Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Automata, Languages and Computation

Chapter 2 : Finite Automata

Master Degree in Computer Engineering
University of Padua
Lecturer : Giorgio Satta

Lecture based on material originally developed by :
Gosta Grahne, Concordia University

Automata, Languages and Computation Chapter 2

‘{: AR

—

Fols e

Wi
A o':ﬁgiﬁnggl | L

‘—I=m-’

‘6“‘./;%“2’;\
\ !fgs.ﬁgﬁnilﬁ%tﬁ!?" Sy
ey

(!;\‘!5‘.:’!\\

Automata, Languages and Computation Chapter 2

@ Deterministic finite automata : this is the simplest and most
efficient type of FA

© Nondeterministic finite automata : FAs with choices activating
independent computations

© Nondeterministic finite automata with e-transitions :
nondeterministic automata with special moves that do not
consume the input

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Deterministic finite automata

These devices read input from left to right

They can only store a quantity of information limited by a
constant, using the important notion of state

They are easy to implement in a computer (table)

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Deterministic finite automata

A deterministic finite automaton (DFA) is a 5-tuple
A= (Q,Z,(S,qo,F)

where :
@ @ is a finite set of states
@ X is the input symbol alphabet
@ ¢ is a transition function @ x ¥ —» @
@ qo € Q is the initial state
o F < @ is a set of final states

Comment on the notion of determinism

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Example

A DFA A that accepts the language of all strings of 0 and 1
containing the substring 01 :

L={x0ly | x,y € {0,1}"}

Q ={q0,q1, 2}, T ={0,1}, F = {q}

¢ function, specified by means of a transition table :

lo |1
— qo || 92 | 9o
*qL || 91 | 41
|| 92 | Q1

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Example

Our DFA A specified by means of a transition diagram :

0
Start 0 1 .’ o

Question : What is the meaning of qg, g1, g2?

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Test

Does the following transition diagram correspond to a DFA ?

01

Start _». 0 C 1 @

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Acceptance

A DFA accepts a string w = ajay - - - a, if there is a path in the
transition diagram that

@ starts in the initial state
@ ends in some final state

@ has a sequence of transitions with labels a1a> - - a,,

Note that the above is not a mathematical definition

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Test

Is the string 01101 accepted by the DFA below ?

0
Start y_)

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Extended transition function

The § transition function can be extended to function & defined
over state and string pairs (as opposed to state and alphabet
symbol pairs)

A

Base 0(q,¢) =gq

Induction §(q,xa) = 6(6(q, x), a)

Recall from our convention on symbols: a€ ¥, x € ©*

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Example

Given a string w over the alphabet ¥ and a symbol a, let #.(w)
denote the number of occurrences of a in w

Specify a DFA A accepting all and only the strings in the following
language

L={w | we{0,1}*, #o(w) even, #1(w) even}

In words, L contains all and only the binary strings with an even
number of 0's and an even number of 1's

Question : What is the shortest string in L? Are there strings in
L with odd length?

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Example

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Example

States have the following meaning
@ qo: #o(w) and #1(w) even
@ qgi1: #o(w) even, #;1(w) odd
e g #o(w) odd, #1(w) even
® g3: #o(w) and #1(w) odd

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Example

jo |1
—*qo || 92 | q1
aqi | g3 | 9o
g2 || 90 | G3
g3 || 91 | g2

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Example

Is string w = 0101 accepted by A 7
® 5(qo,)— 90
® (g0, 0) = 5(5(qo, €),0) = 6(qo,0) = g
° S(qo,Ol) = 3(5(qo,0),1) = 6(q2,1) = g3
o 3(qo,010) = 5(3(qo,01),0) = 5(q3,0) = g
® 3(qo,0101) = 6(5(qo,010),1) = 3(q1,1) = qo € F

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Language recognized by a DFA

The language recognized by DFA A is
L(A) = {w | d(qo,) € F}

The languages accepted by the class of DFAs are called regular
languages

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Notational conventions

Commonly used notation for DFAs
@ a,b,c,... alphabet symbols
@ u,v,w,Xx,Yy,Zz strings over input alphabet

® p,q,r,5,q0, 491, q2, ... states

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Test

Specify DFAs for the following languages over the alphabet {0,1} :

@ set of all strings ending in 00

@ set of all strings with three consecutive Q’s

@ set of all strings with 011 as a substring

@ set of all strings that start or end (or both) with 01

Automata, Languages and Computation Chapter 2

Deterministic finite automata

Exercise

Consider the language L of strings over the alphabet {0, 1} with
exactly one occurrence of string 00

Carry out the following points :
@ draw the transition diagram of a DFA A such that L(A) =L

@ state the meaning of each of A's states (i.e. for each state of
A describe the strings leading to it)

Hint: define a “failure state” that can never reach any final state

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Nondeterministic finite automata

These automata accept only regular languages

Easier to design than DFAs

Later on we will see several examples of this fact

Very useful for implementing the search for a pattern in a text

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Nondeterministic finite automata

A nondeterministic finite automaton can simultaneously be in
different states

The automaton accepts if at least one final state is reached at the
end of the scan of the input string

Equivalently, in a given state the automaton can guess which next
state will lead to acceptance

This interpretation is not in the textbook

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Example

Nondeterministic automaton N accepting all and only the strings
ending in 01

Start H. 0 C 1

Simultaneous computations of N on input string 00101

b——Hh—> 9 —H —> G — %
\‘-’h\‘h \ql
(stuck)
\02 \

(stuck)

%

0 0 1 0 1

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Nondeterministic finite automaton

A nondeterministic finite automata (NFA) is a 5-tuple
A=(Q,%,4,q,F)

where :
@ @ is a finite set of states
@ Y is the alphabet of input symbols

e § is a transition function @ x ¥ — 29, where 29 is the set of
all subsets of Q (power set)

go € Q is the initial state
F < Q is the set of final states

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Example

The transition diagram

0,1
sat ¥ o0 1
represents the nondeterministic automaton

A= ({q0,91,92},{0,1},9, qo, {q2})

with transition function &

|0 |1
— qo || {90,91} | {qo}
o | {32}
*q2 | I g

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Extended transition function 3—_

Base 4(q,¢) = {q}

Induction
g, xa)= | d(p,a
ped(q,x)
Notice the difference with the case of DFA in the induction part. Can you

explain this?

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Example

art HV/\. 0 C 1

Computation of 3(670,00101)

® 5(qo, €) = {qo}

3(qo0,0) = 6(q0,0) = {qo, g1}
5(qo,00) = 6(qo,0) U 5(q1,0) = {q0, g1} v & = {qo, g1}
fi(QO,()Ol) =3(q0,1) v d(q1,1) = {qo} v {q2} = {qo, 92}
o(
o(

d0,0010) = 6(qo,0) U §(g2,0) = {qo, 91} v & = {q0, g1}
q0,00101) = 6(qo,1) U 6(q1,1) = {qo} U {g2} = {qo, 92}

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Accepted language for NFA

The accepted language for an NFA A is

L(A) = {w | 5(qo,w) n F # &}

In words, L(A) is the set of all strings w € ¥* such that §(qo, w)
contains at least one final state. This amounts to say that at
least one computation for w leads to acceptance

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Test

Consider the following language over ¥ = {0, 1}

L = {w | w=xlab, xeX* abel}

Informally, L is the set of all strings with 1 as third to last symbol

Specify a NFA A such that L(A) = L

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

Show that the NFA
0,1

Start m. 0 (@)t
accepts the language L = {x01 | x € £*}

We prove the following three statements using mutual induction:
(i) go€d(go,w) = weX*

(i) q1 € 8(qo,w) < w = x0, x € T*

(iil) g2 € 8(go, w) < w = x01, x € £*

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

Base If [w| =0 then w = ¢, and statement (i) follows from the
definition of). As for statements (ii) and (iii), both hand sides
hold false for €

Induction Assume w = xa, with a € {0,1}, |x| = n, and assume
statements (i)—(iii) hold true for x.

(i) We know that qo € 3(q0,x). From state gg we have
transitions to qg for both 0 and 1

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

(i) (if) w ends with 0. From (i) we know that go € 6(qo, X).
There; is a transition from gg to g1 on symbol 0. Hence
qi € 0(qo, w)
(only if) q1 € 6(qo, w). In order to reach g1, the only possible
transition is from gg upon reading 0. Thus w = x0

(iii) (if) w ends with 01, and thus a = 1 and x ends with 0.
From (ii) we have ¢; € 3(qo,x). From g; we can reach ¢
upon reading 1. Then g» € S(CIO, w)
(only if) gz € S(qo, w). In order to reach g, the only possible
transition is from g; upon reading 1. From statement (ii) for
x we have that x ends with 0. We then conclude that w ends
with 01 (]

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

NFAs are easier than DFAs to “program”, since nondeterminism
makes it possible to simplify the structure of the automaton

Example : compare NFA and DFA accepting strings in {0, 1}*
with penultimate symbol 1

0,1

Start 1 0,1

With an increase in the distance between 1 and the end of the string, the gap

gets exponentially larger

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Quite surprisingly, for every NFA N there exists some DFA D such
that L(D) = L(N). The proof involves the subset construction

Idea : build a state in D for every state set representing a
“configuration” in a computation of N. The collection of all
configurations is still a finite set

Y —>—— o —> %
\ql\ql \ql
(stuck)
\02 \

(stuck)

%

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Given an NFA
N = (Qszv(stqu FN)

the subset construction produces a DFA

D= (QD-) Za(st {q0}7 FD)

such that L(D) = L(N)

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Subset construction :
o Qo—1{S|ScQn
e Fp={S<Qn|SnFy+#UT}
@ Forevery S Quy and ae L,

5p(S.a) =) ow(p.)

peS

Note : |Qpl| = 21Qn] . Nonetheless, the large majority of states in
Q@p turn out to be garbage, that is, they cannot be reached from
the initial state

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Example

StartH. 0 @ 1

Construction of dp :

|0 |1
| 1]
- {qo} {QO, Cll} {QO}
{1} | O {a2}
@} | O 10/]

{90, 91} | {90, a1} | {90, a2}
*{q0, g2} | {q0,q1} | {q0}
*{q1, g2} || & {2}

*{q0, g1, 92} || {90, 91} | {90, g2}

Nondeterministic finite automata

Example

Note : D states correspond to subsets of N states, but we could

denote D states in any other way, for instance using the letters
AB,....F

Mo T T>0 >

— B
*D
*F

*G
*H

m>MMmM>>>Mm>|°

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

We can often avoid exponential growth of states in Qp using a
technique called lazy evaluation (or deferred evaluation)

State g of DFA A is accessible if there is at least one string w
such that 0a(qo, w) = q

We build the transition table of D only for the accessible states
of D

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Construction of DFA D through lazy evaluation
Base S = {qo} is accessible in D

Induction If state S is accessible in D, then state 6p(S, a) is also
accessible in D, for every ae€ &

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Example

DFA D with only accessible states

1 0

In several practical applications D has about as many states as N

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Theorem Let D be the DFA obtained from an NFA N using the
subset construction. Then L(D) = L(N)

Proof We first prove that, for every string w € *, we have
op({qo}, w) = on(qo, w)
Check that both sides in the above equation are sets!

We use induction on |w]|

Base w = ¢. The claim follows from the definition

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Induction
op({qo}, xa) = 50(50({qo}, x),a) definition of §p
= 0p(dn(qo,x),a) induction
= Up65:v (do.x 5N(p, a) definition of dp
= 6N(qo,xa) definition of dy

L(D) = L(N) now follows from the definition of Fp

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Equivalence for DFA and NFA

Theorem A language L is accepted by a DFA if and only if L is
accepted by an NFA

Proof (If) Previous theorem

(Only if) Any DFA can be converted into an equivalent NFA by
modifying dp into dy according to the following rule

If p(q,a) = p, then on(q, a) = {p}

By induction on |w/| one can show that §p(qg, w) = p if and only
if on(qo0, w) = {p} O

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exponential growth of the state set

Theorem There exists an NFA N with n + 1 states that has no
equivalent DFA with less than 2”7 states

Proof Let N be the NFA
0,1

L(N) = {xlcpcz--- ¢, | x€{0,1}*, ¢; €{0,1}}

Intuitively, an equivalent DFA must “remember” the last n
symbols it has read

Those symbols might all be relevant for the final decision

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exponential growth of the state set

Suppose there exists a DFA D equivalent to N with fewer than 2"
states

There are 2" binary strings of length n. Since D has fewer that 2"
states, there must be

@ a state g,
@ binary strings ajax---ap # bibo - - - by,
such that

A

dp(qo,a1a2---ap) = SD(CIO, biby---bp) =q

The above reasoning uses the so-called pigeonhole principle

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exponential growth of the state set

Since ajas -+ -an, # biby - -+ by, there exists i with 1 </ < n such
that a; # b;; we assume a; = 1 and b; = 0 (the other case being
symmetrical)

Case 1: i = 1; we have

SD(qo, 132 s a,,) e F

S

0p(qo,0bp---by) ¢ F

which is a contradiction

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exponential growth of the state set

Case 2: i > 1; since SD(qo7 ajay---ap) = §D(qo, biby---b,) and D

is deterministic, we have
op(qo, a1+ -+ aj—11aj41---a,0" 1) =
dp(qo, b1 - - bi—10bj11 - - b,0'"1)

From the definition of L, we must have

anoi_l) eF
80(‘707 by---bji_10bjy1--- bnoifl) ¢F

which is a contradiction

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Partial DFA

Start t h e n
(O (—(e (e~
This is not a DFA, since for some symbols in ¥ transitions are not

specified

A partial DFA has at most one outgoing transition for each state
in Q and for each symbol in &

A partial DFA can be completed to a DFA if we add one
non-accepting state having the status of a trap state, from which
you cannot escape

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

Consider the NFA

N = ({q0,91},{0,1},9n,q0,{q1}),

where dn(qgo,0) = {qo, g1}, dn(qo.1) = {q1}, dn(q1,0) = &,
on(g1, 1) = {qo, g1}
@ check whether strings wy = 101 and wy = 0010 are in L(N),
showing all steps in the computations

@ construct the transition diagram of the DFA equivalent to N

@ using a set-former, define the language accepted by the
automaton; suggestion: this is easier if you look at the DFA

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

wi =101 € L(A) ?
o §(d0,€) = {qo}
® 9(qo,1) = 0(qo, 1) = {an}
e 0(go,10) = 6(q1,0) = &, then wy = 101 ¢ L(A)

wy = 0010 € L(A) ?

® 5(qo,€) = {qo}

® 3(qo0,0) = 6(q0,0) = {qo, a1}

@ 9(qo,00) = 3(q0,0) U 6(q1,0) = {go. 1} U & = {qo, q1}

® 3(qo,001) = 3(qo,1) U (g1, 1) = {q1} U {qo. 1} = {qo, a1}
o 5(qo,0010) = 3(qo,0) U 3(q1,0) = {qo,q1} U & = {qo, a1}
@ since {qo,q1} N {q1} # I, wo = 0010 € L(A)

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

We construct the transition diagram of the equivalent DFA using
the subset construction and lazy evaluation

® 6p({q0},0) = dn(q0,0) = {qo, q1}
® 6p({qo},1) = on(qo,1) = {q1}

6p({90, q1},0) = dn(qo,0) U dn(q1,0)
={q0,q1} v & = {qo, 91}

0p({q0,q1},1) = dn(qo,1) LU On(q1,1)
={q1} v {q0, a1} = {qo0, q1}

6p({q1},0) = on(q1,0) = &

op({g1},1) = on(q1,1) = {qo, q1}

6p(J,0) =op(J,1) = &

{qo} initial state, {qo,q1} e {g1} final states

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

Graphical representation of the transition diagram

0,1

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercise with solution

Using a set-former, define the language accepted by the automaton

L(A) = {we{0,1}" | w=1orw=0x
orw =11y, x,y € {0,1}*}

or, alternatively

L(A) = {we{0,1}" | w does not start with 01}

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata

Exercises

Specify an NFA A for each of the following languages defined on
the alphabet {0, 1}

@ set of strings with two consecutive 0 or two consecutive 1

@ set of strings such that at least one of the last three symbols
is1

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

NFA with e-transitions

Extension of NFAs where transitions labelled with symbol € are
allowed; this means that the automaton can change state without
consuming any of its input

They accept all and only the regular languages
Easier to design than NFAs

e-NFA widely used in compilers and for search of patterns in a text

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Example

A fractional number consists of
@ + or - sign, optional
@ a first string of digits
@ one decimal point
@ a second string of digits
with the first or the second strings optional, but not both

This example comes from a lexical analyser in compiler theory

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Example

e-NFA accepting fractional numbers

01..9

e ()

The e-transition makes operators + and - optional

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Example

e-NFA accepting set of keywords {ebay, web}

The e-transition makes it easy to combine several automata

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

NFA with e-transitions

A nondeterministic finite automaton with e-transitions
(e-NFA) is a 5-tuple

A= (0727676707/:)

where

@ Q,X,qo, and F are defined as for NFAs

e § is a transition function Q x (X U {€}) — 2@, with 2@
denoting the class of subsets of @

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

e-NFA accepting fractional numbers

E = ({q()a ai, -, q5}7 {'7 +7 _707 17 s 79} (57 qo, {q5})

Transition function §

He ‘—i—,— ‘ ‘0,...,9
—qo || {q} {1} | O | O
al|dg | {g2} | {q1, 94}
Q| I 1] %] {a3}
|| {as) | O %] {a3}
u|d |D |} | T
*qGs || S| I g | J

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Test

Specify an e-NFA accepting the language of strings over {a, b, c}
with zero or more a's, followed by zero or more b's, followed by
zero or more ¢'s

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

e-closure

Let us compute the e-closure of a state g, written ECLOSE(q),
adding all the states reachable from g itself through a sequence of
one or more symbols ¢

Needed later in the definition of § function
Base g € ECLOSE(q)
Induction (p € ECLOSE(q) A r € §(p,€)) = r € ECLOSE(q)

Extension to set of states S

ECLOSE(S) = | J ECLOSE(q)
qesS

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

e-NFA fragment

YT

: &
@ /

V-

©

@

ECLOSE(1) = {1,2,3,4,6}
ECLOSE({4,5}) = {4} U {5,7} = {4,5,7}

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Extended transition function o

A

Base 0(q,¢) = ECLOSE(q)

Induction g(q,xa) is computed as
° {Pl,« "7pk} = S(q,X)

o {r,....fm} = Uf:l o(pi, a)
° S(q,xa) = ECLOSE({r1, ..., rm})

Note that processing of ¢ symbols is accounted for after the processing of each

symbol in X

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

We compute S(qo, 5.6) for the e-NFA accepting fractional numbers

A

0(qo, €) = ECLOSE(qo) = {qo, g1}

Computation of §(qo, 5) :

® 6(qo,5) v d(q1,5) = Fuiqr,qa} = {q1,qa}
o ECLOSE(q1) UECLOSE(qu) = {q1}u{qs} = {q1.qa} = 8(qo.,5)

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

Computation of §(qo, 5.)

© 6(q1,.) vi(as,.) = {q2} v {a3} = {q2, g3}

® ECLOSE(qz) U ECLOSE(q3) = {g2} v {g3, g5} = {42, 3, g5} =
(5(q0,5.)

Computation of §(qo,5.6) :
® (q2,6) U d(g3,6) LU d(gs,6) = {a3} U {g3} v I = {q3}
o ECLOSE(qs) = {g3, 95} = 4(qo, 5.6)

Automata, Languages and Computation Chapter 2

Deterministic finite automata
Nondeterministic finite automata
Nondeterministic finite automata with e-transitions

Accepted language for e-NFA

The language accepted by e-NFA E = (Q, X%, 0, qo, F) is

L(E) = {w | (g0, w) " F + &}

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

From e-NFA to DFA

Given the e-NFA
E= (QE;zaéanOa FE)

we construct a DFA
D = (QD7 27 5D7 qp, FD)
such that L(D) = L(E)

Construction details :
e Qp ={S | S< Qr, S=ECLOSE(S)}
® gp = ECLOSE(qo)
e Fp={S|SeQp, SnFe#J}

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

From e-NFA to DFA

Construction details (cont'd)

Computation of dp(S,a), ae X and S€ Qp

5= {pl""7pk}
o {r,....rm} = U<, 0e(pi,a)
@ dp(S,a) = ECLOSE({r1,...,rm})

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

e-NFA E

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

Computation of some of the values of dp

6p({qo, q1}, +) = ECLOSE(J£(qo, +) U 0e(q1, +)) =
ECLOSE({q1}) = {q1}

dp({q1},0) = ECLOSE(J£(q1,0)) = ECLOSE({q1, q4}) =
{CI1,CI4}

(5D({q1, q4},) = ECLOSE((SE(ql,) U 5E(q4,)) =
ECLOSE({q2, g3}) = {92, g3, G5}

op({g2,93,95},0) =
ECLOSE(5E(q2, 0) U (55((73, 0) U (SE<Q5, 0))

ECLOSE({qs} U {qa} U &) — ECLOSE({q3}) = {qa. ds}

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Example

DFA D constructed from E; the DFA has been further simplified,
omitting the trap state and all transitions leading to that state

01,..9

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Equivalence between e-NFA and DFA

Theorem A language L is recognized by e-NFA E if and only if L
is recognized by DFA D

Proof

(If) Convert 6p(q,a) = p into de(q,a) = {p}. Then add
de(q,€) = & for each state g of D

(Only if) Using our construction for D, we prove
0e(qo0, w) = 0p(gp, w) by induction on |w]|

Base SE(qo,E) = ECLOSE(qO) =dqdp = S(qD,e)

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Equivalence between e-NFA and DFA

Induction Let w = xa. We show 5E(q0,xa) = 5D(qD,xa) using
the inductiove hypothesis 5E(qo, x) = 5D(qD, X)

Let 8E(QO>X) = {Pl: .. '7pk}

From the definition of SE

(] {rl, ceey I‘m} = Uf:l 5E(p,', a)
o de(qo, xa) = ECLOSE({r1,..., rm})

Automata, Languages and Computation Chapter 2

Nondeterministic finite automata with e-transitions

Equivalence between e-NFA and DFA

From the inductive hypothesis SD(qD,x) ={p1,..-, Pk}

Using the definition of D we compute dp({p1,---, Pk}, a)
o {r,....rm} = Uy de(pia)
° 6D({p17 ceey pk}’ a) = ECLOSE({rla ceey rm})

We can now write

A

5D(qD,X3) = 5D(8D(qD7x)7a)
dp({p1;---, Pk}, a)
ECLOSE({r1,...,rm})

= SE(QO, Xa)

Automata, Languages and Computation Chapter 2

	Deterministic finite automata : this is the simplest and most efficient type of FA
	Nondeterministic finite automata : FAs with choices activating independent computations
	Nondeterministic finite automata with -transitions : nondeterministic automata with special moves that do not consume the input

