What is climate?

*Climate vs Weather: Weather describes short-term
atmospheric conditions, while climate refers to the long-
term average of weather patterns over decades to millennia.

Climate components:
*Temperature
*Precipitation

*Wind patterns
*Solar radiation



WEATHER, CLIMATE & E PALEOCLIMATE

WEATHER
It refers to the complex of short-term fluctuations (hours, days, or weeks) that
occur in a region.

CLIMATE
It refers to the complex of conditions that occur in a region over long periods
(years or more).

This complex can be "described" through measurements of:
TEMPERATURE PRECIPITATION (RAIN OR SNOW)

COVERAGE (SNOW OR ICE)

WIND DIRECTION AND STRENGTH

SOLAR RADIATION

...PALEOCLIMATE

Refers to climatic conditions that occurred in the geological past.



Definition of Paleoclimatology

*Definition of Paleoclimatology: Paleoclimatology is the study of
Earth's past climates, using proxies from climate archive (e.g., sediments,
ice cores, corals, tree rings, instrumental records) to reconstruct climate
conditions.

*lce cores: Preserve atmospheric gas bubbles and isotopic composition,
revealing temperature and greenhouse gas concentrations over
hundreds of thousands of years.

*Tree rings: Reflect annual climate conditions, such as rainfall and
temperature, through ring width and density.

*Sediments and fossils: Marine sediments capture historical ocean
temperatures and biological activity.

*Instrumental records



PALEOCLIMATOLOGY

Paleoclimatology is the study of climate changes that occurred
in the geological past.
4
This discipline utilizes a wide variety of proxies to gather
information from rocks, sediments, ice, trees, corals,
microfossils, etc., the so-called geological archives.
4
These data are then used to reconstruct Earth's past climate.
Climate models are also starting to play an increasingly

important role in paleoclimate reconstructions.



Why study paleoclimatology?

*Context for modern climate change: It provides a long-term
perspective, helping us to understand how climate systems
have responded to different forcings in the past.

*Predicting future changes: Insights into natural climate
variability and extreme climate events can improve future
climate models.



Climate Change:

*Natural climate variability: Over millions of years, Earth has
experienced major shifts, including ice ages, warm interglacial periods,
and abrupt events like volcanic eruptions.

*Anthropogenic (human-caused) climate change: Since the industrial
revolution, human activities such as burning fossil fuels have led to
increased greenhouse gas emissions, causing rapid warming.

Key historical climate changes:

*Glacial-Interglacial Cycles: Driven by Earth’s orbital variations
(Milankovitch cycles), these cycles shift the planet between ice ages and
warmer interglacial periods.

*Holocene Warm Period (8,000-5,000 years ago): A relatively warm
phase within the current interglacial period, influencing early human
civilizations.



The Climate System

The Earth's climate system is a complex interaction between five major components:

1.Atmosphere: The layer of gases surrounding Earth, primarily composed of
nitrogen and oxygen, along with trace gases like carbon dioxide and methane that
drive the greenhouse effect.

2.Hydrosphere: Includes all water on the planet—oceans, rivers, lakes, and
groundwater. Oceans store vast amounts of heat and play a crucial role in regulating
global temperatures.

3.Cryosphere: All frozen water, including glaciers, polar ice caps, and sea ice. The
cryosphere reflects solar radiation (albedo effect) and influences sea level.

4.Lithosphere: The Earth's solid outer layer, consisting of the crust and upper
mantle. Volcanic eruptions from the lithosphere can inject aerosols into the
atmosphere, affecting global climate.

5.Biosphere: Encompasses all living organisms, from plants to animals. Vegetation
impacts carbon storage and affects regional climates through processes like
evapotranspiration.



How do these components interact?

The carbon cycle involves the exchange of carbon among the atmosphere, oceans,
lithosphere and biosphere, influencing the greenhouse effect and temperature.

Feedback loops:

Positive feedback (e.g., melting ice reducing albedo, leading to further warming)

Negative feedback (e.g., increased plant growth absorbing more CO,) regulate the
climate.



Climate Variability Examples



Climate Variability
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A WORLD WITHOUT ICE CAPS: THE CRETACEOUS

EVIDENCE

Fossils of large reptiles and tropical e
: : &

plants have been found in regions o NS

that today would be inhospitable.
Reconstruction shows that during
this time, lush forests extended into
regions now covered by ice, like the
Arctic.

CARAI

Left: Champsosaurus (a close relative of crocodiles) found in the rocks of Axel

|3 Heiberg Island, Canadian Arctic Ocean, at over 70°N. This discovery aligns with
Champsosaurus | isotopic data indicating that between 80-90 million years ago, the average
temperature at the Arctic Circle was above 14°C.

»

L]

Right: reconstruction of the landscape -
that characterized both hemispheres =
(even at high latitudes), with lush
forests extending into areas currently
covered by ice.




The Great Ice Age

In the 1800s, the Swiss naturalist Louis Agassiz proposed the idea that Earth had
experienced a major glaciation in recent times, with Alpine glaciers extending
into the plains.

Fossil evidence soon confirmed this hypothesis. We now know there were many
glaciations, and during the last glacial maximum, the global temperature was 5-
8°C lower than today.
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Snowball Earth (Neoproterozoic Era)

Seawater

*Around 600 million years ago, Earth
underwent a dramatic climate instability,
with oceans freezing from the equator to
the poles. Heat from the ocean floor
prevented deeper freezing.

*The main evidence of this "Snowball
Earth" comes from glacial-marine deposits
found in regions near the equator during
this period.



PHANEROZOIC (542-0 MA)
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THE STAGES OF THE CENOZzOIC"

The "GREENHOUSE" World of the Cretaceous and lower
Paleogene

The Paleocene/Eocene Thermal Maximum (ca. 56 Ma) and the
Evolution of Modern Mammals

The Early Eocene Climatic Optimum (EECO) and Whales

DOUBTHOUSE and the Beginning of the ICEHOUSE World
(Upper Eocene-Early Oligocene)

The ICEHOUSE World of the Last 34 Million Year



PALEOCLIMATIC CURVE OF THE PHANEROZOIC

Temperature of Planet Earth

Calo/s/D/CIPIW])] K | fa 1] Hig Pliocene | Pleistocene Holocene
—-.l BH Bl 000, [EECCARE] + 4771
= 500 o ey, (D0, [proakes] + Ca"T)
N § " E
r L : o
= 3 ': ' ]:éi
- ¥ |
b faN i g
Clmalic
. \' Optimun?
PO U 2% e e L IR i {
L o N oL a4 1 f PRt o]
392 h i lMl'p L A% | /\Mt ._..‘f
3o+ A.I‘ H | i ". | tew Age
Sgs i 'I.l's i
I | OClcalPerods >+
CalOS[DIC PIT[JL Kk [ M B o T e
S0 0 M0 XN NOOMD OB N & XN X W 5 4 3 2 1 500 250 10 5 2 1 015 0
Million Years Before Present Thousand Years Before Present (CE2000)




CLIMATE SCIENCE

Source images: Ruddiman, 2007



LIFE ON EARTH

Life exists on Earth because the CLIMATE allows it, both on a
planetary scale and a regional scale.

The average temperature on our planet is 15°C, and most of the
planet ranges between 0 and 30°C.

The CLIMATE can be seen as a SYSTEM composed of the following
elements:

 Atmosphere

* Land masses (Lithosphere)

* Oceans (Hydrosphere)

* Ice (Cryosphere)

* Biosphere



CLIMATE SYSTEM
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CLIMATE MODELS & PALEOCLIMATOLOGY

Concept diagram of climate modeling

Climate models use quantitative methods to Sbaridbox  emittedand  momentun  neoming

. . . (COz, dust, Hz0)  reflected radiation (winds)  solar radiation
simulate the interactions between the components
of the climate system (atmosphere, ice, oceans,
vegetation, and land surface.

rnarmenturn

Models are systems of differential equations based i

on the basic laws of physics and chemistry. To run a § . 2 S
paleoclimate model, the planet is divided into a S \*'*v;'-r; S
three-dimensional grid, the equations are applied, &

and the results are observed.

Source : 2000 W F. Ruddirnan

BUT HOW CAN WE VERIFY THE RESULTS OF THESE PREDICTIONS? ...NO TEST TUBE...

The geological record provides an exceptional natural laboratory where these
models can be verified.

THE PAST CAN BE THE KEY TO UNDERSTANDING THE FUTURE



DEEP TIME

Human life generally unfolds on the scale of decades. The phases of our lives, such

as childhood and adolescence,

last a few years. The goals we set for ourselves and

our needs are achievable within the span of days, weeks, months, or at most years.

The history of the Earth goes
far beyond human
perception.

The Earth formed
approximately 4.55 billion
years ago. The earliest part of
Earth's history is completely
unknown or, at best, known in
a very fragmentary way.

The main reason for this gap
is the rarity of sediments that
can help us reconstruct
and/or understand the oldest
time intervals.
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DEEP TIME — THE IMMENSITY OF TIME

Tertiary Quaternary (17 Seconds)
Cretaceous o
Jurassic
Triassic
Permian
Carboniferous

Devonian

Silurian

Ordovician

Cambrian
21

Proterozoic

The notion of time that
relentlessly flows may
have always existed,
but the ability to
precisely date rocks has
revealed how the
"History of the Earth"
involves timeframes
that are completely
beyond our daily
perception.



Geological time scale

INTERNATIONAL CHRONOSTRATIGRAPHIC CHART
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TIME SCALES OF CLIMATE CHANGES

Most paleoclimate studies focus on less than 10% of Earth's entire history,
particularly on the more recent part.

Global temperature
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As we move from older time intervals to more recent periods, the degree of
resolution increases. It is possible to identify climate changes on different scales
(long-term, short-term) nested within the geological record.



METHODOLOGY AND REVOLUTION

RESEARCH

HYPOTHESIS SCIENTIFIC METHODS

THEORY

The Theories That
Revolutionized
Paleoclimatology

CLIMATE SCIENCE



THE SIMPLIFIED CLIMATE SYSTEM

CAUSES CLIMATE SYSTEM CLIMATE VARIATIONS
(external forcing) (internal interactions) (internal responses)

Changes in

plate tectonics

Changes
— in
Ice
: Changes
Changes in Vegetation —le in
Earth's orbit vegetation
Changes
in
Ocean
Changes =i T
anges in surface > ages in
Sun's strength land

surface

A limited number of factors "force" climate change (EXTERNAL FORCING). These
factors cause interactions between the internal components of the climate system

(air, water, ice, land, vegetation). The result of these interactions is measurable
and is called the CLIMATE RESPONSE.



THE COMPLEX CLIMATE SYSTEM
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CLIMATE FORCING (EXTERNAL)

TECTONIC PROCESSES

They are generated by Earth's internal heat and influence its surface by
altering the geography (Plate Tectonics). These processes operate very
slowly, on the scale of millions of years. Examples: slow movement of
continents, orogeny, the opening and closing of oceans.
EARTH-ORBITAL CHANGES

These are variations in Earth's orbit around the Sun. These changes
alter the amount of solar radiation (season, latitude) over hundreds of
thousands of years. Examples: Eccentricity, Obliquity, Precession.
CHANGES IN SOLAR OUTPUT

They influence solar radiation. Examples: Solar output has increased
over the last 4.55 billion years. Short-term variations (decades and
longer).

ANTHROPOGENIC

The release of greenhouse gases (e.g., CO2) through human activities
(agriculture, industry, etc.).



CLIMATE SYSTEM RESPONSES
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RESPONSE TIME
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TIME SCALES OF FORCING vs RESPONSE

The forcing is very slow compared to the
system's response time. The system moves in
step with the forcing. Example: slow movement

of tectonic plates (Km/Myr).T

The forcing is very fast compared to the system's
response time. The system shows no response
or a minimal response. Example: Solar eclipse,
volcanic eruptions (Pinatubo -0.5°C).

The forcing has a speed similar to the system's

response time. ON-OFF way.

Slow ON-OFF switch: Temperature (T°C) changes
significantly. Fast ON-OFF switch: Temperature

(T°C) changes minimally.
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TIME SCALES OF FORCING vs RESPONSE

In nature, there are no true ON-OFF processes; rather, external forcing
can follow a cyclical pattern. The forcing is cyclical between two equal
equilibrium temperatures (Tequilibrium).

If the cycle has a low frequency
(long), the temperature (T°C)
changes a lot, with a large A MAX-
MIN.

If the cycle has a high frequency
(short), the temperature (T°C)
changes little, with a small A MAX-
MIN.

— Heat applied
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Water
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Water
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ESEMPI DI FORCING CICLICI

Northern Hemisphere — Heat applied

The sun is strongest during the summer solstice
(June).MAX temperatures are reached in July
(land) and August (ocean).

\
Water

temperature
The sun is "weakest" during the winter solstice A
(December).MIN temperatures are reached in

January/February. Heat applied

/

During the day, MAX temperatures are not
reached when the sun is at its strongest (noon),
but in the afternoon.

\
Water

temperature
B Time >

The relationship between cyclical forcing and climate response simulates well
the case of solar radiation changes that occur due to changes in orbital
parameters, because the forcing (A solar radiation) and the climate system's
response (A ice volume) operate on the same timescales (around 10,000 years).



FORCING AND DIFFERENT RESPONSE TIME

The forcing is strong and abrupt,for example > solar

radiation.

Each component of the climate system (air, water,
ice, land, and vegetation) responds to the forcing

with its own response time.

Cyclical forcing (smooth cycles of orbital
parameters):The components with a fast response
time keep pace with the forcing.

The components with a slow response time show a
delay and do not reach MAX and MIN in synchrony

(ice sheets).
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Forcing
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Time >
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response
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FEEDBACKS IN THE CLIMATE SYSTEM

FEEDBACK = process that alters ongoing
climate changes

Amplifying them POSITIVE FEEDBACK
< solar insolation

>ice sheets

>albedo

< temperature

>ice sheets

Reducing them NEGATIVE FEEDBACK
>solar insolation

< ice sheets

< albedo

>Temperature

< ice sheets

L Initial
climate :
; climate
forcing

response

Response amplified
by
climate system

A Positive feedback

il Initial
cimate | ima
forcing

response

Response reduced
by

climate system

B Negative feedback
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