
Functional Analysis, A.A. 2019-2020

Exam- November 27- Time 2 hours

Problem 1.

(1) Give the definition of absolutely continuous measure and of singular measure
(with respect to the Lebesgue measure in R).

(2) Consider the measure µ defined in M (the σ-algebra of Lebesgue measurable
sets) as follows: for every A ⊆ R, measurable,

µ(A) = number of elements z ∈ Z, such that z ∈ A.
Check that it is a measure, and write if µ is either absolutely continuous with

respect to L (Lebesgue measure) or singular with respect to L or none of them.

Hint: recall that L(Z) = 0.

Problem 2.

(1) State the Hölder inequality for f ∈ Lp(R), g ∈ Lq(R).
(2) Let g ≥ 0 such that g ∈ L1(R). Let f : R → R a measurable function. Show

that if for some p > 1ˆ
R
|f(x)|pg(x)dx < +∞ that is f(x)[g(x)]

1
p ∈ Lp(R)

then ˆ
R
|f(x)|g(x)dx < +∞, that is f(x)g(x) ∈ L1(R).

Problem 3. Let H be a Hilbert space on R.

(1) Let V ⊂ H. Define the orthogonal subspace V ⊥.
(2) State the orthogonal projection theorem.
(3) Let H = L2(−π, π). Let

e1(x) ≡ 1√
2π
, e2(x) =

sinx√
π
.

Check that {e1, e2} is a orthonormal set in L2(−π, π).

Hint: recall that
´ b
a sin

2 xdx =
[
x−cosx sinx

2

]b
a
.

(4) Compute the orthogonal projection of x and of x2 on the subspace V ⊂ L2(−π, π)
which has orthonormal basis {e1, e2}.

Hint: recall that
´ b
a x sinxdx = [−x cosx+ sinx]ba.
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Sketch of solutions

Solution 1. (1) µ << L (µ is absolutely continuous with respect to Lebesgue) if
for any E ∈M such that L(E) = 0 there holds that µ(E) = 0.
µ ⊥ L (µ is singular with respect to Lebesgue) if there exist A,B ∈M such

that R = A ∪B, A ∩B = ∅ and µ(A) = 0, L(B) = 0.
(2) Note that µ(∅) = 0. Moreover, If (Ai)i is a sequence of pairwise disjoint mea-

surable sets then by definition µ(∪iAi) =number of z ∈ Z such that z ∈ ∪iAi.
But z ∈ ∪iAi if and only if z ∈ Ai for exactly one i (since the sets are disjoint).
Therefore µ(∪iAi) =

∑
inumber of z ∈ Z such that z ∈ Ai =

∑
i µ(Ai). This

implies that µ is a measure.
Note that R = (R \ Z) ∪ Z and L(Z) = 0, whereas µ(R \ Z) = 0. Therefore

µ ⊥ L.

Solution 2.

(1) Let f ∈ Lp(R), g ∈ Lq(R) with 1
p

+ 1
q

= 1. Then f(x)g(x) ∈ L1(R) and there

holds ‖fg‖1 ≤ ‖f‖p‖g‖q.
(2) Let p > 1 and fix q = p

p−1 the conjugate exponent of p (so that 1
p

+ 1
q

= 1).

Since g ≥ 0 and g ∈ L1(R), we get that

|[g(x)]
1
q |q = g(x) ∈ L1(R)

and so [g(x)]
1
q ∈ Lq(R). So by Hölder inequality we get

f(x)[g(x)]
1
p [g(x)]

1
q = f(x)g(x) ∈ L1(R).

Solution 3.

(1) V ⊥ = {h ∈ H, | (v, h) = 0 ∀v ∈ V }.
(2) Let V ⊆ H be a closed subspace in H. Then for all h ∈ H there exists a unique

element v ∈ V and a unique element w ∈ V ⊥ such that h = v +w. Moreover v
is called the orthogonal projection of h in V , since h− v ∈ V ⊥.

(3) It is sufficient to check that (e1, e2) = 0 and that ‖e1‖2 = 1 = ‖e2‖1. So,

(e1, e2) =

ˆ π

−π

1√
2π

sinx√
π
dx =

1√
2π

ˆ π

−π
sinxdx = 0

since sin x is a odd function. Moreover

‖e1‖22 =

ˆ π

−π

1

2π
dx = 1

and

‖e2‖22 =

ˆ π

−π

1

π
sin2 xdx =

1

π

[
x− cosx sinx

2

]π
−π

=
1

2π
(π − 0− (−π − 0)) =

2π

2π
= 1.

(4) By the theorem on the computation of the orthogonal projection we have that

PV (x) = a1e1(x) + a2e2(x) PV (x2) = c1e1(x) + c2e2(x)
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where

a1 = (x, e1) =

ˆ π

−π

1√
2π
xdx = 0

since x is a odd function,

a2 = (x, e2) =

ˆ π

−π

1√
π
x sinxdx =

1√
π

[−x cosx+ sinx]π−π

=
1√
π

(−π cosπ − (π) cos(−π)) =
2π√
π

= 2
√
π

c1 = (x2, e1) =

ˆ π

−π

1√
2π
x2dx =

1√
2π

[
x3

3

]π
−π

=
2π3

3
√

2π

c2 = (x2, e2) =

ˆ π

−π

1√
π
x2 sinxdx = 0

since x2 sinx is a odd function. Therefore the orthogonal projections of x and
x2 in V are given by

PV (x) = 0e1(x) + 2
√
πe1(x) = 2

√
π

1√
π

sinx = 2 sin x

PV (x2) =
2π3

3
√

2π
e1(x) + 0e2(x) =

2π3

3
√

2π

1√
2π

=
π2

3
.


