$\underline{COMPUTABILITY} (08/10/2024)$

* Model of computation -> Twing machine 1-calculus (Church) ーン partial recursive function (Gödel & Kleeme) -> camomical deduction systems (Post) -0 URM (UMPrimited Register Machine) → į Church - Turing thesis if and only if It is computable by A function is computable by an effective procedure o. Turing machine Umlimited Register Machine -> memory (unbounded) - - - - -Rm RI RZ Rg executes a program : <u>fimite</u> list of instructions \rightarrow Τı \mathbb{I}_2 Is taken from a finite instruction set Arathmetic instructions ₹_m ← 0 Z(M) Zero --♪ 5 (m) SUCCESSOZ Em + Km+1 -♪ - transfer T(m,m)Rm ← Rm

Jump

$$J(m,m,t)$$
 $rc_m = c_m$? yes \Rightarrow Jump to I_t
mo \Rightarrow comtimue with mext instr.

* <u>Computation</u>

continue according to the semountics

Example

imple		R1 R2 R3	
I1	J(2,3,5)	120	
\mathbb{I}_{2}	5(1)	220	
Iz	5(3)	221	
I_{4}	J (1, 1, 1)	322	

tormimates

- * A computation might mot terminate $J_1 = J(1, 1, 1)$
- * <u>Notation</u>: Given $a_1, a_2, \dots \in \mathbb{N}$ and URM-program P $P(a_1, a_2, \dots)$ denotes the computation of P from a_1, a_2, \dots $\left(\begin{array}{c} P(a_1, a_2, \dots) \\ P(a_1, a_{2_1}, \dots) \end{array}\right)$ computation eventually terminotes $\left(\begin{array}{c} P(a_1, a_{2_1}, \dots) \end{array}\right)$ \wedge diverges

Given
$$Q_{m-1}$$
, $Q_{K} \in IN$
 $P(Q_{1}, Q_{2}, -1, Q_{K})$ represents $P(Q_{2}, -1, Q_{K}, 0, 0, -1)$
 $P(Q_{m-1}, Q_{K}) \downarrow Q$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{1}, -1, Q_{K}) \downarrow$
 $P(Q_{2}, -1, Q_{K}) \downarrow$
 $P(Q_{2}, -1, Q_{K}) \downarrow$
 $Q_{2}, -1, Q_{K}) \downarrow$
 $P(Q_{2}, -1, Q_{K}) \downarrow$
 $P(Q_{2}, -1, Q_{K}) \downarrow$
 $Q_{2}, -1, Q_{K}) \downarrow$
 $P(Q_{2}, -$

$$\frac{\cup RM - computable function}{Given f: N^{k} \rightarrow N} (possibly partial) is URM - computable if
thuse is P URM - program such that $\forall (a_{1}, ., a_{k}) \in N$ $\forall a \in N$
 $P(a_{1}, a_{k}) \downarrow a$ iff $(a_{1}, ., a_{k}) \in dom(f)$
and $f(a_{1}, a_{k}) = a$
 $C^{(k)} = d f | f: N^{k} \rightarrow N$ URT - computable j
 $C = \bigcup_{k \geq 1} C^{(k)}$$$

	J(1,2, END)	// x=0?
	5(2)	
LOOP :	J(1, 2, RES)	// x=K+1
	5(2)	
	5(3)	
	J(1, 1, LOOP)	
RES	· T(3,1)	
END	:	

* $h: |N \rightarrow |N$ $h(\alpha) = \int_{1}^{\alpha/2} \alpha'$

 $h(z) = \begin{cases} z/2 & \text{if } z \text{ even} \\ \uparrow & \text{otherwise} \end{cases}$

F	R1	Rz	Rз	
	r	0	0	
_		κ	ZK	

LOOP : J(4,3, RES) S(2) S(3) J(4,4, LOOP)RES : T(2,4)

* Function computed by a program given a program \mathcal{F} and $k \ge 1$ $f_{\mathcal{P}}^{(\kappa)} : \mathbb{N}^{\kappa} \rightarrow \mathbb{N}$ $f_{\mathcal{P}}^{(\kappa)} (\alpha_{1, |\alpha_{\kappa}\rangle} = \begin{cases} \alpha & \text{if } \mathbb{P}(\alpha_{1, |\alpha_{\kappa}\rangle} \downarrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \downarrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \uparrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \uparrow \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \land \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2, |\alpha_{\kappa}\rangle} \land \alpha \\ \downarrow & \text{if } \mathbb{P}(\alpha_{2}, |\alpha_{2}, |\alpha$

EXERCISE : Comsider URM-machine without T(m,m) C = closs of functions computed by URM- $\mathcal{C}^{-} \stackrel{?}{=} \mathcal{C}$ $\stackrel{\cong}{=} \sim T(m, m) \sim \left[\begin{array}{c} \Sigma(m) \\ \Sigma(m) \\ \Sigma(m) \end{array} \right]$ S(m) J(11, LOOP proof (C= ≤ C) Let f: INK→IN s.t. f ∈ C-, i.e. thure is $P \cup AM^- - proproxim s.t.$ $f_p^{(K)} = f$ Just doserve that P is also a URM-program, himse $f = f_{\mu}^{(m)} \in C$ $(C \in C^{-})$ det fe C $f: \mathbb{N}^{k} \to \mathbb{N}$ and let P be o. URM-program for $f_{P}^{(k)} = f$ Assume: P is well - formed, if it termimates it does at the instruction following the bost one without loss of generality @ We show that there is P' URM- program such that $f_{(\kappa)}^{(\kappa)} = f_{(\kappa)}^{(\kappa)} = t$ by induction on h = number of instructions T(m, n) in P (h=0) P has no transfer instructions himce it is already URM--proprom and thus P'= P works. (h-+h+1) det P a URM program with h+1 transfer instructions

$$P \begin{cases} I_{1} \\ \vdots \\ I_{L} \quad T(m_{1}m) \\ \vdots \\ I_{s} \end{cases}$$

we transform it in P^{II} $\int_{I_{1}} I_{1} \\
\int_{I_{1}} J_{1} \\
\int_{I_{1}} J_{1}$

Now

$$- f_{P''}^{(\kappa)} = f_{P}^{(\kappa)} (\star)$$

$$- P'' \text{ has ome } T \text{ instruction } \text{ and as h transfer instructions}$$
hence by inductive hyp. Hence is $P' \text{ URM}\text{--program ouch}$
that $f_{P'}^{(\kappa)} = f_{P''}^{(\kappa)} (\star)$
By putting things together:
$$f_{P}^{(\kappa)} = f_{P''}^{(\kappa)} = f_{P'}^{(\kappa)}$$
where P' is a URM--program

$$\frac{(\mathbf{x})}{Note}: \text{ for every URM proproxim P thus is a well-formed}$$

$$program P' \text{ s,t.} \qquad f_P^{(\kappa)} = f_{P'}^{(\kappa)} \quad \forall \kappa$$

$$\begin{array}{c} P \\ \vdots \\ J(m,m,t) \\ I_{s} \end{array} if t > s, replace t with J(m,m,s+1) \\ \end{array}$$

Exercise : voriant of URM machine URM^{s} T(mm) $T^{s}(m_{1}m)$ $E_{m} \leftrightarrow E_{m}$ $C^{s} \stackrel{?}{=} C$ <u>Exercise</u> : Consider $URM^{=}$ without jump $C^{=} \stackrel{?}{=} C$ $F_{?}$ T characterise functions in $C^{=}$