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1 Deterministic finite automata : this is the simplest and most
efficient type of FA

2 Nondeterministic finite automata : FAs with choices activating
independent computations

3 Nondeterministic finite automata with ϵ-transitions :
nondeterministic automata with special moves that do not
consume the input
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Deterministic finite automata

These devices read input from left to right

They can only store a quantity of information limited by a
constant, using the important notion of state

They are easy to implement in a computer (table)
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Deterministic finite automata

A deterministic finite automaton (DFA) is a 5-tuple

A “ pQ,Σ, δ, q0,F q

where :

Q is a finite set of states

Σ is the input symbol alphabet

δ is a transition function Q ˆ Σ Ñ Q

q0 P Q is the initial state

F Ď Q is a set of final states

Comment on the notion of determinism

Automata, Languages and Computation Chapter 2
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Example

A DFA A that accepts the language of all strings of 0 and 1
containing the substring 01 :

L “ tx01y | x , y P t0, 1u˚u

Q “ tq0, q1, q2u, Σ “ t0, 1u, F “ tq1u

δ function, specified by means of a transition table :

0 1

Ñ q0 q2 q0
‹q1 q1 q1
q2 q2 q1

Automata, Languages and Computation Chapter 2
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Example

Our DFA A specified by means of a transition diagram :

1 0

0 1
q
0

q
2

q
1 0, 1

Start

Question : What is the meaning of q0, q1, q2?
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Test

Does the following transition diagram correspond to a DFA ?

Start 0 1q0 q q

0, 1

1 2

Automata, Languages and Computation Chapter 2
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Acceptance

A DFA accepts a string w “ a1a2 ¨ ¨ ¨ an if there is a path in the
transition diagram that

starts in the initial state

ends in some final state

has a sequence of transitions with labels a1a2 ¨ ¨ ¨ an

Note that the above is not a mathematical definition

Automata, Languages and Computation Chapter 2
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Test

Is the string 01101 accepted by the DFA below ?

1 0

0 1
q
0

q
2

q
1 0, 1

Start
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Extended transition function

The δ transition function can be extended to function δ̂ defined
over state and string pairs (as opposed to state and alphabet
symbol pairs)

Base δ̂pq, ϵq “ q

Induction δ̂pq, xaq “ δpδ̂pq, xq, aq

Recall from our convention on symbols: a P Σ, x P Σ˚

Automata, Languages and Computation Chapter 2
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Example

Given a string w over the alphabet Σ and a symbol a, let #apwq

denote the number of occurrences of a in w

Specify a DFA A accepting all and only the strings in the following
language

L “ tw | w P t0, 1u˚, #0pwq even, #1pwq evenu

In words, L contains all and only the binary strings with an even
number of 0’s and an even number of 1’s

Question : What is the shortest string in L? Are there strings in
L with odd length?

Automata, Languages and Computation Chapter 2
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Example

q q

q q

0 1

2 3

Start

0

0

1

1

0

0

1

1
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Example

q q

q q

0 1

2 3

Start

0

0

1

1

0

0

1

1

States have the following meaning

q0: #0pwq and #1pwq even

q1: #0pwq even, #1pwq odd

q2: #0pwq odd, #1pwq even

q3: #0pwq and #1pwq odd

Automata, Languages and Computation Chapter 2
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Example

q q

q q

0 1

2 3

Start

0

0

1

1

0

0

1

1

Tabular representation of the DFA

0 1

Ñ ‹q0 q2 q1
q1 q3 q0
q2 q0 q3
q3 q1 q2
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Example

q q

q q

0 1

2 3

Start

0

0

1

1

0

0

1

1

Is string w “ 0101 accepted by A ?

δ̂pq0, ϵq “ q0

δ̂pq0, 0q “ δpδ̂pq0, ϵq, 0q “ δpq0, 0q “ q2

δ̂pq0, 01q “ δpδ̂pq0, 0q, 1q “ δpq2, 1q “ q3

δ̂pq0, 010q “ δpδ̂pq0, 01q, 0q “ δpq3, 0q “ q1

δ̂pq0, 0101q “ δpδ̂pq0, 010q, 1q “ δpq1, 1q “ q0 P F

Automata, Languages and Computation Chapter 2
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Language recognized by a DFA

The language recognized by DFA A is

LpAq “ tw | δ̂pq0,wq P F u

The languages accepted by the class of DFAs are called regular
languages

Automata, Languages and Computation Chapter 2
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Notational conventions

Commonly used notation for DFAs

a, b, c , . . . alphabet symbols

u, v ,w , x , y , z strings over input alphabet

p, q, r , s, q0, q1, q2, . . . states

Automata, Languages and Computation Chapter 2
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Test

Specify DFAs for the following languages over the alphabet t0, 1u :

set of all strings ending in 00

set of all strings with three consecutive 0’s

set of all strings with 011 as a substring

set of all strings that start or end (or both) with 01

Automata, Languages and Computation Chapter 2
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Exercise

Consider the language L of strings over the alphabet t0, 1u with
exactly one occurrence of string 00

Carry out the following points :

draw the transition diagram of a DFA A such that LpAq “ L

state the meaning of each of A’s states (i.e. for each state of
A describe the strings leading to it)

Hint: define a “failure state” that can never reach any final state

Automata, Languages and Computation Chapter 2
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Nondeterministic finite automata

These automata accept only regular languages

Easier to design than DFAs

Later on we will see several examples of this fact

Very useful for implementing the search for a pattern in a text

Automata, Languages and Computation Chapter 2
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Nondeterministic finite automata

A nondeterministic finite automaton can simultaneously be in
different states

The automaton accepts if at least one final state is reached at the
end of the scan of the input string

Equivalently, in a given state the automaton can guess which next
state will lead to acceptance

This interpretation is not in the textbook

Automata, Languages and Computation Chapter 2
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Example

Nondeterministic automaton N accepting all and only the strings
ending in 01

Start 0 1q0 q q

0, 1

1 2

Simultaneous computations of N on input string 00101

q0

q2

q0 q0 q0 q0 q0

q1q1 q1

q2

0 0 1 0 1

(stuck)

(stuck)

Automata, Languages and Computation Chapter 2
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Nondeterministic finite automaton

A nondeterministic finite automata (NFA) is a 5-tuple

A “ pQ,Σ, δ, q0,F q

where :

Q is a finite set of states

Σ is the alphabet of input symbols

δ is a transition function Q ˆ Σ Ñ 2Q , where 2Q is the set of
all subsets of Q (power set)

q0 P Q is the initial state

F Ď Q is the set of final states

Automata, Languages and Computation Chapter 2
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Example

The transition diagram

Start 0 1q0 q q

0, 1

1 2

represents the nondeterministic automaton

A “ ptq0, q1, q2u, t0, 1u, δ, q0, tq2uq

with transition function δ

0 1

Ñ q0 tq0, q1u tq0u

q1 H tq2u

‹q2 H H

Automata, Languages and Computation Chapter 2
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Extended transition function δ̂

Base δ̂pq, ϵq “ tqu

Induction
δ̂pq, xaq “

ď

pPδ̂pq,xq

δpp, aq

Notice the difference with the case of DFA in the induction part. Can you

explain this?

Automata, Languages and Computation Chapter 2
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Example

Start 0 1q0 q q

0, 1

1 2

Computation of δ̂pq0, 00101q

δ̂pq0, ϵq “ tq0u

δ̂pq0, 0q “ δpq0, 0q “ tq0, q1u

δ̂pq0, 00q “ δpq0, 0q Y δpq1, 0q “ tq0, q1u Y H “ tq0, q1u

δ̂pq0, 001q “ δpq0, 1q Y δpq1, 1q “ tq0u Y tq2u “ tq0, q2u

δ̂pq0, 0010q “ δpq0, 0q Y δpq2, 0q “ tq0, q1u Y H “ tq0, q1u

δ̂pq0, 00101q “ δpq0, 1q Y δpq1, 1q “ tq0u Y tq2u “ tq0, q2u

Automata, Languages and Computation Chapter 2
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Accepted language for NFA

The accepted language for an NFA A is

LpAq “ tw | δ̂pq0,wq X F ‰ Hu

In words, LpAq is the set of all strings w P Σ˚ such that δ̂pq0,wq

contains at least one final state. This amounts to say that at
least one computation for w leads to acceptance

Automata, Languages and Computation Chapter 2
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Test

Consider the following language over Σ “ t0, 1u

L “ tw | w “ x1ab, x P Σ˚, a, b P Σu

Informally, L is the set of all strings with 1 as third to last symbol

Specify a NFA A such that LpAq “ L

Automata, Languages and Computation Chapter 2
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Exercise with solution

Show that the NFA

Start 0 1q0 q q

0, 1

1 2

accepts the language L “ tx01 | x P Σ˚u

We prove the following three statements using mutual induction:

(i) q0 P δ̂pq0,wq ô w P Σ˚

(ii) q1 P δ̂pq0,wq ô w “ x0, x P Σ˚

(iii) q2 P δ̂pq0,wq ô w “ x01, x P Σ˚

Automata, Languages and Computation Chapter 2
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Exercise with solution

Base If |w | “ 0 then w “ ϵ, and statement (i) follows from the
definition of δ̂. As for statements (ii) and (iii), both hand sides
hold false for ϵ

Induction Assume w “ xa, with a P t0, 1u, |x | “ n, and assume
statements (i)–(iii) hold true for x .

(i) We know that q0 P δ̂pq0, xq. From state q0 we have
transitions to q0 for both 0 and 1

Automata, Languages and Computation Chapter 2
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Exercise with solution

(ii) (if ) w ends with 0. From (i) we know that q0 P δ̂pq0, xq.
There is a transition from q0 to q1 on symbol 0. Hence
q1 P δ̂pq0,wq

(only if ) q1 P δ̂pq0,wq. In order to reach q1, the only possible
transition is from q0 upon reading 0. Thus w “ x0

(iii) (if ) w ends with 01, and thus a “ 1 and x ends with 0.
From (ii) we have q1 P δ̂pq0, xq. From q1 we can reach q2
upon reading 1. Then q2 P δ̂pq0,wq

(only if ) q2 P δ̂pq0,wq. In order to reach q2, the only possible
transition is from q1 upon reading 1. From statement (ii) for
x we have that x ends with 0. We then conclude that w ends
with 01 l

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

NFAs are easier than DFAs to “program”, since nondeterminism
makes it possible to simplify the structure of the automaton

Example : compare NFA and DFA accepting strings in t0, 1u˚

with penultimate symbol 1

Start

0, 1

1 0, 1

Start 1

0

0

1
0

1

0

1

With an increase in the distance between 1 and the end of the string, the gap

gets exponentially larger

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Quite surprisingly, for every NFA N there exists some DFA D such
that LpDq “ LpNq. The proof involves the subset construction

Idea : build a state in D for every state set representing a
“configuration” in a computation of N. The collection of all
configurations is still a finite set

q0

q2

q0 q0 q0 q0 q0

q1q1 q1

q2

0 0 1 0 1

(stuck)

(stuck)

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Given an NFA
N “ pQN ,Σ, δN , q0,FNq

the subset construction produces a DFA

D “ pQD ,Σ, δD , tq0u,FDq

such that LpDq “ LpNq

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Subset construction :

QD “ tS | S Ď QNu

FD “ tS Ď QN | S X FN ‰ Hu

For every S Ď QN and a P Σ,

δDpS , aq “
ď

pPS

δNpp, aq

Note : |QD | “ 2|QN |. Nonetheless, the large majority of states in
QD turn out to be garbage, that is, they cannot be reached from
the initial state

Automata, Languages and Computation Chapter 2
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Example

Start 0 1q0 q q

0, 1

1 2

Construction of δD :

0 1

H H H

Ñ tq0u tq0, q1u tq0u

tq1u H tq2u

‹tq2u H H

tq0, q1u tq0, q1u tq0, q2u

‹tq0, q2u tq0, q1u tq0u

‹tq1, q2u H tq2u

‹tq0, q1, q2u tq0, q1u tq0, q2u

Automata, Languages and Computation Chapter 2
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Example

Note : D states correspond to subsets of N states, but we could
denote D states in any other way, for instance using the letters
A,B, . . . ,F

0 1

A A A
Ñ B E B

C A D
‹D A A
E E F

‹F E B
‹G A D
‹H E F

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

We can often avoid exponential growth of states in QD using a
technique called lazy evaluation (or deferred evaluation)

State q of DFA A is accessible if there is at least one string w
such that δ̂Apq0,wq “ q

We build the transition table of D only for the accessible states
of D

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Construction of DFA D through lazy evaluation

Base S “ tq0u is accessible in D

Induction If state S is accessible in D, then state δDpS , aq is also
accessible in D, for every a P Σ

Automata, Languages and Computation Chapter 2
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Example

DFA D with only accessible states

Start

{ {q q {q
0 0 0

, ,q q1 2
}}

0 1

1 0

0

1

}

In several practical applications D has about as many states as N

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Theorem Let D be the DFA obtained from an NFA N using the
subset construction. Then LpDq “ LpNq

Proof We first prove that, for every string w P Σ˚, we have

δ̂Dptq0u,wq “ δ̂Npq0,wq

Check that both sides in the above equation are sets!

We use induction on |w |

Base w “ ϵ. The claim follows from the definition

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Induction

δ̂Dptq0u, xaq “ δDpδ̂Dptq0u, xq, aq definition of δ̂D
“ δDpδ̂Npq0, xq, aq induction
“

Ť

pPδ̂Npq0,xq
δNpp, aq definition of δD

“ δ̂Npq0, xaq definition of δ̂N

LpDq “ LpNq now follows from the definition of FD l

Automata, Languages and Computation Chapter 2
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Equivalence for DFA and NFA

Theorem A language L is accepted by a DFA if and only if L is
accepted by an NFA

Proof (If) Previous theorem

(Only if) Any DFA can be converted into an equivalent NFA by
modifying δD into δN according to the following rule

If δDpq, aq “ p, then δNpq, aq “ tpu

By induction on |w | one can show that δ̂Dpq0,wq “ p if and only
if δ̂Npq0,wq “ tpu l

Automata, Languages and Computation Chapter 2
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Exponential growth of the state set

Theorem There exists an NFA N with n ` 1 states that has no
equivalent DFA with less than 2n states

Proof Let N be the NFA

Start

0, 1

0, 1 0, 1 0, 1
q q qq0 1 2 n

1 0, 1

LpNq “ tx1c2c3 ¨ ¨ ¨ cn | x P t0, 1u˚, ci P t0, 1uu

Intuitively, an equivalent DFA must “remember” the last n
symbols it has read

Those symbols might all be relevant for the final decision

Automata, Languages and Computation Chapter 2
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Exponential growth of the state set

Suppose there exists a DFA D equivalent to N with fewer than 2n

states

There are 2n binary strings of length n. Since D has fewer that 2n

states, there must be

a state q,

binary strings a1a2 ¨ ¨ ¨ an ‰ b1b2 ¨ ¨ ¨ bn,

such that

δ̂Dpq0, a1a2 ¨ ¨ ¨ anq “ δ̂Dpq0, b1b2 ¨ ¨ ¨ bnq “ q

The above reasoning uses the so-called pigeonhole principle

Automata, Languages and Computation Chapter 2
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Exponential growth of the state set

Since a1a2 ¨ ¨ ¨ an ‰ b1b2 ¨ ¨ ¨ bn, there exists i with 1 ď i ď n such
that ai ‰ bi ; we assume ai “ 1 and bi “ 0 (the other case being
symmetrical)

Case 1: i “ 1; we have

δ̂Dpq0, 1a2 ¨ ¨ ¨ anq P F

δ̂Dpq0, 0b2 ¨ ¨ ¨ bnq R F

which is a contradiction

Automata, Languages and Computation Chapter 2
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Exponential growth of the state set

Case 2: i ą 1; since δ̂Dpq0, a1a2 ¨ ¨ ¨ anq “ δ̂Dpq0, b1b2 ¨ ¨ ¨ bnq and D
is deterministic, we have

δ̂Dpq0, a1 ¨ ¨ ¨ ai´11ai`1 ¨ ¨ ¨ an0
i´1q “

δ̂Dpq0, b1 ¨ ¨ ¨ bi´10bi`1 ¨ ¨ ¨ bn0
i´1q

From the definition of L, we must have

δ̂Dpq0, a1 ¨ ¨ ¨ ai´11ai`1 ¨ ¨ ¨ an0
i´1q P F

δ̂Dpq0, b1 ¨ ¨ ¨ bi´10bi`1 ¨ ¨ ¨ bn0
i´1q R F

which is a contradiction l

Automata, Languages and Computation Chapter 2
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Partial DFA

t th the

Start t nh e

then

This is not a DFA, since for some symbols in Σ transitions are not
specified

A partial DFA has at most one outgoing transition for each state
in Q and for each symbol in Σ

A partial DFA can be completed to a DFA if we add one
non-accepting state having the status of a trap state, from which
you cannot escape

Automata, Languages and Computation Chapter 2
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Exercise with solution

Consider the NFA

N “ ptq0, q1u, t0, 1u, δN , q0, tq1uq,

where δNpq0, 0q “ tq0, q1u, δNpq0, 1q “ tq1u, δNpq1, 0q “ H,
δNpq1, 1q “ tq0, q1u

check whether strings w1 “ 101 and w2 “ 0010 are in LpNq,
showing all steps in the computations

construct the transition diagram of the DFA equivalent to N

using a set-former, define the language accepted by the
automaton; suggestion: this is easier if you look at the DFA

Automata, Languages and Computation Chapter 2
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Exercise with solution

w1 “ 101 P LpAq ?

δ̂pq0, ϵq “ tq0u

δ̂pq0, 1q “ δpq0, 1q “ tq1u

δ̂pq0, 10q “ δpq1, 0q “ H, then w1 “ 101 R LpAq

w2 “ 0010 P LpAq ?

δ̂pq0, ϵq “ tq0u

δ̂pq0, 0q “ δpq0, 0q “ tq0, q1u

δ̂pq0, 00q “ δpq0, 0q Y δpq1, 0q “ tq0, q1u Y H “ tq0, q1u

δ̂pq0, 001q “ δpq0, 1q Y δpq1, 1q “ tq1u Y tq0, q1u “ tq0, q1u

δ̂pq0, 0010q “ δpq0, 0q Y δpq1, 0q “ tq0, q1u Y H “ tq0, q1u

since tq0, q1u X tq1u ‰ H, w2 “ 0010 P LpAq

Automata, Languages and Computation Chapter 2
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Exercise with solution

We construct the transition diagram of the equivalent DFA using
the subset construction and lazy evaluation

δDptq0u, 0q “ δNpq0, 0q “ tq0, q1u

δDptq0u, 1q “ δNpq0, 1q “ tq1u

δDptq0, q1u, 0q “ δNpq0, 0q Y δNpq1, 0q

“ tq0, q1u Y H “ tq0, q1u

δDptq0, q1u, 1q “ δNpq0, 1q Y δNpq1, 1q

“ tq1u Y tq0, q1u “ tq0, q1u

δDptq1u, 0q “ δNpq1, 0q “ H

δDptq1u, 1q “ δNpq1, 1q “ tq0, q1u

δDpH, 0q “ δDpH, 1q “ H

tq0u initial state, tq0, q1u e tq1u final states
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Exercise with solution

Graphical representation of the transition diagram

tq0u tq0, q1u

tq1u H

Start 0

1

0

1

0, 1

0, 1
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Exercise with solution

Using a set-former, define the language accepted by the automaton

LpAq “ tw P t0, 1u` | w “ 1 or w “ 0x

or w “ 11y , x , y P t0, 1u˚u

or, alternatively

LpAq “ tw P t0, 1u` | w does not start with 01u
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Exercises

Specify an NFA A for each of the following languages defined on
the alphabet t0, 1u

set of strings with two consecutive 0 or two consecutive 1

set of strings such that at least one of the last three symbols
is 1
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NFA with ϵ-transitions

Extension of NFAs where transitions labelled with symbol ϵ are
allowed; this means that the automaton can change state without
consuming any of its input

They accept all and only the regular languages

Easier to design than NFAs

ϵ-NFA widely used in compilers and for search of patterns in a text
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Example

A fractional number consists of

+ or - sign, optional

a first string of digits

one decimal point

a second string of digits

with the first or the second strings optional, but not both

This example comes from a lexical analyser in compiler theory
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Example

ϵ-NFA accepting fractional numbers

q q q q q

q

0 1 2 3 5

4

Start

0,1,...,9 0,1,...,9

ε ε

0,1,...,9

0,1,...,9

,+,-

.

.

The ϵ-transition makes operators + and - optional
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Example

ϵ-NFA accepting set of keywords tebay, webu

432

765

Σ

8

be

yab

w

e

1

0

9

Start

ε

ε

The ϵ-transition makes it easy to combine several automata
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NFA with ϵ-transitions

A nondeterministic finite automaton with ϵ-transitions
(ϵ-NFA) is a 5-tuple

A “ pQ,Σ, δ, q0,F q

where

Q,Σ, q0, and F are defined as for NFAs

δ is a transition function Q ˆ pΣ Y tϵuq Ñ 2Q , with 2Q

denoting the class of subsets of Q
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Example

ϵ-NFA accepting fractional numbers

E “ ptq0, q1, . . . , q5u, t.,`,´, 0, 1, . . . , 9u δ, q0, tq5uq

Transition function δ

ϵ +,- . 0, . . . , 9

Ñ q0 tq1u tq1u H H

q1 H H tq2u tq1, q4u

q2 H H H tq3u

q3 tq5u H H tq3u

q4 H H tq3u H

‹q5 H H H H
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Test

Specify an ϵ-NFA accepting the language of strings over ta, b, cu

with zero or more a’s, followed by zero or more b’s, followed by
zero or more c ’s
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ϵ-closure

Let us compute the ϵ-closure of a state q, written ECLOSEpqq,
adding all the states reachable from q itself through a sequence of
one or more symbols ϵ

Needed later in the definition of δ̂ function

Base q P ECLOSEpqq

Induction pp P ECLOSEpqq ^ r P δpp, ϵqq ñ r P ECLOSEpqq

Extension to set of states S

ECLOSEpSq “
ď

qPS

ECLOSEpqq
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Example

ϵ-NFA fragment

1

2 3 6

4 5 7

ε

ε ε

ε

εa

b

ECLOSEp1q “ t1, 2, 3, 4, 6u

ECLOSEpt4, 5uq “ t4u Y t5, 7u “ t4, 5, 7u
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Extended transition function δ̂

Base δ̂pq, ϵq “ ECLOSEpqq

Induction δ̂pq, xaq is computed as

tp1, . . . , pku “ δ̂pq, xq

tr1, . . . , rmu “
Ťk

i“1 δppi , aq

δ̂pq, xaq “ ECLOSEptr1, . . . , rmuq

Note that processing of ϵ symbols is accounted for after the processing of each

symbol in Σ
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Example

We compute δ̂pq0, 5.6q for the ϵ-NFA accepting fractional numbers

δ̂pq0, ϵq “ ECLOSEpq0q “ tq0, q1u

Computation of δ̂pq0, 5q :

δpq0, 5q Y δpq1, 5q “ H Y tq1, q4u “ tq1, q4u

ECLOSEpq1qYECLOSEpq4q “ tq1uYtq4u “ tq1, q4u “ δ̂pq0, 5q
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Example

Computation of δ̂pq0, 5.q :

δpq1, .q Y δpq4, .q “ tq2u Y tq3u “ tq2, q3u

ECLOSEpq2q Y ECLOSEpq3q “ tq2u Y tq3, q5u “ tq2, q3, q5u “

δ̂pq0, 5.q

Computation of δ̂pq0, 5.6q :

δpq2, 6q Y δpq3, 6q Y δpq5, 6q “ tq3u Y tq3u Y H “ tq3u

ECLOSEpq3q “ tq3, q5u “ δ̂pq0, 5.6q
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Accepted language for ϵ-NFA

The language accepted by ϵ-NFA E “ pQ,Σ, δ, q0,F q is

LpE q “ tw | δ̂pq0,wq X F ‰ Hu
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From ϵ-NFA to DFA

Given the ϵ-NFA
E “ pQE ,Σ, δE , q0,FE q

we construct a DFA

D “ pQD ,Σ, δD , qD ,FDq

such that LpDq “ LpE q

Construction details :

QD “ tS | S Ď QE , S “ ECLOSEpSqu

qD “ ECLOSEpq0q

FD “ tS | S P QD , S X FE ‰ Hu
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From ϵ-NFA to DFA

Construction details (cont’d)

Computation of δDpS , aq, a P Σ and S P QD

S “ tp1, . . . , pku

tr1, . . . , rmu “
Ťk

i“1 δE ppi , aq

δDpS , aq “ ECLOSEptr1, . . . , rmuq
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Example

ϵ-NFA E

q q q q q

q

0 1 2 3 5

4

Start

0,1,...,9 0,1,...,9

ε ε

0,1,...,9

0,1,...,9

,+,-

.

.
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Example

Computation of some of the values of δD

δDptq0, q1u,`q “ ECLOSEpδE pq0,`q Y δE pq1,`qq “

ECLOSEptq1uq “ tq1u

δDptq1u, 0q “ ECLOSEpδE pq1, 0qq “ ECLOSEptq1, q4uq “

tq1, q4u

δDptq1, q4u, .q “ ECLOSEpδE pq1, .q Y δE pq4, .qq “

ECLOSEptq2, q3uq “ tq2, q3, q5u

δDptq2, q3, q5u, 0q “

ECLOSEpδE pq2, 0q Y δE pq3, 0q Y δE pq5, 0qq “

ECLOSEptq3u Y tq3u Y Hq “ ECLOSEptq3uq “ tq3, q5u

¨ ¨ ¨
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Example

DFA D constructed from E ; the DFA has been further simplified,
omitting the trap state and all transitions leading to that state

Start

{ { { {

{ {

q q q q

q q

0 1 1
, }q

1
} , q

4
} 2, q

3
, q5}

2}
3
, q5}

0,1,...,9 0,1,...,9

0,1,...,9

0,1,...,9

0,1,...,9

0,1,...,9

+,-

.

.

.
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Equivalence between ϵ-NFA and DFA

Theorem A language L is recognized by ϵ-NFA E if and only if L
is recognized by DFA D

Proof

(If) Convert δDpq, aq “ p into δE pq, aq “ tpu. Then add
δE pq, ϵq “ H for each state q of D

(Only if) Using our construction for D, we prove
δ̂E pq0,wq “ δ̂DpqD ,wq by induction on |w |

Base δ̂E pq0, ϵq “ ECLOSEpq0q “ qD “ δ̂pqD , ϵq
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Equivalence between ϵ-NFA and DFA

Induction Let w “ xa. We show δ̂E pq0, xaq “ δ̂DpqD , xaq using
the inductiove hypothesis δ̂E pq0, xq “ δ̂DpqD , xq

Let δ̂E pq0, xq “ tp1, . . . , pku

From the definition of δ̂E

tr1, . . . , rmu “
Ťk

i“1 δE ppi , aq

δ̂E pq0, xaq “ ECLOSEptr1, . . . , rmuq
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Equivalence between ϵ-NFA and DFA

From the inductive hypothesis δ̂DpqD , xq “ tp1, . . . , pku

Using the definition of D we compute δDptp1, . . . , pku, aq

tr1, . . . , rmu “
Ťk

i“1 δE ppi , aq

δDptp1, . . . , pku, aq “ ECLOSEptr1, . . . , rmuq

We can now write

δ̂DpqD , xaq “ δDpδ̂DpqD , xq, aq

“ δDptp1, . . . , pku, aq

“ ECLOSEptr1, . . . , rmuq

“ δ̂E pq0, xaq

l
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