Automata, Languages and Computation

Chapter 2 : Finite Automata

Master Degree in Computer Engineering University of Padua Lecturer : Giorgio Satta

Lecture based on material originally developed by : Gösta Grahne, Concordia University $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata} \ \mbox{with ϵ-transitions} \end{array}$

Finite Automata

- Deterministic finite automata : this is the simplest and most efficient type of FA
- Nondeterministic finite automata : FAs with choices activating independent computations
- 3 Nondeterministic finite automata with ε-transitions : nondeterministic automata with special moves that do not consume the input

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Deterministic finite automata

These devices read input from left to right

They can only store a quantity of information limited by a constant, using the important notion of **state**

They are easy to implement in a computer (table)

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata} \ \mbox{with ϵ-transitions} \end{array}$

Deterministic finite automata

A deterministic finite automaton (DFA) is a 5-tuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

where :

- Q is a **finite** set of **states**
- Σ is the input symbol **alphabet**
- δ is a **transition** function $Q \times \Sigma \rightarrow Q$
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of final states

Comment on the notion of determinism

Example

A DFA A that accepts the language of all strings of 0 and 1 containing the substring 01:

$$L = \{x01y \mid x, y \in \{0, 1\}^*\}$$

$$Q = \{q_0, q_1, q_2\}, \Sigma = \{0, 1\}, F = \{q_1\}$$

 δ function, specified by means of a transition table :

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Example

Our DFA A specified by means of a transition diagram :

Question : What is the meaning of q_0, q_1, q_2 ?

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata} \\ \mbox{Nondeterministic finite automata} \\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Does the following transition diagram correspond to a DFA ?

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Acceptance

A DFA **accepts** a string $w = a_1 a_2 \cdots a_n$ if there is a path in the transition diagram that

- starts in the initial state
- ends in some final state
- has a sequence of transitions with labels $a_1a_2\cdots a_n$

Note that the above is not a mathematical definition

Test

Is the string 01101 accepted by the DFA below ?

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Extended transition function

The δ transition function can be **extended** to function $\hat{\delta}$ defined over state and string pairs (as opposed to state and alphabet symbol pairs)

Base $\hat{\delta}(q,\epsilon) = q$

Induction $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$

Recall from our convention on symbols: $a \in \Sigma$, $x \in \Sigma^*$

Example

Given a string w over the alphabet Σ and a symbol a, let $\#_a(w)$ denote the number of occurrences of a in w

Specify a DFA A accepting all and only the strings in the following language

$$L = \{ w \mid w \in \{0,1\}^*, \ \#_0(w) \text{ even}, \ \#_1(w) \text{ even} \}$$

In words, L contains all and only the binary strings with an even number of 0's and an even number of 1's

Question : What is the shortest string in *L*? Are there strings in *L* with odd length?

Example

Deterministic finite automata

Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Example

States have the following meaning

- q_0 : $\#_0(w)$ and $\#_1(w)$ even
- $q_1: \#_0(w)$ even, $\#_1(w)$ odd
- q_2 : $\#_0(w)$ odd, $\#_1(w)$ even
- q_3 : $\#_0(w)$ and $\#_1(w)$ odd

Deterministic finite automata

Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Example

Tabular representation of the DFA

	0	1
$\rightarrow \star q_0$	q ₂	q_1
q_1	q 3	q_0
q ₂	q_0	q 3
q 3	q_1	q_2

Deterministic finite automata

Nondeterministic finite automata Nondeterministic finite automata with $\epsilon\text{-transitions}$

Example

Is string w = 0101 accepted by A ?

•
$$\hat{\delta}(q_0, \epsilon) = q_0$$

• $\hat{\delta}(q_0, 0) = \delta(\hat{\delta}(q_0, \epsilon), 0) = \delta(q_0, 0) = q_2$
• $\hat{\delta}(q_0, 01) = \delta(\hat{\delta}(q_0, 0), 1) = \delta(q_2, 1) = q_3$
• $\hat{\delta}(q_0, 010) = \delta(\hat{\delta}(q_0, 01), 0) = \delta(q_3, 0) = q_1$
• $\hat{\delta}(q_0, 0101) = \delta(\hat{\delta}(q_0, 010), 1) = \delta(q_1, 1) = q_0 \in$

F

Language recognized by a DFA

The language **recognized** by DFA A is

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

The languages accepted by the class of DFAs are called **regular languages**

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Notational conventions

Commonly used notation for DFAs

- *a*, *b*, *c*, . . . alphabet symbols
- *u*, *v*, *w*, *x*, *y*, *z* strings over input alphabet
- *p*, *q*, *r*, *s*, *q*₀, *q*₁, *q*₂, . . . states

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Specify DFAs for the following languages over the alphabet $\{0,1\}$:

- set of all strings ending in 00
- set of all strings with three consecutive 0's
- set of all strings with 011 as a substring
- set of all strings that start or end (or both) with 01

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with *e*-transitions

Exercise

Consider the language L of strings over the alphabet $\{0, 1\}$ with **exactly** one occurrence of string 00

Carry out the following points :

- draw the transition diagram of a DFA A such that L(A) = L
- state the meaning of each of *A*'s states (i.e. for each state of *A* describe the strings leading to it)

Hint: define a "failure state" that can never reach any final state

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata} \ \mbox{with ϵ-transitions} \end{array}$

Nondeterministic finite automata

These automata accept only regular languages

Easier to design than DFAs

Later on we will see several examples of this fact

Very useful for implementing the search for a pattern in a text

Nondeterministic finite automata

A nondeterministic finite automaton can **simultaneously** be in different states

The automaton **accepts** if at least one final state is reached at the end of the scan of the input string

Equivalently, in a given state the automaton can **guess** which next state will lead to acceptance

This interpretation is not in the textbook

Example

Nondeterministic automaton N accepting all and only the strings ending in 01

Simultaneous computations of N on input string 00101

Nondeterministic finite automaton

A nondeterministic finite automata (NFA) is a 5-tuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

where :

- Q is a **finite** set of **states**
- Σ is the **alphabet** of input symbols
- δ is a transition function $Q \times \Sigma \rightarrow 2^Q$, where 2^Q is the set of all subsets of Q (power set)
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Example

The transition diagram

represents the nondeterministic automaton

$$A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

with transition function δ

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata} \ \mbox{with ϵ-transitions} \end{array}$

Extended transition function $\hat{\delta}$

Base
$$\hat{\delta}(q, \epsilon) = \{q\}$$

Induction

$$\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

Notice the difference with the case of DFA in the induction part. Can you explain this?

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with *e*-transitions

Example

Computation of $\hat{\delta}(q_0, 00101)$

• $\hat{\delta}(q_0,\epsilon) = \{q_0\}$

•
$$\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$$

- $\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$
- $\hat{\delta}(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$
- $\hat{\delta}(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata} \ \mbox{with ϵ-transitions} \end{array}$

Accepted language for NFA

The **accepted** language for an NFA A is

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

In words, L(A) is the set of all strings $w \in \Sigma^*$ such that $\hat{\delta}(q_0, w)$ contains at least one final state. This amounts to say that at least one computation for w leads to acceptance

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Test

Consider the following language over $\Sigma=\{0,1\}$

$$L = \{w \mid w = x 1 ab, x \in \Sigma^*, a, b \in \Sigma\}$$

Informally, *L* is the set of all strings with 1 as third to last symbol Specify a NFA *A* such that L(A) = L

Exercise with solution

Show that the NFA

accepts the language $L = \{x01 \mid x \in \Sigma^*\}$

We prove the following three statements using mutual induction:

(i)
$$q_0 \in \hat{\delta}(q_0, w) \Leftrightarrow w \in \Sigma^*$$

(ii) $q_1 \in \hat{\delta}(q_0, w) \Leftrightarrow w = x0, x \in \Sigma^*$
(iii) $q_2 \in \hat{\delta}(q_0, w) \Leftrightarrow w = x01, x \in \Sigma^*$

Exercise with solution

Base If |w| = 0 then $w = \epsilon$, and statement (i) follows from the definition of $\hat{\delta}$. As for statements (ii) and (iii), both hand sides hold false for ϵ

Induction Assume w = xa, with $a \in \{0, 1\}$, |x| = n, and assume statements (i)–(iii) hold true for x.

(i) We know that $q_0 \in \hat{\delta}(q_0, x)$. From state q_0 we have transitions to q_0 for both 0 and 1

Exercise with solution

- (ii) (*if*) w ends with 0. From (i) we know that $q_0 \in \hat{\delta}(q_0, x)$. There is a transition from q_0 to q_1 on symbol 0. Hence $q_1 \in \hat{\delta}(q_0, w)$ (*only if*) $q_1 \in \hat{\delta}(q_0, w)$. In order to reach q_1 , the only possible transition is from q_0 upon reading 0. Thus w = x0
- (iii) (*if*) w ends with 01, and thus a = 1 and x ends with 0. From (ii) we have $q_1 \in \hat{\delta}(q_0, x)$. From q_1 we can reach q_2 upon reading 1. Then $q_2 \in \hat{\delta}(q_0, w)$ (only if) $q_2 \in \hat{\delta}(q_0, w)$. In order to reach q_2 , the only possible transition is from q_1 upon reading 1. From statement (ii) for x we have that x ends with 0. We then conclude that w ends with 01

Equivalence for DFA and NFA

NFAs are **easier** than DFAs to "program", since nondeterminism makes it possible to simplify the structure of the automaton

Example : compare NFA and DFA accepting strings in $\{0, 1\}^*$ with penultimate symbol 1

With an increase in the distance between 1 and the end of the string, the gap gets exponentially larger

Equivalence for DFA and NFA

Quite surprisingly, for every NFA *N* there exists some DFA *D* such that L(D) = L(N). The proof involves the subset construction

Idea : build a state in D for every state set representing a "configuration" in a computation of N. The collection of all configurations is still a **finite set**

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata} \ \mbox{with ϵ-transitions} \end{array}$

Equivalence for DFA and NFA

Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

the subset construction produces a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

such that L(D) = L(N)

 $\label{eq:constraint} \begin{array}{c} \mbox{Deterministic finite automata}\\ \mbox{Nondeterministic finite automata}\\ \mbox{Nondeterministic finite automata with ϵ-transitions} \end{array}$

Equivalence for DFA and NFA

Subset construction :

- $Q_D = \{S \mid S \subseteq Q_N\}$
- $F_D = \{S \subseteq Q_N \mid S \cap F_N \neq \emptyset\}$
- For every $S \subseteq Q_N$ and $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$

Note : $|Q_D| = 2^{|Q_N|}$. Nonetheless, the large majority of states in Q_D turn out to be **garbage**, that is, they cannot be reached from the initial state
Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Example

Construction of δ_D :

Chapter 2

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Example

Note : D states correspond to subsets of N states, but we could denote D states in any other way, for instance using the letters A, B, \ldots, F

	0	1
A	A	A
$\rightarrow B$	E	В
C	A	D
*D	A	A
E	E	F
×F	E	В
*G	A	D
×Н	E	F

Equivalence for DFA and NFA

We can often avoid **exponential growth** of states in Q_D using a technique called **lazy evaluation** (or deferred evaluation)

State q of DFA A is accessible if there is at least one string w such that $\hat{\delta}_A(q_0,w)=q$

We build the transition table of D only for the accessible states of D

Equivalence for DFA and NFA

Construction of DFA D through lazy evaluation

Base $S = \{q_0\}$ is accessible in D

Induction If state S is accessible in D, then state $\delta_D(S, a)$ is also accessible in D, for every $a \in \Sigma$

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Example

DFA D with only accessible states

In several practical applications D has about as many states as N

Equivalence for DFA and NFA

Theorem Let *D* be the DFA obtained from an NFA *N* using the subset construction. Then L(D) = L(N)

Proof We first prove that, for every string $w \in \Sigma^*$, we have

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Check that both sides in the above equation are sets!

We use induction on |w|

Base $w = \epsilon$. The claim follows from the definition

Equivalence for DFA and NFA

Induction

$$\begin{split} \hat{\delta}_D(\{q_0\}, xa) &= \delta_D(\hat{\delta}_D(\{q_0\}, x), a) & \text{definition of } \hat{\delta}_D \\ &= \delta_D(\hat{\delta}_N(q_0, x), a) & \text{induction} \\ &= \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a) & \text{definition of } \delta_D \\ &= \hat{\delta}_N(q_0, xa) & \text{definition of } \hat{\delta}_N \end{split}$$

L(D) = L(N) now follows from the definition of F_D

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with *e*-transitions

Equivalence for DFA and NFA

Theorem A language L is accepted by a DFA if and only if L is accepted by an NFA

Proof (If) Previous theorem

(Only if) Any DFA can be converted into an equivalent NFA by modifying δ_D into δ_N according to the following rule

If $\delta_D(q, a) = p$, then $\delta_N(q, a) = \{p\}$

By induction on |w| one can show that $\hat{\delta}_D(q_0, w) = p$ if and only if $\hat{\delta}_N(q_0, w) = \{p\}$

Theorem There exists an NFA N with n + 1 states that has no equivalent DFA with less than 2^n states

Proof Let *N* be the NFA

Intuitively, an equivalent DFA must "remember" the last n symbols it has read

Those symbols might all be relevant for the final decision

Suppose there exists a DFA D equivalent to N with fewer than 2^n states

There are 2^n binary strings of length *n*. Since *D* has fewer that 2^n states, there must be

• a state q,

• binary strings $a_1a_2\cdots a_n \neq b_1b_2\cdots b_n$, such that

$$\hat{\delta}_D(q_0, a_1 a_2 \cdots a_n) = \hat{\delta}_D(q_0, b_1 b_2 \cdots b_n) = q$$

The above reasoning uses the so-called pigeonhole principle

Since $a_1a_2 \cdots a_n \neq b_1b_2 \cdots b_n$, there exists *i* with $1 \leq i \leq n$ such that $a_i \neq b_i$; we assume $a_i = 1$ and $b_i = 0$ (the other case being symmetrical)

Case 1: i = 1; we have

$$\hat{\delta}_D(q_0, 1a_2 \cdots a_n) \in F$$

 $\hat{\delta}_D(q_0, 0b_2 \cdots b_n) \notin F$

which is a contradiction

Case 2: i > 1; since $\hat{\delta}_D(q_0, a_1 a_2 \cdots a_n) = \hat{\delta}_D(q_0, b_1 b_2 \cdots b_n)$ and D is deterministic, we have

$$\hat{\delta}_D(q_0, a_1 \cdots a_{i-1} 1 a_{i+1} \cdots a_n 0^{i-1}) = \\\hat{\delta}_D(q_0, b_1 \cdots b_{i-1} 0 b_{i+1} \cdots b_n 0^{i-1})$$

From the definition of L, we must have

$$\hat{\delta}_D(q_0, a_1 \cdots a_{i-1} 1 a_{i+1} \cdots a_n 0^{i-1}) \in F$$

$$\hat{\delta}_D(q_0, b_1 \cdots b_{i-1} 0 b_{i+1} \cdots b_n 0^{i-1}) \notin F$$

which is a contradiction

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Partial DFA

This is not a DFA, since for some symbols in $\boldsymbol{\Sigma}$ transitions are not specified

A partial DFA has at most one outgoing transition for each state in Q and for each symbol in Σ

A partial DFA can be completed to a DFA if we add one non-accepting state having the status of a trap state, from which you cannot escape

Exercise with solution

Consider the NFA

$$N = (\{q_0, q_1\}, \{0, 1\}, \delta_N, q_0, \{q_1\}),$$

where $\delta_N(q_0, 0) = \{q_0, q_1\}$, $\delta_N(q_0, 1) = \{q_1\}$, $\delta_N(q_1, 0) = \emptyset$, $\delta_N(q_1, 1) = \{q_0, q_1\}$

- check whether strings $w_1 = 101$ and $w_2 = 0010$ are in L(N), showing all steps in the computations
- construct the transition diagram of the DFA equivalent to N
- using a set-former, define the language accepted by the automaton; suggestion: this is easier if you look at the DFA

Exercise with solution

$$w_{1} = 101 \in L(A) ?$$
• $\hat{\delta}(q_{0}, \epsilon) = \{q_{0}\}$
• $\hat{\delta}(q_{0}, 1) = \delta(q_{0}, 1) = \{q_{1}\}$
• $\hat{\delta}(q_{0}, 10) = \delta(q_{1}, 0) = \emptyset$, then $w_{1} = 101 \notin L(A)$

$$w_{2} = 0010 \in L(A) ?$$
• $\hat{\delta}(q_{0}, \epsilon) = \{q_{0}\}$
• $\hat{\delta}(q_{0}, 0) = \delta(q_{0}, 0) = \{q_{0}, q_{1}\}$
• $\hat{\delta}(q_{0}, 00) = \delta(q_{0}, 0) \cup \delta(q_{1}, 0) = \{q_{0}, q_{1}\} \cup \emptyset = \{q_{0}, q_{1}\}$
• $\hat{\delta}(q_{0}, 001) = \delta(q_{0}, 1) \cup \delta(q_{1}, 1) = \{q_{1}\} \cup \{q_{0}, q_{1}\} = \{q_{0}, q_{1}\}$
• $\hat{\delta}(q_{0}, 0010) = \delta(q_{0}, 0) \cup \delta(q_{1}, 0) = \{q_{0}, q_{1}\} \cup \emptyset = \{q_{0}, q_{1}\}$
• $\hat{\delta}(q_{0}, q_{1}) = \delta(q_{0}, 0) \cup \delta(q_{1}, 0) = \{q_{0}, q_{1}\} \cup \emptyset = \{q_{0}, q_{1}\}$
• since $\{q_{0}, q_{1}\} \cap \{q_{1}\} \neq \emptyset$, $w_{2} = 0010 \in L(A)$

Exercise with solution

We construct the transition diagram of the equivalent DFA using the subset construction and lazy evaluation

• $\delta_D(\{q_0\}, 0) = \delta_N(q_0, 0) = \{q_0, q_1\}$

•
$$\delta_D(\{q_0\}, 1) = \delta_N(q_0, 1) = \{q_1\}$$

•
$$\delta_D(\{q_0, q_1\}, 0) = \delta_N(q_0, 0) \cup \delta_N(q_1, 0)$$

= $\{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$

•
$$\delta_D(\{q_0, q_1\}, 1) = \delta_N(q_0, 1) \cup \delta_N(q_1, 1)$$

= $\{q_1\} \cup \{q_0, q_1\} = \{q_0, q_1\}$

- $\delta_D(\{q_1\}, 0) = \delta_N(q_1, 0) = \emptyset$
- $\delta_D(\{q_1\}, 1) = \delta_N(q_1, 1) = \{q_0, q_1\}$
- $\delta_D(\emptyset, 0) = \delta_D(\emptyset, 1) = \emptyset$
- $\{q_0\}$ initial state, $\{q_0, q_1\}$ e $\{q_1\}$ final states

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

Exercise with solution

Graphical representation of the transition diagram

Exercise with solution

Using a set-former, define the language accepted by the automaton

$$L(A) = \{ w \in \{0,1\}^+ \mid w = 1 \text{ or } w = 0x \\ \text{or } w = 11y, \ x, y \in \{0,1\}^* \}$$

or, alternatively

 $L(A) = \{w \in \{0,1\}^+ \mid w \text{ does not start with } 01\}$

Exercises

Specify an NFA A for each of the following languages defined on the alphabet $\{0,1\}$

- ullet set of strings with two consecutive 0 or two consecutive 1
- set of strings such that at least one of the last three symbols is 1

Deterministic finite automata Nondeterministic finite automata Nondeterministic finite automata with ϵ -transitions

NFA with ϵ -transitions

Extension of NFAs where transitions labelled with symbol ϵ are allowed; this means that the automaton can change state without consuming any of its input

They accept all and only the regular languages

Easier to design than NFAs

 $\epsilon\text{-NFA}$ widely used in compilers and for search of patterns in a text

Example

- A fractional number consists of
 - \bullet + or sign, optional
 - a first string of digits
 - one decimal point
 - a second string of digits

with the first or the second strings optional, but not both

This example comes from a lexical analyser in compiler theory

Example

$\epsilon\text{-NFA}$ accepting fractional numbers

The ϵ -transition makes operators + and - optional

Example

ϵ-NFA accepting set of keywords {ebay, web}

The ϵ -transition makes it easy to combine several automata

NFA with ϵ -transitions

A nondeterministic finite automaton with ϵ -transitions (ϵ -NFA) is a 5-tuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

where

- Q, Σ, q_0 , and F are defined as for NFAs
- δ is a transition function $Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$, with 2^Q denoting the class of subsets of Q

Example

$\epsilon\text{-NFA}$ accepting fractional numbers

$$E = (\{q_0, q_1, \ldots, q_5\}, \{., +, -, 0, 1, \ldots, 9\} \ \delta, q_0, \{q_5\})$$

Transition function δ

Test

Specify an ϵ -NFA accepting the language of strings over $\{a, b, c\}$ with zero or more *a*'s, followed by zero or more *b*'s, followed by zero or more *c*'s

ϵ -closure

Let us compute the ϵ -closure of a state q, written ECLOSE(q), adding all the states reachable from q itself through a sequence of one or more symbols ϵ

Needed later in the definition of $\hat{\delta}$ function

```
Base q \in ECLOSE(q)
```

Induction $(p \in \mathsf{ECLOSE}(q) \land r \in \delta(p, \epsilon)) \Rightarrow r \in \mathsf{ECLOSE}(q)$

Extension to set of states S

$$\mathsf{ECLOSE}(S) = \bigcup_{q \in S} \mathsf{ECLOSE}(q)$$

Example

ϵ -NFA fragment

$$\begin{split} &\mathsf{ECLOSE}(1) = \{1,2,3,4,6\} \\ &\mathsf{ECLOSE}(\{4,5\}) = \{4\} \cup \{5,7\} = \{4,5,7\} \end{split}$$

Extended transition function $\hat{\delta}$

Base $\hat{\delta}(q, \epsilon) = \mathsf{ECLOSE}(q)$

Induction $\hat{\delta}(q, xa)$ is computed as

•
$$\{p_1,\ldots,p_k\}=\hat{\delta}(q,x)$$

•
$$\{r_1,\ldots,r_m\} = \bigcup_{i=1}^k \delta(p_i,a)$$

•
$$\hat{\delta}(q, xa) = \text{ECLOSE}(\{r_1, \dots, r_m\})$$

Note that processing of ϵ symbols is accounted for after the processing of each symbol in Σ

Example

We compute $\hat{\delta}(q_0, 5.6)$ for the ϵ -NFA accepting fractional numbers $\hat{\delta}(q_0, \epsilon) = \text{ECLOSE}(q_0) = \{q_0, q_1\}$

Computation of $\hat{\delta}(q_0, 5)$:

• $\delta(q_0, 5) \cup \delta(q_1, 5) = \emptyset \cup \{q_1, q_4\} = \{q_1, q_4\}$

• $\mathsf{ECLOSE}(q_1) \cup \mathsf{ECLOSE}(q_4) = \{q_1\} \cup \{q_4\} = \{q_1, q_4\} = \hat{\delta}(q_0, 5)$

Example

Computation of $\hat{\delta}(q_0, 5.)$:

- $\delta(q_1,.) \cup \delta(q_4,.) = \{q_2\} \cup \{q_3\} = \{q_2,q_3\}$
- ECLOSE $(q_2) \cup$ ECLOSE $(q_3) = \{q_2\} \cup \{q_3, q_5\} = \{q_2, q_3, q_5\} = \hat{\delta}(q_0, 5.)$

Computation of $\hat{\delta}(q_0, 5.6)$:

- $\delta(q_2, 6) \cup \delta(q_3, 6) \cup \delta(q_5, 6) = \{q_3\} \cup \{q_3\} \cup \emptyset = \{q_3\}$
- $\mathsf{ECLOSE}(q_3) = \{q_3, q_5\} = \hat{\delta}(q_0, 5.6)$

Accepted language for ϵ -NFA

The language **accepted** by ϵ -NFA $E = (Q, \Sigma, \delta, q_0, F)$ is

$$L(E) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

From ϵ -NFA to DFA

Given the $\epsilon\text{-NFA}$

$$E = (Q_E, \Sigma, \delta_E, q_0, F_E)$$

we construct a DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

such that L(D) = L(E)

Construction details :

•
$$Q_D = \{S \mid S \subseteq Q_E, S = \mathsf{ECLOSE}(S)\}$$

•
$$q_D = \text{ECLOSE}(q_0)$$

•
$$F_D = \{ S \mid S \in Q_D, S \cap F_E \neq \emptyset \}$$

From ϵ -NFA to DFA

Construction details (cont'd)

Computation of $\delta_D(S, a)$, $a \in \Sigma$ and $S \in Q_D$

•
$$S = \{p_1, ..., p_k\}$$

•
$$\{r_1,\ldots,r_m\} = \bigcup_{i=1}^k \delta_E(p_i,a)$$

•
$$\delta_D(S, a) = \text{ECLOSE}(\{r_1, \ldots, r_m\})$$

Example

ϵ -NFA E

Example

Computation of some of the values of δ_D

- $\delta_D(\{q_0, q_1\}, +) = \text{ECLOSE}(\delta_E(q_0, +) \cup \delta_E(q_1, +)) = \text{ECLOSE}(\{q_1\}) = \{q_1\}$
- $\delta_D(\{q_1\}, 0) = \text{ECLOSE}(\delta_E(q_1, 0)) = \text{ECLOSE}(\{q_1, q_4\}) = \{q_1, q_4\}$
- $\delta_D(\{q_1, q_4\}, .) = \text{ECLOSE}(\delta_E(q_1, .) \cup \delta_E(q_4, .)) = \text{ECLOSE}(\{q_2, q_3\}) = \{q_2, q_3, q_5\}$
- $\delta_D(\{q_2, q_3, q_5\}, 0) =$ ECLOSE $(\delta_E(q_2, 0) \cup \delta_E(q_3, 0) \cup \delta_E(q_5, 0)) =$ ECLOSE $(\{q_3\} \cup \{q_3\} \cup \emptyset) =$ ECLOSE $(\{q_3\}) = \{q_3, q_5\}$

• • • •

Example

DFA D constructed from E; the DFA has been further simplified, omitting the trap state and all transitions leading to that state

Equivalence between ϵ -NFA and DFA

Theorem A language *L* is recognized by ϵ -NFA *E* if and only if *L* is recognized by DFA *D*

Proof

(If) Convert $\delta_D(q, a) = p$ into $\delta_E(q, a) = \{p\}$. Then add $\delta_E(q, \epsilon) = \emptyset$ for each state q of D

(Only if) Using our construction for *D*, we prove $\hat{\delta}_E(q_0, w) = \hat{\delta}_D(q_D, w)$ by induction on |w|

Base
$$\hat{\delta}_{E}(q_{0}, \epsilon) = \text{ECLOSE}(q_{0}) = q_{D} = \hat{\delta}(q_{D}, \epsilon)$$

Equivalence between ϵ -NFA and DFA

Induction Let w = xa. We show $\hat{\delta}_E(q_0, xa) = \hat{\delta}_D(q_D, xa)$ using the inductiove hypothesis $\hat{\delta}_E(q_0, x) = \hat{\delta}_D(q_D, x)$

Let
$$\hat{\delta}_E(q_0, x) = \{p_1, \dots, p_k\}$$

From the definition of $\hat{\delta}_E$

•
$$\{r_1, ..., r_m\} = \bigcup_{i=1}^k \delta_E(p_i, a)$$

• $\hat{\delta}_E(q_0, xa) = \text{ECLOSE}(\{r_1, ..., r_m\})$

Equivalence between ϵ -NFA and DFA

From the inductive hypothesis $\hat{\delta}_D(q_D, x) = \{p_1, \dots, p_k\}$

Using the definition of *D* we compute $\delta_D(\{p_1, \dots, p_k\}, a)$ • $\{r_1, \dots, r_m\} = \bigcup_{i=1}^k \delta_E(p_i, a)$

•
$$\delta_D(\{p_1, ..., p_k\}, a) = \text{ECLOSE}(\{r_1, ..., r_m\})$$

We can now write

$$\hat{\delta}_D(q_D, xa) = \delta_D(\hat{\delta}_D(q_D, x), a)$$

$$= \delta_D(\{p_1, \dots, p_k\}, a)$$

$$= \text{ECLOSE}(\{r_1, \dots, r_m\})$$

$$= \hat{\delta}_E(q_0, xa)$$