1) holds also
pointwise in x̄, that is

f(x̄) = a0 +

+∞∑
n=1

an cosnx̄+ bn sinnx̄.

Some control on the derivatives at a point is necessary to assure the pointwise convergence
(there exists continuous functions such that the Fourier serie does not converge pointwise).

The Parseval identity gives that

‖f‖22 = 2πa2
0 + π

∑
n

(a2
n + b2n).

If we consider functions with complex variables the orthonormal basis is given by { e
inx
√

2π
} and the

coefficients of the Fourier serie are

cn =
1

2π

∫ π

−π
f(x)e−inxdx.
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For a generic function of period T , the Fourier serie has the form

n=+∞∑
n=−∞

cne
2πinx
T ,

where cn = 1
T

∫ T
0
f(x)e−i2πnx/T dx.

4.3 Fourier transform

The Fourier transform is an isometry among Hilbert spaces as we will see (so a bijection which
maintains the distance) and in some sense it can be interpreted as a generalization of the Fourier
serie in non periodic context.

Let f ∈ L1(R). We define the Fourier transform of f as the complex valued function

f̂(x) =

∫
R
f(y)eixydy.

It can be generalized to several dimension: if f ∈ L1(Rn) then

f̂(x) =

∫
Rn
f(y)eix·ydy.

Observe that since |eixy| = 1 for all x, y ∈ R, |f̂(x)| ≤
∫
R |f(y)|eixydy ≤

∫
R |f(y)|dy = ‖f‖L1 .

More precisely we get the following result (see for the proof [2], Section 8.3), stating that the
Fourier transform sends integrable functions in bounded continuous functions.

Proposition 4.6 (Riemann Lebesgue lemma). Let f ∈ L1(R). Then f̂ ∈ C(R) and moreover

lim|x|→+∞ f̂(x) = 0, ‖f̂‖∞ ≤ ‖f‖L1 .

Other important properties of the Fourier transform are stated in the following proposition.

Proposition 4.7. Let f, g ∈ L1(R). Then

(i) (̂f ∗ g) = f̂ ĝ. So the Fourier transform of a convolution is the product of the Fourier trans-
form.

(ii) If |x|kf ∈ L1(R), then f̂ ∈ Ck(R) and dkxf̂(x) = ̂[(iy)kf ].

(iii) If f ∈ Ck(R), dkxf(x) ∈ L1, lim|x|→+∞ dnxf(x) = 0 for n ≤ k, then (̂dnxf)(x) = (−ix)nf̂(x)
for all n ≤ k.

Proof. (i) By definition, properties of the exponential and changing at the end variables (from
(y, t) to (s, t) where s = y − t)

(̂f ∗ g)(x) =

∫
R
f ∗ g(y)eixydy =

∫
R

∫
R
f(t)g(y − t)eixydtdy

=

∫
R

∫
R
f(t)g(y − t)eix(y−t)eixtdtdy

=

∫
R

∫
R
f(t)g(s)eixseixtdtds = f̂(x)ĝ(x).

(ii) We get that

dxf̂(x) = dx

∫
R
f(y)eixydy =

∫
R
dxf(y)eixydy =

∫
R
f(y)(iy)eixydy = (̂iyf)(x).

Repeat the argument we conclude with the result for every k ∈ N.
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(iii) We integrate by parts and we have that

d̂yf(x) =

∫
R
dyf(y)eixydy =

[
f(y)eixy

]+∞
−∞ −

∫
R
f(y)(ix)eixydy = −ixf̂(x).

Iterating the procedure we conclude.

The previous proposition has a very important consequence:

let a > 0 and fa(x) = e−a|x|
2

, then f̂a(x) =

√
π

a
e−
|x|2
4a . (4.2)

More generally in Rn, if fa(x) = e−a|x|
2

, for x ∈ Rn, then f̂a(x) =
√

πn

an e
− |x|

2

4a .

We prove (4.2). Observe that by the previous proposition, items (ii) and (iii) we get that

dxf̂a(x) =

∫
R
e−a|y|

2

(iy)eixydy =

∫
R

−i
2a
dy(e−a|y|

2

)eixydy = − i

2a
d̂yfa(x) = − x

2a
f̂a(x).

So the function f̂a = φ satisfies φ′(x) = − x
2aφ(x), integrating we get that (log φ(x))′ = −x

2

4a + c

and then φ(x) = ke−
1
4ax

2

. Finally to compute k we need to compute φ(0) = f̂a(0).

f̂a(0) =

∫
R
e−a|y|

2

e0dy =

√
π

a
.

Proposition 4.8. Let f, g ∈ L1(R), then∫
R
f̂(x)g(x)dx =

∫
R
f(x)ĝ(x)dx.

Proof. By definition and by changing the order of integration (thanks to Fubini Tonelli theorem)∫
R
f̂(x)g(x)dx =

∫
R

∫
R
f(y)g(x)eixydydx =

∫
R
f(x)ĝ(x)dx.

For f ∈ L1(R) we may define also the anti transform of f as follows:

f̌(x) =
1

2π

∫
R
f(y)e−ixydy.

Obviously, this operator satisfies the same properties as the Fourier transform.

Theorem 4.9 (Fourier inversion theorem). Let f ∈ L1(R) such that also f̂ ∈ L1(R). Then f is

continuous (that is, it coincides almost everywhere with a continuous function) and
ˇ̂
f = f = ˆ̌f .

For the proof we refer to [2], Theorem 8.26 (not trivial!). Finally we get that

Theorem 4.10 (Plancherel theorem). If f ∈ L1(R) ∩ L2(R) then f̂ ∈ L2(R), and the Fourier
transform extends in a unique way to a isomorphism (so a linear bijection)

F : L2(R)→ L2(R), F(f) = f̂

with 2π‖f‖22 = ‖f̂‖22.
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4.4 Characteristic functions of random variables and the Central Limit
theorem

Let X be a random variable, with associated PX probability distribution. The characteristic
function of X is defined as the (complex valued) function

φX(t) = E(eitX).

More precisely

– if X is a (asbsolutely) continuous random variable (with density f) then

φX(t) =

∫
R
eitxf(x)dx = f̂(t).

So in this case the characteristic function of X is the Fourier transform of the density function
f associated to X.

– if X is a discrete random variable (taking values on Z),

φX(t) =
∑
k∈Z

eiktP (ω | X(ω) = k).

Note that φX is a continuous function such that φ(0) = 1.

Proposition 4.11. If X1, X2 are independent random variables, then the characteristic function
of X1 +X2 satisfies

φX1+X2
(t) = φX1

(t)φX2
(t).

Proof. We consider only the case in which X1, X2 are absolutely continuous random variables (for
the other case the argument is similar). The probability density of the sum of X1 and X2 is
given by the convolution between the density of X1 and the density of X2 by Theorem 4.3. Then
the Fourier transform of a convolution is the product of the Fourier transforms, see Proposition
4.7.

The characteristic function associated to a random variable characterizes completely the ran-
dom variable, and moreover the functional from the spaces of random variables with the conver-
gence in distribution to the space of characteristic functions with the pointwise convergence is
continuous, in the sense that if a sequence of random variables is converging in distribution to a
random variable, then the same holds for the characteristic functions (and viceversa).

Theorem 4.12. Let Xn be a family of random variables.

(i) If Xn are converging in distribution to X, then φXn(t)→ φX(t) for every t.

(ii) If φXn(t) → φ(t) for every t, where φ is continuous function, then φ is the characteristic
function of a random variable X and Xn converge in distribution to X.

Proof. (i) Xn → X in distribution for every bounded continuous function g it holds

E(g(Xn))→ E(g(X)).

So, taking for every t, gt(y) = eity (which is bounded and continuous), we get φXn(t) →
φX(t).

(ii) We prove this part theorem only in the case of absolutely continuous random variables Xn,
with associated densities fn. The general case can be obtained similarly.

We claim that Xn are tight. If the claim is true, then by Theorem 2.34, up to a subsequence
we get that Xnk converge in distribution to a random variable X. By (i), we get that
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φXnk (t)→ φX(t) for every t and so φ(t) = φX(t). Since the limit is unique (does not depend
on subsequences), we conclude the convergence of the whole sequence of Xn.

So to conclude it is sufficient to show that Xn are tight. Since we are assuming Xn to have
a density fn, we get that φXn(t) = f̂n(t). Fix δ > 0 and consider

1

2δ

∫ δ

−δ
(1− φXn(t))dt =

1

2δ

∫ δ

−δ
(1− f̂n(t))dt =

1

2δ

∫ δ

−δ

∫
R
(1− eiyt)fn(y)dydt

=
1

2δ

∫
R

∫ δ

−δ
(1− eiyt)dtfn(y)dy =

1

2δ

∫
R

[
2δ − 2 sin δy

y

]
fn(y)dy =

∫
R

[
1− sin δy

δy

]
fn(y)dy

≥ 1

2

∫
|δy|≥2

fn(y)dy =
1

2
P
(
|Xn| ≥

2

δ

)
.

Hence

P
(
|Xn| ≥

2

δ

)
≤ 1

δ

∫ δ

−δ
(1− φXn(t))dt→ 1

δ

∫ δ

−δ
(1− φ(t))dt.

Since φ is continuous and φ(0) = 1, we get that for every ε > 0 there exists δ such that
(1− φ(t)) ≤ ε/4 for t ∈ [−δ, δ]. So

1

δ

∫ δ

−δ
(1− φ(t))dt ≤ ε

2
.

We fix ε > 0, we choose δ as above, and Kε = {|x| ≤ 2
δ } and then we choose n̄ such that

1
δ

∫ δ
−δ(1−φXn(t))dt ≤ ε for all n ≥ n̄. This gives the desired tightness: P (|Xn| ∈ Kε) ≥ 1−ε

for all n ≥ n̄.

We conclude showing that actually the Central Limit theorem can be interpreted as a result
in Fourier analysis. The theorem says that if we have a sufficiently large sample of observations-
randomly produced in a way that does not depend on the values of the other observations- the
probability distribution of the observed averages will closely approximate a normal distribution.

Theorem 4.13 (Central Limit theorem). Let Xn be independent identically distributed random
variables with (common) mean µ and a variance σ. Then X1+···+Xn−µ√

nσ
converges in distribution

to the normal random variable with mean 0 and variance 1.

We are not going to prove in full generality this theorem, but we are just giving an idea of
what is going on in the case in which every Xi is an absolutely continuous random variable with
density f . Up to a renormalization we may assume that the mean of Xi is 0 and the variance is 1.

Proposition 4.14. Let f : R→ [0,+∞) such that∫
R
f(x)dx = 1,

∫
R
xf(x)dx = 0

∫
R
x2f(x)dx = 1.

Let f∗n := f ∗ · · · ∗ f (the convolution of f by itself n times).

Then fn(x) := f∗n(
√
nx) converges weakly as n→ +∞ to e−x

2/2
√

2π
.

Proof. The first assumption on f implies that f̂(0) = 1. Moreover, recalling Proposition 4.7, item
ii, we get that the second and third assumption on f imply that f ∈ C2. Moreover

d̂xf(0) =

∫
R

(iy)f(y)dy = 0 d̂2
xf(0) =

∫
R

(−iy)2f(y)dy = −1.
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By Taylor theorem we conclude that

f̂(x) = 1− 1

2
x2 + o(x2).

Moreover, again by Proposition 4.7, item i, we get that f̂∗n = (f̂)n. So, we get

f̂n(x) =
(
f̂(x/

√
n)
)n

=

(
1− x2

2n
+ o

(
x2

n

))n
.

Compute the logarithm, recalling that log(1 + x) = x+ o(x) if x→ 0,

log f̂n(x) = n log

(
1− x2

2n
+ o

(
x2

n

))
= −1

2
x2 + n o

(
x2

n

)
= −x

2

2
+ o(1).

This implies f̂n(x) = e−
x2

2 eo(1) = ê−
x2
2√

2π
eo(1), recalling (4.2) with a = 1

2 . We may deduce that for

all x,

lim
n
f̂n(x) =

ê−
x2

2

√
2π

.

This implies the conclusion by Theorem 4.12, item ii.

4.5 Problems

(i) Let c > 0, and

hc(x) =

{
1 |x| ≤ c
0 elsewhere

.

Compute hc ∗hc. Then compute hc ∗hc ∗hc. What we can say about the regularity of these
functions?

(ii) Let X1, X2, . . . Xn are n independent continuous random variables with the same distribution
(and so with the same density function f). Assume that E(Xi) = µ and E(Xi − µ)2 = σ2.
Show that the density function of X1+···+Xn−µ√

nσ
is given by

√
nσf∗n (x

√
nσ + µn), where

f∗n(x) is the convolution of f with itself repeated n times.

(iii) Let δ < π and f : (−π, π)→ R defined as

f(x) =

{
1 −δ < x < δ

0 −π < x < −δ and δ < x < π.

(a) Compute the Fourier serie of f .

(b) Show that ∑
n

sinn

n
=
π − 1

2
.

(c) Compute ∑
n

sin2 n

n2
.

(iv) (a) Compute the Fourier transform of g(x) = e−xχ(0,+∞)(x).
Recall the following formulas (obtained by integration by parts):∫

e−y sin(xy)dy = − 1

x2 + 1
e−y(x cosxy + sinxy) + c∫

e−y cos(xy)dy =
1

x2 + 1
e−y(x sinxy − cosxy) + c.
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(b) Compute the Fourier transform of f(x) = xe−xχ(0,+∞)(x) (that is the characteristic
function of the Gamma distribution).
Use item (a) and Proposition 4.7.
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A Solutions to problems Section 2

(i) Let f : R→ R be a monotone function. Show that f is Lebesgue measurable.

It is sufficient to show that for all c ∈ R the set {x ∈ R | f(x) > c} is measurable.

Assume that f is monotone increasing (if it is monotone decreasing the argument is analo-
gous). Let c ∈ R. If f(x) ≤ c for all x ∈ R then {x ∈ R | f(x) > c} is the empty set and we
are done.

Assume now that there exists x̄ ∈ R such that f(x̄) > c. By monotonicity we get that
f(y) > c for all y > x̄. We consider now the set Ac = {x ∈ R |f(x) > c}. Our aim is to show
that this is a measurable set.

We observed that by monotonicity, if x ∈ Ac, then [x,+∞) ⊆ Ac. So, if Ac is not bounded
from below, this implies that Ac = R and so we are done. Assume now that Ac is bounded
from below and define xc = inf Ac. For all x > xc we get that f(x) > c and f(x) ≤ c for all
x < xc. This implies that Ac = (xc,+∞) if f(xc) ≤ c, and Ac = [xc,+∞) if f(xc) > c. In
both cases, Ac ∈M.

Note that actually we get something more: for all c, we get that Ac is a Borel set, so the
function f is Borel measurable.

(ii) Consider the right continuous increasing function on R

F (x) =

{
x x < 0

x+ 1 x ≥ 0.

Which is the Borel measure associated to this function?

We define µF (a, b] = F (b) − F (a), and then we extend it to a measure on the Borel σ-
algebra. Given F as in the statement, we get that µF (a, b] = b − a if a < b < 0, µF (a, b] =
b+1− (a+1) = b−a if 0 ≤ a < b, whereas if a < 0 ≥ b, then µF (a, b] = b+1−a = b−a+1.
Therefore µF = L+ δ0.

B Solutions to problems Section 3

(i) Let (X, ‖ · ‖) a Banach space and F : X → X such that there exists 0 < a < 1 for which

‖F (x)− F (y)‖ ≤ a‖x− y‖ ∀x, y ∈ X.

(F is a contraction)

(a) Show that the map F is continuous.
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(b) Let x0 ∈ X. Define x1 = F (x0), x2 = F (x1) and so on xn = F (xn−1). Prove that

‖xn − xn+1‖ ≤ an‖x0 − x1‖.

Deduce that (xn)n is a Cauchy sequence.

(c) Let x̄ = limn xn, where (xn) has been defined in the previous step. Show that F (x̄) = x̄.
So, x̄ is a fixed point of F .

(d) Show that the map F admits a unique fixed point, that is a point such that x̄ = F (x̄).

This is called Banach-Caccioppoli theorem.

(a) Let (xn) be a sequence in X which is converging to x. Then 0 ≤ ‖F (xn) − F (x)‖ ≤
a‖xn − x‖, and so limn→+∞ F (xn) = F (x) since limn→+∞ xn = x.

(b) By the property of the function F and the definition of the we get that

‖xn+1 − xn‖ = ‖F (xn)− F (xn−1)‖ ≤ a‖xn − xn−1‖ =

= a‖F (xn−1)− F (xn−2)‖ ≤ a2‖xn−1 − xn−2‖ ≤ ... ≤ an‖x1 − x0‖.
Let n > m. Then,by using the triangular inequality, we get

‖xn − xm‖ ≤ ‖xn − xn−1‖+ ‖xn−1 − xn−2‖+ · · ·+ ‖xm+1 − xm‖.

By using the previous inequality and recalling that
∑n
i=0 a

i = 1−an+1

1−a , we get

‖xn − xm‖ ≤ (an + an−1 + · · ·+ am)‖x0 − x1‖ ≤=
am+1 − an+1

1− a
|x0 − x1‖.

Since 0 < a < 1, we get that an+1, am+1 → 0 as n,m → +∞. So in particular the
previous inequality implies that (xn) is a Cauchy sequence.

(c) Since (xn) is a Cauchy sequence, and the space is complete, it is converging to some
point x. Using the continuity of F we have that limn F (xn) = F (x). But we recall that
limn F (xn) = limn xn−1 = x. So F (x) = x.

(d) Let x, z such that F (x) = x and F (z) = z. The by the property of F , and recalling
that a < 1,

‖x− z‖ = ‖F (x)− F (z)‖ ≤ a‖x− z‖ < ‖x− z‖.
This is not possible unless ‖x− z‖ = 0, which implies z = x.

(ii) Let f ∈ Lp(Rn) and α > 0. Prove that

L ({x ∈ Rn | |f(x)| > α})
1
p ≤ 1

α
‖f‖p.

This is called Chebycheff inequality.

Let Aα = {x ∈ Rn | |f(x)| > α}. Then Rn = Aα ∩ (Rn \ Aα). So we compute, recalling
definitions,

‖f‖pp =

∫
Rn
|f(x)|pdx =

∫
Aα

|f(x)|pdx+

∫
Rn\Aα

|f(x)|pdx ≥
∫
Aα

|f(x)|pdx,

since |f |p ≥ 0. Now if x ∈ Aα, then |f(x)|p ≥ αp. Therefore in the previous inequality we
get

‖f‖pp ≥
∫
Aα

|f(x)|pdx ≥ αp
∫
Aα

dx = αp L(Aα).

This gives the desired inequality,

L(Aα) ≤
(
‖f‖p
α

)p
after extracting the p rooth.
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(iii) Prove that if f ∈ L2(−1, 1) then f ∈ L1(−1, 1) and moreover

‖f‖1 ≤
√

2‖f‖2.

Provide an example of a function f ∈ L1(−1, 1) such that f 6∈ L2(−1, 1).

Since χ(−1,1) ∈ L2(−1, 1), then by Holder inequality f = fχ(−1,1) ∈ L1(−1, 1). Moreover

‖f‖1 ≤ ‖f‖2
(∫ 1

−1

dx

) 1
2

=
√

2‖f‖2.

The function f(x) = 1√
|x|

is in L1(−1, 1) but not in L2(−1, 1).

(iv) Consider the following operator T : L2(0, 2)→ L2(0, 2) defined as

Tf(x) =

∫ x

0

f(y)dy.

Show that this is a bounded continuous operator.

First of all T is linear by linearity of the integral.

Note that, by Jensen, and changing the order of integration (observe that 0 < y < x < 2)
we get

‖Tf‖22 =

∫ 2

0

(∫ 2

0

χ(0,x)(y)f(y)dy

)2

dx ≤
∫ 2

0

2

∫ 2

0

χ(0,x)(y)|f(y)|2dy = 2

∫ 2

0

∫ x

0

|f(y)|2dy

= 2

∫ 2

0

∫ 2

y

|f(y)|2dxdy = 2

∫ 2

0

(2− y)|f(y)|2dy ≤ 4‖f‖22

where the last inequality comes from the fact that (2− y) ≤ 2 for y ∈ (0, 2). Therefore

sup
{‖f‖≤1}

‖Tf‖2 ≤ sup
{‖f‖≤1}

2‖f‖2 ≤ 2.

(a) We have to prove that
∫
O
|fk(x)gk(x)− f(x)g(x)|dx→ 0 as k → +∞.

We observe that, by Holder inequality,∫
O

|fk(x)gk(x)− f(x)g(x)|dx =

∫
O

|f(x)(gk(x)− g(x)) + (fk(x)− f(x))gk(x)|dx

≤
∫
O

|f(x)||gk(x)− g(x)|dx+

∫
O

|fk(x)− f(x)||gk(x)|dx

≤ ‖gk − g‖q‖f‖p + ‖fk − f‖p‖gk‖q. (B.1)

Sending k → +∞, and recalling that limk ‖gk‖q = ‖g‖q, we get the conclusion.

(b) Arguing as in (B.1), we get∫
O

|fk(x)gk(x)−f(x)g(x)|dx ≤
∫
O

|f(x)||gk(x)−g(x)|dx+

∫
O

|fk(x)−f(x)||gk(x)|dx

≤
∫
O

|f(x)||gk(x)− g(x)|dx+ ‖fk − f‖p‖gk‖q.

Note that
∫
O
|f(x)||gk(x) − g(x)|dx → 0 by weak convergence of gk to g, whereas

‖fk − f‖p → 0 by strong convergence of fk to f . Moreover recall that there exists
M > 0 such that ‖gk‖q ≤M . So, we conclude, sending k → +∞ that

∫
O
|fk(x)gk(x)−

f(x)g(x)|dx→ 0.
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C Solutions to problems Section 4

(i) – E(Xn) = (Xn, 1) → (X, 1) = E(X), by continuity of the scalar product (as a conse-
quence of Cauchy Schwartz inequality).

– (Xn, Yn) = (Xn − X,Yn − Y ) + (X,Yn) + (Xn, Y ) − (X,Y ). We conclude observing
that (Xn −X,Yn − Y )→ 0, (Xn, Y )→ (X,Y ) and (X,Yn)→ (X,Y ).

– the convergence of covariance and variance are immediate consequences of the first two
items.

(ii) Consider H = L2(−1, 1).

(a) Let V1 = {a + bx |a, b ∈ R, x ∈ (−1, 1)} (the subspace of polynomials of degree less
than 1.) Find the orthogonal projection of x2 on V1.

(b) Let V2 = {a+ bx+ cx2 |a, b, c ∈ R, x ∈ (−1, 1)} (the subspace of polynomials of degree
less than 2). Find the orthogonal projection of x3 on V2.

(a) We look for an orthonormal basis of V1. A basis of V1 is given by 1, x. Note that

(x, 1) =
∫ 1

−1
xdx = 0, so 1 and x are orthogonal. We have to normalize them. We

compute
∫ 1

−1
dx = 2 and

∫ 1

−1
|x|2dx = 2

3 . Therefore an orthonormal basis of V1 is given

by
(

1√
2
,
√

3x√
2

)
. By the theorem on orthogonal projection we have that

PV1(x2) = a0
1√
2

+ a1

√
3x√
2

where a0 = (x2, 1√
2
) and a1 = (x2,

√
3x√
2

). We compute

a0 =

(
x2,

1√
2

)
=

1√
2

∫ 1

−1

x2dx =
2

3
√

2
a1 =

(
x2,

√
3x√
2

)
=

√
3√
2

∫ 1

−1

x3dx = 0.

Therefore

PV1
(x2) =

2

3
√

2

1√
2

=
1

3
.

Another way to compute the orthogonal projection is just using the definition: we have
to find the point in V1 with minimal distance from x2. Every point in V1 is defined as
a+ bx for some a, b, so we have to solve the minimization problem

min
a,b∈R

‖x2 − a− bx‖2 = min
a,b

∫ 1

−1

|x2 − a− bx|2dx

= min
a,b

∫ 1

−1

(x4 + a2 + b2x2 − 2ax2 − 2bx3 + 2abx)dx = min
a,b

(
1

5
+ 2a2 +

b2

3
− 2

3
a

)
.

The minimum is 1/5 and there are two minimum couples of points: a = 1
3 , b = 0 and

a = 0, b = 0. Therefore the projection is 1/3 + 0x = 1/3.

(b) The previous point implies that x2 − 1
3 ∈ V

⊥
1 . We have to find a orthonormal basis of

V2. In order to have three generators which are orthogonal, we consider 1, x, x2 − 1
3 .

Moreover we normalize them to have norm 1. We compute∫ 1

−1

(x2 − 1

3
)2dx =

2

5
+

2

9
− 4

9
=

2

5
− 2

9
=

8

45
.
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So an orthonormal basis of V2 is given by ( 1√
2
,
√

3x√
2
,
√

45√
8

(x2− 1
3 ). Again by theorem on

orthogonal projections we have

PV2
(x3) = a0

1√
2

+ a1

√
3x√
2

+ a2

√
45√
8

(x2 − 1

3
) = (t3,

√
3t√
2

)

√
3x√
2

where a0 = (x3, 1√
2
), a1 = (x3,

√
3x√
2

), a2 = (x3,
√

45√
8

(x2 − 1
3 )). It is easy to check that

a0 = 0 = a2. We compute

a1 = (x3,

√
3x√
2

) =

√
3√
2

∫ 1

−1

x4dt =

√
3√
2

2

5
.

Therefore

PV2
(x3) =

√
3√
2

2

5

√
3x√
2

=
3

5
x.

(iii) Recalling Remark 3.15 we have that

L(Y |X,Z) = PrS(Y ) = a+ bX + cZ

where S is the space with basis 1, X, Z.

Observe that by the same argument L(Z|X) = PrT (Z) where T is the space with a basis
given by 1, X. In particular by Theorem 3.8 we have that Z −L(Z|X) ∈ T⊥ and arguing as

in Remark 3.15 L(Z|X) = E(Z) + Cov(X,Z)
V ar(X) (X − E(X)).

An orthonormal basis of S can be therefore obtained by considering an orthonormal basis

of T , which is given by 1, X−E(X)√
V ar(X)

as proved in Remark 3.15 and then adding the ele-

ment k(Z−L(Z|X)) where k is such that E(k(Z−L(Z|X))2 = 1. Since E((Z−L(Z|X))2 =
V ar(Z)V ar(X)−Cov2(X,Z)

V ar(X) as proved in Remark 3.15, we get that k =
√
V arX√

V ar(Z)V ar(X)−Cov2(X,Z)
.

So, as in Remark 3.15,

L(Y |X,Z) = E(Y ) +
Cov(X,Y )

V ar(X)
(X − E(X)))

+
V ar(X)Cov(Z, Y )− Cov(X,Z)Cov(X,Y )

V ar(Z)V ar(X)− Cov2(X,Z)
(Z − L(Z|X))

= E(Y )

+
V ar(Z)Cov(X,Y )− Cov(Z, Y )Cov(X,Z)

V ar(Z)V ar(X)− Cov2(X,Z)
(X − E(X)))

+
V ar(X)Cov(Z, Y )− Cov(X,Z)Cov(X,Y )

V ar(Z)V ar(X)− Cov2(X,Z)
(Z − E(Z)).

Observe that

E(Y ) +
Cov(X,Y )

V ar(X)
(X − E(X))) = L(Y |X)

and moreover

E(Y ) +
V ar(X)Cov(Z, Y )− Cov(X,Z)Cov(X,Y )

V ar(Z)V ar(X)− Cov(X,Z)
(Z − L(Z|X)) = L(Y |Z − L(Z|X)).

This conclude the proof.

(iv) Let T : L2(0.1)→ L2(0, 1) defined as Tf(x) =
∫ x

0
f(y)dy.

Show that this is a compact operator and compute its adjoint.
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To prove that it is compact we have to show that if fn converge weakly to f , that is

limn

∫ 1

0
fn(x)g(x)dx =

∫ 1

0
f(x)g(x)dx for all g, then ‖Tfn − Tf‖2 → 0, We compute, rea-

soning as above,

‖Tfn − Tf‖22 =

∫ 1

0

(∫ 1

0

χ(0,x)(y)(fn(y)− f(y))dy

)2

dx.

Now Fn(x) =
(∫ 1

0
χ(0,x)(y)(fn(y)− f(y))dy

)2

is a function such that limn Fn(x) = 0 for all x

(by weak convergence, since χ(0,x) ∈ L2). Moreover by Jensen inequality Fn(x) ≤
∫ x

0
|fn(y)−

f(y)|2dy ≤ ‖fn − f‖22 ≤ (‖fn‖2 + ‖f‖2)2. Recall that since fn converge weakly then there
exists C such that ‖fn‖2 ≤ C (see Problem v)). This implies that 0 ≤ Fn(x) ≤ 2C2. Since
constant functions are element in L2(0, 1), we conclude by Lebsegue dominated convergence
that limn ‖Tfn − Tf‖22 = 0.

To compute the adjoint we recall that (Tf, g) = (f, T ∗g) and so we compute, changing the
order of integration

(Tf, g) =

∫ 1

0

∫ x

0

f(y)g(x)dydx =

∫ 1

0

∫ 1

y

g(x)dxf(y)dy.

Therefore T ∗g(x) =
∫ 1

x
g(y)dy.

D Solutions to problems Section 5

(i) Let c > 0, and hc(x) =

{
1 |x| ≤ c
0 elsewhere

. Compute hc ∗ hc(x). Then compute hc ∗ hc ∗ hc.

What we can say about the regularity of these functions?

By definition of hc

hc ∗ hc(x) =

∫
R
hc(x− y)hc(y)dy =

∫ c

−c
hc(x− y)dy = |[−c, c] ∩ [x− c, x+ c]|

where we indicated with |[−c, c] ∩ [x − c, x + c]| the length of the intersection between the
two intervals. Since

[−c, c] ∩ [x− c, x+ c] =


∅ x ≥ 2c or x ≤ −2c

[−c, x+ c] −2c < x < 0

[x− c, c] 0 < x < 2c

we conclude that

hc ∗ hc(x) =


0 x ≥ 2c or x ≤ −2c

x+ 2c −2c < x < 0

2c− x 0 < x < 2c.

The graph is a triangular.. Then again by definition

hc ∗ hc ∗ hc(x) =

∫
R

(hc ∗ hc)(x− y)hc(y)dy =

∫ c

−c
(hc ∗ hc)(x− y)dy

=

∫
[−c,c]∩[x−2c,x+2c]

(hc ∗ hc)(x− y)dy.
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We observe that hc∗hc∗hc(x) = hc∗hc∗hc(−x) so it is sufficient to compute the function for
x positive and then symmetrize it (as an even function). If x > 3c then hc ∗ hc ∗ hc(x) = 0.
If x ∈ (2c, 3c) then [−c, c] ∩ [x− 2c, x+ 2c] = [x− 2c, c] with x− 2c > 0 and so

hc ∗ hc ∗ hc(x) =

∫ c

x−2c

hc ∗ hc(y)dy =
(4c− x)2

2
− c2

2
.

If x ∈ (c, 2c) then [−c, c] ∩ [x− 2c, x+ 2c] = [x− 2c, c] with x− 2c < 0 and so

hc ∗ hc ∗ hc(x) =

∫ 0

x−2c

hc ∗ hc(y)dy +

∫ c

0

hc ∗ hc(y)dy =
4c2 − x2

2
+

3

2
c2.

If x ∈ (0, c) then [−c, c] ∩ [x− 2c, x+ 2c] = [−c, c] and so

hc ∗ hc ∗ hc(x) =

∫ c

−c
hc ∗ hc(y)dy = 3c2.

(ii) Let X1, X2, . . . Xn are n independent continuous random variables with the same distribution
(and so with the same density function f). Assume that E(Xi) = µ and E(Xi − µ)2 = σ2.
Show that the density function of X1+···+Xn−µ√

nσ
is given by

√
nσf∗n (x

√
nσ + µn), where

f∗n(x) is the convolution of f with itself repeated n times.

By Theorem 4.3 we get that the density function associated to the sum of X1, X2 is f ∗ f .
Then again by the theorem, the density function associated to the sum of X1 +X2 with X3

is (f ∗ f) ∗ f = f∗3 and so on.

By linearity E(X1 + · · ·+Xn) = nµ and by independence we get E((X1 + · · ·+Xn−µn)2) =
nσ2. So the sum as Z = X1+···+Xn−µn√

nσ
, we get that Z has E(Z) = 0 and E(Z2) = 1 (so it

has mean 0 and variance 1).

fn∗ is the density associated to X1 + . . . Xn, we get that
√
nσf∗n (x

√
nσ + µn) is the density

associated to Z. Indeed we compute, changing variable,∫
R
x
√
nσf∗n

(
x
√
nσ + µn

)
dx =

∫
R

y − µn√
nσ

f∗n(y)dy =
1√
nσ

E(X1 + · · ·+Xn − nµ) = 0

∫
R
x2
√
nσf∗n

(
x
√
nσ + µn

)
dx =

∫
R

(y − µn)2

nσ2
f∗n(y)dy = 1.

(iii) Let δ < π and f : (−π, π)→ R defined as

f(x) =

{
1 −δ < x < δ

0 −π < x < −δ and δ < x < π.

(a) Compute the Fourier serie of f .

(b) Show that ∑
n

sinn

n
=
π − 1

2
.

(c) Compute ∑
n

sin2 n

n2
.

(a) a0 = 1
2π

∫ π
−π f(t)dt = δ

π , bn = 0 since f is an even function.

an =
1

π

∫ π

−π
f(t) cos(nt)dt =

1

π

∫ δ

−δ
cos(nt)dt =

2

nπ
sin(nδ).
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So the Fourier serie of f is

δ

π
+

2

π

∑
n

sin(nδ)

n
cos(nx).

(b) We take δ = 1. The Fourier serie of f at x = 0 is converging to f(0) so

1

π
+

2

π

∑
n

sinn

n
= 1.

(c) The Parseval identity reads

‖f‖22 = 2πa2
0 +

∑
n

π(a2
n + b2n).

We apply Parseval equality for δ = 1 and we get

2

π
+

4

π

∑
n

sin2 n

n2
= 2.

(iv) (a) Compute the Fourier transform of g(x) = e−xχ(0,+∞)(x).
Recall the following formulas (obtained by integration by parts):∫

e−y sin(xy)dy = − 1

x2 + 1
e−y(x cosxy + sinxy) + c

∫
e−y cos(xy)dy =

1

x2 + 1
e−y(x sinxy − cosxy) + c.

(b) Compute the Fourier transform of f(x) = xe−xχ(0,+∞)(x) (that is the characteristic
function of the Gamma distribution).
Use item a. and Proposition 4.7.

(a) By definition and using the primitive of the functions e−y cosxy and e−y sinxy, we get

ĝ(x) =

∫
R
g(y)eixydy =

∫ +∞

0

e−yeixydy =

∫ +∞

0

e−y cosxydy + i

∫ +∞

0

e−y sinxydy

=
1

x2 + 1
+ i

x

x2 + 1
.

(b) By Proposition 4.7,

dxĝ(x) =

∫
R

(iy)g(y)eixydy = i

∫
R
f(y)eixydy = if̂(x).

Therefore

f̂(x) = −i
(

1

x2 + 1
+ i

x

x2 + 1

)′
= −i

(
−2x

(x2 + 1)2
− i x2 − 1

(x2 + 1)2

)

=
1− x2

(x2 + 1)2
+ i

2x

(x2 + 1)2
=

(
1 + ix

1 + x2

)2

= (1− ix)−2

where the last identity is obtained by using the fact that 1
1−ix = 1+ix

1+x2 .
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