first name	family name	student no.
Multiple-choice	e questions (12 points):	
1. Which of the fo	llowing is a bipartite network?	
\Box a network of	f people linked by friendship	
\Box a network of	f words linked whenever they appear i	in the same sentence
\Box a network of	f books connected to the authors	
\Box a network of	f plants linked if they grow in the sam	ne area
2. What informati	fon gives a power-law exponent $\gamma = 2$.	14?
\Box We are deal	ing with a random network	
\Box We are deal	ing with a small world network	
\Box We are deal	ing with an ultra-small world network	:
\Box We are deal	ing with a scale-free regime with no la	arge hubs
3. Under the Biander exponent η of grow	coni-Barabasi model, what is the infor wth?	mation carrried by the dynamic
\Box It identifies	the node degree centrality, the larger	η the higher the degree
\Box It identifies	the attractiveness of a node, the large	er η the faster the node growth
\Box It identifies	the fitness of a node, the smaller η th	e faster the node growth
\Box It identifies	a node quality independent on the gro	owth
same tweet. Which	nantic network of hashtags that are on h of the following would you use to ide h the online discourse?	• • •
\Box betweenness		
\Box pagerank		
\Box closeness		
\Box assortativity	,	

Network Science - written exam: pre-call, January 15, 2024

first name	family name	student no.
	the correct formalization of modula cency matrix \boldsymbol{A} and community as	° .
$\Box Q = $ trace($oldsymbol{C}(oldsymbol{A}-oldsymbol{d}_{ ext{in}},oldsymbol{d}_{ ext{out}}^T)oldsymbol{C}^T),oldsymbol{d}_{ ext{in}}=oldsymbol{A}1,oldsymbol{d}$	$\mathbf{A}_{\mathrm{out}} = \mathbf{A}^T 1$
$\Box Q = $ trace($oldsymbol{C}(oldsymbol{A}-oldsymbol{d}_{ ext{out}},oldsymbol{d}_{ ext{in}}^T)oldsymbol{C}^T),oldsymbol{d}_{ ext{in}}=oldsymbol{A}1,oldsymbol{d}$	$\mathbf{A}_{\mathrm{out}} = \mathbf{A}^T 1$
$\Box \ Q = \operatorname{sum}(0)$	$C(\boldsymbol{A} - \boldsymbol{d}_{ ext{in}}, \boldsymbol{d}_{ ext{out}}^T) \boldsymbol{C}^T), \boldsymbol{d}_{ ext{in}} = \boldsymbol{A} 1, \boldsymbol{d}_{ ext{o}}$	$_{ m ut}=oldsymbol{A}^Toldsymbol{1}$
$\Box Q = \text{trace}($	$C(A - d_{\text{in}}, d_{\text{out}}^T)C^T), d_{\text{in}} = A^T 1,$	$m{d}_{ m out}=m{A}m{1}$
	ormalized mutual information (NM to-document network?	II) measuring in a topic assign
\Box How well of	locuments are described by the wo	rds they contain
\Box How well v	vords are interconnected inside eac	h topic
\Box How well of	locuments inside a topic are conne	cted
\Box How well v	vords are able to clearly identify th	ne topics
7. What is the r	nain drawback of stochastic block	models (SBMs)?
\Box They cann	ot capture the most common netw	ork structures
\Box They are c	nly applicable to binary adjacency	matrices
□ They They	generally too complex to be run of	on large networks
\Box They cann	ot handle distributions other than	the Gaussian one
8. What is HDE	SCAN?	
□ It is an hie ture	rarchical agglomerative approach,	providing a dendrogram struc
\Box It is an hie	rarchical divisive approach, based	on distances
$\Box \text{ It is a com} \\ \text{of modular}$	munity detection algorithm based ity	on an empirical simplification
\Box It is an op	timization tool for community dete	ection

first name	family name	student no.
9 Consider Force	Atlas2. Which of the following is	true?
	nunity detection algorithm based of	
	directed layout algorithm where the the desired distance	he equilibrium distance is pro-
□ It is a force better visua	e directed algorithm taking into a l layout	ccount the node degree, for a
\Box It is based of	on a logarithm mapping of nodes of	listances
10. How to proper uments, N_{wd} ?	erly build a semantic network from	n occurrences of words in doc-
□ By building	; a document-to-document probabi	lity matrix \boldsymbol{P}_{dd}
\Box By exploiting	ng the TF-IDF matrix linking word	ds to documents
	projection onto the words network, appear in the same document	i.e., counting how many times
\Box By linking v	words only if they appear in a suff	icient number of documents
11. How does nor	n-negative matrix factorization (NI	MF) works?
\Box It assumes a	a Dirichlet distribution for topics	
\Box It considers	a binary document-to-topic map	C
\Box It does not	take into account for the documen	nt-to-topic map C
	the word probability in each docur bution inside each topic contained	_

first name	family name	student no.
12. How can we id	lentify the presence of an echo cl	namber in a network?
□ When the in their neighbo	dividual leaning of nodes is simi	lar to the individual leaning of
\Box When the de	egree of nodes is similar to the d	egree of their neighbors
\Box When the in	dividual leaning of nodes is alwa	ys positive
\Box When the nodes are organized in communities		

first name	family name	student no.
Open question =	#1 (10 points, 1 page):	

Explain and comment the PageRank algorithm when applied on an undirected network whose adjacency matrix is A. Consider discussing the following aspects: Which is the PageRank equation? Which are the parameters of interest? What is their meaning? How can these be used to infer interesting analytics from the network? Any further (mathematical) insight is welcome.

first name	family name	student no.
Open question ≠	$\neq 2$ (10 points, 1 page):	

List, describe in some detail, and discuss the most interesting evaluation metrics for assessing the quality of a community detection algorithm. Any insight on mathematical equations, meaning, reliability, generality, etc. is welcome. Assume that the adjacency matrix \boldsymbol{A} is normalized (elements summing up to 1).