Automata, Languages and Computation

Chapter 4 : Properties of Regular Languages

Master Degree in Computer Engineering University of Padua Lecturer : Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University

Properties of regular languages

- 1 [Pumping Lemma : every regular language satisfies this property;](#page-3-0) [useful to show that some languages are not regular](#page-3-0)
- 2 [Closure properties : how to combine automata using specific](#page-16-0) [operations](#page-16-0)
- 3 [Decision problems : algorithms for the solution of problems](#page-40-0) [based on automata/regex and their complexity](#page-40-0)
- [Automata minimization : reduce number of states to a](#page-62-0) [minimum](#page-62-0)

Introduction to pumping lemma

Suppose $L_{01} = \{0^n 1^n \mid n \geq 1\}$ were a regular language

Then L_{01} must be recognized by some DFA A; let k be the number of states of A

Assume A reads 0^k . Then A must go through the following transitions :

> ϵ p₀ 0 p_1 00 p_2 \ldots 0^k p_k

By the **pigeonhole principle**, there must exist a pair i , j with $i < j \leqslant k$ such that $p_i = p_j.$ Let us call q this state

Introduction to pumping lemma

Now you can **fool** A :

- if $\hat{\delta}(q,1^i) \notin F$, then the machine will foolishly reject 0^i1^i
- if $\hat{\delta}(q,1^i)$ \in F , then the machine will foolishly accept 0^j1^i

In other words: state q would represent inconsistent information about the count of occurrences of 0 in the string read so far

Therefore A does not exists, and L_{01} is not a regular language

Pumping lemma for regular languages

Theorem Let L be any regular language. Then $\exists n \in \mathbb{N}$ depending on L, $\forall w \in L$ with $|w| \ge n$, we can factorize $w = xyz$ with :

- $y \neq \epsilon$
- \bullet |xy| $\leq n$
- $\forall k \geqslant 0, \ xy^k z \in L$

Pumping lemma for regular languages

Proof

Suppose L is a regular language

Then L is recognized by some DFA A with, say, n states

Let $w = a_1 a_2 \cdots a_m \in L$ with $m \ge n$

Let $p_i = \hat{\delta}(q_0, a_1 a_2 \cdots a_i)$, for each $i = 0, 1, \ldots, n$

There exists $i < j \le n$ such that $p_i = p_j$

Pumping lemma for regular languages

Let us write $w = xyz$, where \bullet $x = a_1 a_2 \cdots a_i$ • $y = a_{i+1}a_{i+2} \cdots a_i$ • $z = a_{i+1}a_{i+2} \ldots a_m$ Start *p i p 0* $a_1 \ldots a_i$ a_{i+1} \cdots a_j a_{j+1} \cdots a_m *x = z = y =*

Evidently, $xy^k z \in L$, for any $k \geqslant 0$

Example

Let Σ be some alphabet, and let $w \in \Sigma^*$, $a \in \Sigma$. We write $\#_a(w)$ to denote the **number of occurrences** of a in w

We define

$$
L_{eq} = \{w \mid w \in \{0,1\}^*, \; \#_0(w) = \#_1(w)\}
$$

In words, L_{eq} is the language whose strings have an equal number of 0's and 1's

Use the pumping lemma to show that *is not regular*

Example

Proof Suppose L_{eq} were regular. Then $L(A) = L_{eq}$ for some DFA A

Let *n* be the number of states of *A* and let $w = 0^n 1^n \in L(A)$

By the pumping lemma we can factorize $w = xyz$ with

$$
\bullet \ |xy| \leq n,
$$

$$
\bullet \ y \neq \epsilon
$$

and state that, for each $k\geqslant 0$, we have $xy^kz\in L(\mathcal{A})$

$$
w = \underbrace{000\cdots\cdots00}_{x} \underbrace{\cdots0111\cdots11}_{z}
$$

Example

For $k = 0$ we have $xz \in L(A)$

This is a **contradiction**, since $|y| \ge 1$ and then xz has fewer 0's than 1's

We therefore conclude that $L(A) \neq L_{eq}$

Comment of the if-then formulation of the pumping lemma: many students wrongly state that if the pumping lemma holds, then the language must be regular

Example

Proof (alternative) We can see the application of the pumping lemma as a game between two players

Player P2 states that L_{eq} is regular, and player P1 wants to establish a contradiction

- P2 picks n (number of states of DFA, if it exists)
- P1 picks string $w = 0^n 1^n \in L_{eq}$, with $|w| \ge n$
- P2 picks a factorization $w = xyz$, with $|xy| \le n$, $y \ne \epsilon$ and $xy^kz \in L_{eq}$ (assuming L_{eq} is regular)
- P1 picks k such that $xy^k z \notin L$, which is a violation of the pumping lemma. Specifically, P1 picks $k = 0$: $xz \notin L_{eq}$, since y contains just 0's, $y \neq \epsilon$, and thus $\#_0(xz) < \#_1(xz) = n$
- P1 concludes that L_{eq} cannot be regular

Example

Let $L_{pr} = \{1^p \mid p \text{ prime}\}$. Using the pumping lemma, show that L_{pr} is not regular

Proof Let *n* be as in the pumping lemma, and let $p \ge n + 2$ be some prime number. Thus $1^p \in L_{pr}$

By the pumping lemma we can write $w = xyz$ with

- \bullet |xy| $\leq n$,
- $\bullet \quad v \neq \epsilon$

such that, for each $k\geqslant 0$, we have $xy^kz\in L(\mathcal{A})$

Example

Let $|y| = m \ge 1$

Choose $k = p - m$, so that $xy^{p-m}z \in L_{pr}$ and then $|xy^{p-m}z|$ is a prime number

Example

We can write
$$
|xy^{p-m}z| = |xz| + (p-m)|y| =
$$

 $p-m+(p-m)m = (1+m)(p-m)$

Let us verify that none of the two factors is a 1 :

\n- •
$$
y \neq \epsilon
$$
, thus $1 + m > 1$
\n- • $m = |y| \le |xy| \le n$, $p \ge n + 2$, thus $p - m \ge n + 2 - m \ge n + 2 - n = 2$
\n

We have derived a **contradiction**

Exercise

For a string w , we write w^R to denote the \bm{r} everse of w . Example: $01011^R = 11010$ and $(w^R)^R = w$

Consider the language

$$
L = \{ww^R \mid w \in \{0,1\}^*\}
$$

Using the pumping lemma, show that *is not regular*

Closure properties of regular languages

Let L and M be regular languages over Σ . Then the following languages are all regular

- \bullet Union: $I \cup M$
- Intersection: $I \cap M$
- Complement: $\overline{L} = \Sigma^* \setminus L$
- \bullet Difference: $I \setminus M$
- Reversal: $L^R = \{w^R \mid w \in L\}$
- Kleene closure: L ˚
- Concatenation: *L.M*
- Homomorphism: $h(L) = \{h(w) | w \in L\}$
- Inverse homomorphism: $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

Closure under union

Theorem For any regular languages L e M, $L \cup M$ is regular

Proof Let E and F be regular expressions such that $L = L(E)$ and $M = L(F)$. Then $L \cup M$ is generated by $E + F$ by definition, and is therefore a regular language

Closure under concatenation and Kleene

The proof of closure under union is rather *immediate*, since regular expressions use the union operator

Similarly, we can immediately prove the closure under

- **o** concatenation
- Kleene operator

Closure under complement

Theorem If L is a regular language over Σ , then so is $\overline{L} = \Sigma^* \smallsetminus L$ **Proof** Let L be recognized by a DFA

$$
A=(Q,\Sigma,\delta,q_0,F).
$$

Let $B = (Q, \Sigma, \delta, q_0, Q \setminus F)$. Now $L(B) = \overline{L}$

Example

Let L be recognized by the DFA

Then \overline{L} is recognized by the DFA

Closure under intersection

Theorem If L and M are regular, then so is $L \cap M$

Proof By De Morgan's law, $L \cap M = \overline{L \cup M}$

We already know that regular languages are closed under complement and union

Intersection automaton

Proof (alternative) Let $L = L(A_L)$ and $M = L(A_M)$ for automata A_{ι} and $A_{\iota\iota}$ with

$$
A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)
$$

$$
A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)
$$

Without any loss of generality, we assume that both automata are deterministic

We shall construct an automaton that simulates A_l and A_M in parallel, and accepts if and only if both A_L and A_M accept

Intersection automaton

Idea : If A_L goes from state p to state s upon reading a, and A_M goes from state q to state t upon reading a, then $A_{L\cap M}$ will go from state (p, q) to state (s, t) upon reading a

Intersection automaton

Formally

$$
A_{L\cap M}=(Q_L\times Q_M,\Sigma,\delta_{L\cap M},(q_{L,0},q_{M,0}),F_L\times F_M),
$$

where

$$
\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))
$$

We can show by induction on $|w|$ that

$$
\hat{\delta}_{L\cap M}((q_{L,0},q_{M,0}),w)=\Big(\hat{\delta}_{L}(q_{L,0},w),\hat{\delta}_{M}(q_{M,0},w)\Big)
$$

Then $A_{l \cap M}$ accepts if and only if A_l and A_M accept

Exercise

Build an automaton that accepts strings with at least one 0 and at least one 1. Let's build simpler automata and take the intersection

Closure under set difference

Theorem If L and M are regular languages, so is $L \setminus M$

Proof Observe that $L \setminus M = L \cap \overline{M}$

We already know that regular languages are closed under complement and intersection

Closure under reverse operator

Theorem If L is regular, so is L^R

Proof Let L be recognized by FA A. Turn A into an FA for L^R by

- reversing all arcs
- make the old start state the new sole accepting state
- create a new start state p_0 such that $\delta(p_0, \epsilon) = F$, F the set of accepting states of old \overline{A}

Closure under reverse operator

Proof (alternative) Let E be a regular expression. We shall construct a regular expression E^R such that $L(E^R)=(L(E))^R$

We proceed by structural induction on E

Base If E is ϵ , \emptyset , or **a**, then $E^R = E$ (easy to verify)

Closure under reverse operator

Induction

- $E = F + G$: We need to reverse the two languages. Then $E^R = F^R + G^R$
- \bullet $E = F.G$: We need to reverse the two languages and also reverse the order of their concatenation. Then $E^R = G^R.F^R$

\n- \n
$$
E = F^*
$$
:\n $w \in L(F^*)$ means $\exists k : w = w_1 w_2 \cdots w_k$, $w_i \in L(F)$, then $w^R = w_k^R w_{k-1}^R \cdots w_1^R$, $w_i^R \in L(F^R)$, then $w^R \in L(F^R)^*$.\n Same reasoning for the inverse direction. Then $E^R = (F^R)^*$

\n
\n

Thus
$$
L(E^R) = (L(E))^R
$$

State whether the following claims hold true, and motivate your answer

- the intersection of a non-regular language and a finite language is always a regular language
- the intersection of a non-regular language and an infinite regular language is never a regular language

Superset and subset

Assume L is a regular language. We **cannot say anything** about languages L' and L'' with $L' \subset L$ and $L'' \supset L$

More precisely

- L' could be regular or non-regular
- L" could be regular or non-regular

Often student gets confused about this, thinking that adding strings to L makes it 'more difficult' and removing strings from L makes it 'less difficult'. But this is not true in general

Homomorphisms

Let Σ and Δ be two alphabets. A **homomorphisms** over Σ is a function $h: \Sigma \to \Delta^*$

Informally, a homomorphism is a function which replaces each symbol with a string

Example : Let $\Sigma = \{0, 1\}$ and define $h(0) = ab$, $h(1) = \epsilon$; h is a homomorphism over Σ

Homomorphisms

We extend h to Σ^* : if $w = a_1 a_2 \cdots a_n$ then

$$
h(w) = h(a_1)h(a_2)\cdots h(a_n)
$$

Equivalently, we can use a **recursive** definition :

$$
h(w) = \begin{cases} \epsilon, & \text{if } w = \epsilon; \\ h(x)h(a) & \text{if } w = xa, \ x \in \Sigma^*, \ a \in \Sigma. \end{cases}
$$

Example : Using h from previous example on string 01001 results in ababab

Homomorphisms

For a language $L \subseteq \Sigma^*$

$$
h(L) = \{h(w) \mid w \in L\}
$$

Example : Let L be the language associated with the regular expression 10^{*}1. Then $h(L)$ is the language associated with the regular expression $(\boldsymbol{ab})^*$

Closure under homomorphism

Theorem Let $L \subseteq \Sigma^*$ be a regular language and let h be a homomorphisms over Σ . Then $h(L)$ is a regular language

Proof Let E be a regular expression generating L. We define $h(E)$ as the regular expression obtained by substituting in E each symbol **a** with $a_1a_2 \cdots a_k$, under the assumption that

\n- $$
a \in \Sigma
$$
\n- $h(a) = a_1 a_2 \cdots a_k, \, k \geq 0$
\n

We now prove the statement

$$
L(h(E))=h(L(E)),
$$

using structural induction on E

Closure under homomorphism

Base
$$
E = \epsilon
$$
 or else $E = \emptyset$. Then $h(E) = E$, and
 $L(h(E)) = L(E) = h(L(E))$

 $E = a$ with $a \in \Sigma$. Let $h(a) = a_1 a_2 \cdots a_k$, $k \ge 0$. Then $L(a) = \{a\}$ and thus $h(L(a)) = \{a_1a_2 \cdots a_k\}$

The regular expression $h(a)$ is $a_1 a_2 \cdots a_k$. Then $L(h(a)) = {a_1 a_2 \cdots a_k} = h(L(a))$

Closure under homomorphism

Induction Let $E = F + G$. We can write

$$
L(h(E)) = L(h(F + G))
$$

= L(h(F) + h(G)) h
= L(h(F)) \cup L(h(G)) +
= h(L(F)) \cup h(L(G)) ir
= h(L(F) \cup L(G)) h
= h(L(F + G)) +
= h(L(E))

defined over regex - definition nductive hypothesis for F , G defined over languages - definition

Closure under homomorphism

Let $E = F \cdot G$. We can write

$$
L(h(E)) = L(h(F, G))
$$

= L(h(F), h(G))
= L(h(F)), L(h(G))
= h(L(F)), h(L(G))
= h(L(F), L(G))
= h(L(F, G))
= h(L(E))

 h defined over regex definition inductive hypothesis for F, G h defined over languages . definition

Closure under homomorphism

Let $E = F^*$. We can write

$$
L(h(E)) = L(h(F^*))
$$

= L([h(F)]*)
= L([h(F)]*)
= L_{k\ge0} [L(h(F))]^k
= L_{k\ge0} [h(L(F))]^k
= L_{k\ge0} h([L(F)]^k)
= h(L(F^*))
= h(L(F))
= h(L(E))

 h defined over regex $*$ definition inductive hypothesis for F h definition over languages h definition over languages $*$ definition

l

Conversion complexity

We can convert among DFA, NFA, ϵ -NFA, and regular expressions

What is the **computational complexity** of these conversions?

We investigate the computational complexity as a function of

- \bullet number of states *n* for an FA
- \bullet number of operators *n* for a regular expressions
- we assume $|\Sigma|$ is a constant

From ϵ -NFA to DFA

Suppose an ϵ -NFA has *n* states. To compute ECLOSE(*p*) we visit at most n^2 arcs. We do this for n states, resulting in time $\mathcal{O}(n^3)$

The resulting DFA has 2ⁿ states. For each state S and each $a \in \Sigma$ we compute $\delta(\mathcal{S},a)$ in time $\mathcal{O}(n^3)$. In total, the computation takes $\mathcal{O}(n^3 \cdot 2^n)$ steps, that is, $\bm{\text{exponential time}}$

If we compute δ just for the **reachable** states

- we need to compute $\delta(S, a)$ s times only, with s the number of reachable states
- in total the computation takes $\mathcal{O}(n^3 \cdot s)$ steps

Other conversions

From NFA to DFA : computation takes **exponential time**

From DFA to NFA :

- put set brackets around the states
- computation takes time $\mathcal{O}(n)$, that is, linear time

From FA to regular expression via state elimination construction: computation takes exponential time

Other conversions

From regular expression to ϵ -NFA :

- construct a tree representing the structure of the regular expression in time $\mathcal{O}(n)$
- at each node in the tree, we build new nodes and arcs in time $\mathcal{O}(1)$ and use **pointers** to previously built structure, avoiding copying
- grand total time is $\mathcal{O}(n)$, that is, linear time

Decision problems

In the problem instances below, languages L and M are expressed in any of the four representations introduced for regular languages

- \bullet $L = \emptyset$?
- $\bullet w \in I$?
- \bullet $I = M$?

Empty language

 $L(A) \neq \emptyset$ for FA A if and only if at least one final state is reachable from the initial state of A

Algorithm for computing reachable states :

Base The initial state is reachable

Induction If q is reachable and there exists a transition from q to p , then p is reachable

Computation takes time proportional to the number of arcs in A, thus $\mathcal{O}(n^2)$

We already saw this idea in the lazy evaluation for translating NFA into DFA

Empty language

Given a regular expression E , we can decide $L(E) \stackrel{?}{=} \varnothing$ by structural induction

Base

 \bullet $E = \epsilon$ or else $E = a$. Then $L(E)$ is non-empty

•
$$
E = \emptyset
$$
. Then $L(E)$ is empty

Induction

- \bullet $E = F + G$. Then $L(E)$ is empty if and only if both $L(F)$ and $L(G)$ are empty
- \bullet $E = F.G$. Then $L(E)$ is empty if and only if either $L(F)$ or $L(G)$ are empty
- $E = F^*$. Then $L(E)$ is not empty, since $\epsilon \in L(E)$

Language membership

We can test $w \in L(A)$ for DFA A by simulating A on w. If $|w| = n$ this takes $\mathcal{O}(n)$ steps

If A is an NFA with s states, simulating A on w requires $\mathcal{O}(n \cdot s^2)$ steps

Language membership

If A is an ϵ -NFA with s states, simulating A on w requires $\mathcal{O}(n \cdot s^3)$ steps

Alternatively, we can pre-process A by calculating $ECLOSE(p)$ for s states, in time $\mathcal{O}(\mathbf{s}^3)$. Afterwards, the simulation of each symbol *a* from w is carried out as follows

• from the current states, find the successor states under a in time $\mathcal{O}(s^2)$

compute the ϵ -closure for the successor states in time $\mathcal{O} (s^2)$ This takes time $\mathcal{O}(n \cdot s^2)$

Language membership

If $L = L(E)$, for some regular expression E of length s, we first convert E into an ϵ -NFA with 2s states. Then we simulate w on this automaton, in $\mathcal{O}(n \cdot s^3)$ steps

Language membership

We can convert an NFA or an ϵ -NFA into a DFA, and then simulate the input string in time $\mathcal{O}(n)$

The time required by the conversion could be **exponential** in the size of the input FA

This method is used

- when the FA has small size
- when one needs to process several strings for membership with the same FA

Equivalent states

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and let $p, q \in Q$. We define $p\equiv q \ \Leftrightarrow \ \forall w\in\Sigma^* \,:\, \hat\delta(p,w)\in\mathit{F}$ if and only if $\hat\delta(q,w)\in\mathit{F}$

In words, we require p, q to have equal response to input strings, with respect to acceptance

If $p \equiv q$ we say that p and q are **equivalent** states If $p \neq q$ we say that p and q are **distinguishable** states Equivalently : p and q are distinguishable if and only if

 $\exists w : \hat{\delta}(p, w) \in F$ and $\hat{\delta}(q, w) \notin F$, or the other way around

Example

 $\hat{\delta}(\mathsf{C},\epsilon) \in \mathcal{F}, \; \hat{\delta}(\mathsf{G},\epsilon) \notin \mathcal{F} \; \Rightarrow \; \mathsf{C} \not\equiv \mathsf{G} \qquad \qquad \big(\mathcal{F} \text{ finale states}\big)$ $\hat{\delta}(A, 01) = C \in \mathcal{F}, \ \hat{\delta}(G, 01) = E \notin \mathcal{F} \Rightarrow A \not\equiv G$

Example

We prove $A \equiv E$ $\hat{\delta}(A, 1) = F = \hat{\delta}(E, 1)$. Thus $\hat{\delta}(A, 1x) = \hat{\delta}(E, 1x) = \hat{\delta}(F, x)$, $\forall x \in \{0, 1\}^*$ $\hat{\delta}(A,00)=\,\boldsymbol{G}=\hat{\delta}(E,00).$ Thus $\hat{\delta}(A,00\times)=\hat{\delta}(E,00\times)=\hat{\delta}(G,\times),$ $\forall x \in \{0, 1\}^*$ $\hat{\delta}(A, 01) = C = \hat{\delta}(E, 01)$. Thus $\hat{\delta}(A, 01x) = \hat{\delta}(E, 01x) = \hat{\delta}(C, x)$, $\forall x \in \{0, 1\}^*$

State equivalence algorithm

We can compute distinguishable state pairs using the following recursive relation

Base If $p \in F$ and $q \notin F$, then $p \not\equiv q$

Induction If $\exists a \in \Sigma : \delta(p, a) \neq \delta(q, a)$, then $p \neq q$

We compute distinguishable states by backward propagation

State equivalence algorithm

Apply the recursive relation using an **adjacency table** and the following dynamic programming algorithm

- initialize table with pairs that are distinguishable by string ϵ
- **•** for all not yet visited pairs, try to distinguish them using one symbol string: if you reach a pair of **already** distinguishable states, then update table
- iterate until no new pair can be distinguished

Example

Correctness

Theorem If p and q are not distinguished by the algorithm, then $p \equiv q$

Proof

Suppose to the contrary that there is a *bad pair* $\{p, q\}$ such that

- $\exists w \, : \, \hat \delta (\rho, w) \in F, \; \hat \delta (q, w) \notin F,$ or the other way around
- the algorithm does not distinguish between p and q

Each bad pair can be distinguished by some string w

We choose the bad pair p, q with the shortest distinguishing string w. Let $w = a_1 a_2 \cdots a_n$

Correctness

Now $w \neq \epsilon$, since otherwise the algorithm would distinguish p from q at the basis step. Thus $n \geq 1$

Let us consider states $r = \delta(p, a_1)$ and $s = \delta(q, a_1)$

r, s cannot be a bad pair, otherwise r, s would be identified by a string shorter than w

therefore the algorithm must have correctly discovered that r and s are distinguishable. But then the algorithm would distinguish p from q in the inductive part

We conclude that there are no bad pairs, and the theorem holds \Box

Regular language equivalence

Let L and M be regular languages (specified by means of some representation)

To test $L \stackrel{?}{=} M$:

- \bullet convert L and M representations into DFAs
- construct the union DFA (never mind if there are two start states)
- apply state equivalence algorithm
- if the two start states are distinguishable, then $L \neq M$, otherwise $I = M$

Example

Example

The state equivalence algorithm produces the table

We have $A \equiv C$, thus the two DFAs are equivalent

Both DFAs recognize language $L(\epsilon + (0 + 1)^* 0)$

DFA minimization

Important application of the equivalence algorithm : given DFA as input, produces equivalent DFA with minimum number of states

Minimal DFA is *unique*, up to renaming of the states

Idea :

- \bullet eliminate states that are unreachable from the initial state
- merge equivalent states into an individual state

Example

State partition based on the equivalence relation : $\{\{A, E\}, \{B, H\}, \{C\}, \{D, F\}, \{G\}\}\$

Example

State partition based on the equivalence relation : $\{\{A, C, D\}, \{B, E\}\}\$

Transitivity

Theorem If $p \equiv q$ and $q \equiv r$, then $p \equiv r$

Proof

Suppose to the contrary that $p \neq r$

- Then $\exists w$ such that $\hat{\delta}(p,w) \in F$ and $\hat{\delta}(r,w) \notin F$ or the other way around
- *Case* 1 : $\hat{\delta}(q, w)$ is accepting. Then $q \neq r$
- *Case* 2 : $\hat{\delta}(q, w)$ is not accepting. Then $p \neq q$

Therefore it must be that $p \equiv r$

Relation \equiv is reflexive, symmetric and transitive : thus \equiv is an equivalence relation

We can talk about equivalence classes

DFA minimization

To minimize DFA $A = (Q, \Sigma, \delta, q_0, F)$, construct DFA $B = (Q_{-}, \Sigma, \gamma, q_0/_{}, F/_{})$, where

- elements of $Q/_{\equiv}$ are the equivalence classes of \equiv
- elements of $F/_{\equiv}$ are the equivalence classes of \equiv composed by states from F
- $q_0/$ is the set of states that are equivalent to q_0

$$
\bullet\;\;\gamma(p/_{\equiv},a)=\delta(p,a)/_{\equiv}
$$

DFA minimization

In order for B to be well defined we have to show that

If
$$
p \equiv q
$$
 then $\delta(p, a) \equiv \delta(q, a)$

If $\delta(p, a) \neq \delta(q, a)$, then the equivalence algorithm would conclude that $p \neq q$. Thus B is well defined

Example

Minimize

Example

We obtain

Automata minimization

We **cannot** apply the algorithm to NFAs

Example : To minimize

we simply remove state C. However, $A \neq C$