

Università degli Studi di Padova

Introduction to Database Design

Basi di Dati

Bachelor's Degree in Computer Engineering Academic Year 2024/2025

Stefano Marchesin

Intelligent Interactive Information Access (IIIA) Hub Department of Information Engineering University of Padua

Requirement analysis

Database design

Conceptual, logical, and physical design

Software Lifecycle

Information System Life Cycle

Information System Life Cycle

Feasibility Study **Requirement Analysis** Design data design application design Development Testing **Operation** and Maintenance

Requirement Analysis

Requirements are the set of features that a system must have to comply with its purpose

Functional requirements

what the system must do, e.g. printing the invoice

Non-functional requirements

the way in which a system must do something, e.g. printing in less than a minute

Other constraints

general requirements set by stakeholder, often defined ahead, like using Linux

Requirements Gathering and Analysis

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Bad Practices

Bad Practices

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

Database Design

The database design aims at defining the logical schema and the physical schema (see the ANSI/ SPARC architecture) of a database, according to the outcomes of the requirement analysis

Scenario I: database design is part of a broader process,
 i.e. the design of the whole information system

Scenario II: database design is a stand-alone process

Database Design

A (data) model is a set of symbolic structures used to describe the representation of a mini-world of interest. This representation is called schema

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

• A schema describes the structure of a database and represents the intensional level of a database

An instance consists of the actual data and represents the extensional level of a database

- Completeness: the schema must represent all the concepts (and their properties) relevant to the mini-world and identified in the requirements
- Correctness: the representation structures must be used properly and according to the prescribed semantics
- Minimality: each concept must be represented only once
 - you may still have duplications of concepts but they must be carefully motivated and documented
- Readability: the schema should be easy to read and selfexplaining

Representation of the mini-world by means of a high-level formal model, integrating all the relevant concepts and independent from the DBMS

Input: description of the mini-world resulting from the requirement analysis

Output: conceptual schema plus additional constraints

Quality: completeness; correctness; minimality; readability

- The designer reason to the right level of abstraction, independently from any DBMS and specific applications but focussing just on the mini-world to be represented
- The conceptual schema is understandable also by the stakeholders of the application which are actively involved in its design, reducing the risk of misunderstandings
- The conceptual schema is the most important source of documentation for the application and its subsequent modifications and extensions

Representation of the mini-world by means of logical structures, independent from physical structures and characteristic of a class of DBMS

Input: conceptual schema; class of DBMS; estimated application load

Output: logical schema plus additional constraints

Quality: completeness; correctness; efficiency

Representation of the mini-world by means of physical data structures specific to a given DBMS

Input: logical schema; a specific DBMS; estimated application load

- Output: physical schema plus tuning on the specific DBMS;
- **Quality:** correctness; efficiency

Conceptual model → conceptual schema

- Entity-Relationship (ER) model
- Logical model \rightarrow logical schema
 - Relational model

Logical model + physical parameters → physical schema
 Structured Query Language (SQL) and its database-dependent extensions

- Batini, C., De Petra, G., Lenzerini, M., and Santucci, G. (2002). *La progettazione concettuale dei dati*. Franco Angeli, Milano.
- Chen, P. P. (1976). The Entity–Relationship Model Towards a Unified View of Data. ACM Transactions on Database Systems (TODS), 1(1):9–36.
- Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 12(6):377–387.

Lum, V. Y., Ghosh, S. P., Schkolnick, M., Taylor, R. W., Jefferson, D., Su, S. Y. W., Fry, J. P., Teorey, T. J., Yao, B., Rund, D. S., Kahn, B., Navathe, S. B., Smith, D., Aguilar, L., Barr, W. J., and Jones, P. E. (1979). 1978 New Orleans Data Base Design Workshop Report. In Furtado, A. L. and Morgan, H. L., editors, *Proc. 5th International Conference on Very Large Data Bases (VLDB 1979)*, pages 328–339. IEEE Computer Society, Los Alamitos, CA, USA.

- Gezzi, C., Jazayeri, M., and Mandrioli, D. (2004).
 Ingegneria del software. Fondamenti e principi. Pearson Italia, Milano, 2nd edition.
- Pressman, R. S. (2010). Software Engineering: A Practitioner's Approach. McGraw-Hill, New York, USA, 7th edition.
- Sommerville, I. (2010). Software Engineering. Addison-Wesley, USA, 9th edition.

