$$\begin{pmatrix} I_{t} & T_{s}(m,m) \\ I_{s} & \ddots \\ I_{s} & J(4,4, END) \\ I_{s} & T(m,i) \\ I_{s} & T(m,m) \\ T(i,m) \\ J(4,4, t+1) \end{pmatrix}$$

END:

We meed

$$\rightarrow$$
 P well formed (if it forminates, it does at line s+1)
 \rightarrow $i = max (\{m \mid R_m \mid s used in P\} u \{k\}) + 1$
Then $f_{p''}^{(k)} = f_p^{(k)}$ and P'' has h Ts-instructions.
Hence by ind. hyp. there is P' URM - program such that $f_{p'}^{(k)} = f_{p''}^{(k)}$
Thus $f_p^{(k)} = f_{p''}^{(k)} = f_{p''}^{(k)}$

The proof is wrong because I am using the inductive hyp. on
$$P''$$
 which is not a UAMs program (it uses both Ts and T)

$$\frac{\text{Solution}}{\text{is prove a stronger busult}}$$

is Every proprom P which uses both T and Ts instructions
can be transformed into a program P' which uses only T
hence a URM-program st. $f_p^{(k)} = f_{p_1}^{(k)}$ "
(same proof, try!)

$$C^{2} \neq C$$

proaf

A URM= proprom

P { In l(P) = s length of P i P tozmimotes in l(s) steps

=> C^{\pm} contains only total functions ~> $C^{\pm} \neq C$ e.g. f: $N \rightarrow N$ f $\in C$ J(1,1,1) f(a) $\uparrow \forall z \in N$ f $\notin C^{\pm}$ (saying (1) uses Jumps'' not sufficient J(1,1,2) computes f(z) = $z \in C^{\pm}$)

reatried to analy functions

$$\rightarrow f(x) = x + c \qquad c \in \mathbb{N} \quad suitable constant$$

$$\frac{d^2}{d^2} = f(x) = c$$
Dende $t_1(x, K) = content of expiste 1 after K steps of computation.
stating from $\boxed{x \mid 0 \mid 0 \mid -\cdots}$
I prove by unduction on K that $t_1(x, K) = \langle x + c \rangle_c$
 $(K=0) \quad t_2(x, 0) = x + 0 \qquad c=0 \qquad oK$
 $(K \rightarrow K+1) \quad By inductive hyp. \quad t_2(x, K) = \langle x + c \rangle_c$
after K+1 steps....
 $\frac{1}{K} \boxed{x_{K+1}} \qquad different asses a coording to the shape of I_{K+1}
* $I_{K+1} = \frac{1}{2}(m)$
 $\begin{cases} -m=1 \qquad t_2(x, K+1) = 0 \qquad aK \\ -m>1 \qquad t_1(x, K+1) = \frac{1}{2}(x, K) \qquad ok by ind. hyp.$
* $I_{K+1} = S(m)$
 $\begin{cases} -m=1 \qquad t_2(x, K+1) = \frac{1}{2}(x, K) \qquad ok by ind. hyp.$
* $I_{K+1} = S(m)$
 $\begin{cases} -m=1 \qquad t_2(x, K+1) = \frac{1}{2}(x, K) \qquad ok by ind. hyp.$
* $I_{K+1} = T(m, m)$
 $\begin{cases} -m>1 \qquad t_1(x, K+1) = \frac{1}{2}(x, K+1) = \frac{1}{2}(x, K) \qquad ok by ind. hyp.$
* $I_{K+1} = T(m, m)$
 $\begin{cases} -m>1 \qquad t_1(x, K+1) = \frac{1}{2}(x, K+1) = \frac{1}{2}(x, K) \qquad ok by ind. hyp.$$$

The key observation is that the same property can be shown for all trajisters $z_j(z, \kappa) = \text{content of } R_j \text{ ofter } \kappa \text{ steps of computations}$ stortling from $\overline{z[0]0]^{---}}$ and show by induction that for all κ $z_j(z, \kappa) = \begin{pmatrix} c_j \\ z + c_j \end{pmatrix}$ [Home exercise]

for h-ory functions

$$f_{(x_{1}, \gamma, x_{h})}^{(h)} = \begin{pmatrix} c \\ x_{j} + c \end{pmatrix}$$

* Decidable Predicate

div
$$(z,y) = (x divides y)$$

div $\leq IN^2 = IN \times IN$
div $= \{(m, m * \kappa) | m, k \in IN \}$

50

K-ory predicate
$$Q(x_{2} - x_{K}) \subseteq \mathbb{N}^{K}$$

 $Q: \mathbb{N}^{K} \rightarrow \{\text{true}, \text{false}\}$
 $\uparrow \uparrow$

Def (duadouble pudicate): Let $Q(2n_{\gamma}, x_{\kappa}) \leq IN^{\kappa}$ K-ony predicate Q is decidable if

is URM- computable.

 $\underbrace{Example}_{Q} : Q(x_1, x_2) \leq IN \\
 Q(x_2, x_2) = (x_1 = x_2)^n \quad decidable \\
 X_Q(x_2, x_2) = \begin{cases} 1 & \text{if } x_1 = x_2 \\ 0 & \text{otherwise} \end{cases} \quad \text{is compotable} \\
 J(1, 2, TRUE) & x_1 = x_2 \\
 True : J(1, 1, RES) \\
 TRUE : J(1, 1, RES) \\
 RES : T(3, 1)$

Example : Q(=	:) = ('x is even	" decidable
1 z 3 z 0 0 ↑ ↑	Eve	EN: J(1,2, TRUE) S(2)
k result	00	D: J(1,2, FALSE) S(2) J(1,1, EVEN)
	TR	UE : S(3)
	FA	LSE: T(3,1)
* Computability over other domains?		
D countable		
d: D->IN	bijective (d-1 eff	

A^{*}, Q, Z, ..., $\underbrace{\times}$ Given $f: D \rightarrow D$ function is <u>computable</u> if $f^*: \alpha \circ f \circ \alpha^{-1} : IN \rightarrow IN$ $a^{-1} \int a$ is URM - computable $N \rightarrow N$

Example: Computability on Z d: T-0 IN

$$\alpha(z) = \begin{cases} 2z & \text{if } z_{70} \\ -zz - 1 & \text{if } z_{70} \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & -1 & 1 & -2 & 2 & -3 & 3 \\ z & 0 & -1 & 1 & -2 & -3 & 3 \\ z & 0 & -1 & 1 & -2 & -3 & 3 \\ z & 0 & -1 & 1 & -2 & -3 & 3 \\ z & 0 & -1 & 1 & -2 & -3 & 3 \\ z & 0 & -1 & 1 & -2 & -3 & -3 \\ z & 0 & -1 & -3 & -3 & -3 \\ z & 0 & -1 & -3 & -3 & -3 \\ z & 0 & -1 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 & -3 & -3 \\ z & 0 & -3 & -3 & -3 & -3 &$$

$$\alpha^{-1}: |N \rightarrow \mathbb{Z}$$

$$\alpha^{-1}(m) = \begin{cases} m_{/2} & m \text{ is even} \\ \frac{m+1}{2} & m \text{ is odd} \end{cases}$$

$$f: \mathbb{Z} \to \mathbb{Z}$$
 computable?
 $f(z) = |z|$

$$f^* = \alpha \circ f \circ \alpha^{-1} : N \to N$$

$$f^*(m) = \alpha \circ f \circ \alpha^{-1}(m) = \begin{cases} m \text{ even} & \alpha \left(f\left(\frac{m}{2}\right)\right) = \alpha \left(\frac{m}{2}\right) = m \\ m \text{ odd} & \alpha \left(f\left(-\frac{m+1}{2}\right)\right) = \alpha \left(\frac{m+1}{2}\right) = m+1 \end{cases}$$