

Università degli Studi di Padova

Introduction to Databases

Basi di Dati

Bachelor's Degree in Computer Engineering Academic Year 2024/2025

Stefano Marchesin

Intelligent Interactive Information Access (IIIA) Hub Department of Information Engineering University of Padua

Advantages of using the DBMS approach

Data-independence and the ANSI/SPARC architecture

Introduction to Databases

Once upon a time...

APPLE: 100G

EXPORT DEPT.

111

JUST LIKE THAT

DAY!!

WHAT IS A DATABASE? 11

APPLE: 1000

南

MERCHANDISE

DEPT.

APPLE: 100G

∩h)

OVERSEAS

BUSINESS DEPT

GOLD (G) IS THE CURRENCY UNIT USED IN THE KINGDOM OF KOD, RIGHT?

KOLONE SAYS,

"IT IS AN

EFFICIENT

SYSTEM,"

BUT ...

© Stefano Marchesin

Once upon a time...

WHAT IS A DATABASE? 13

12 CHAPTER 1

Once upon a time...

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

A database (DB) is a permanent collection of related data, where data indicates known facts which can be recorded and have an intrinsic meaning

- It represents some aspects of the real world, also called mini-world or universe of discourse (UoD)
- It is a coherent and integrated collection of data which is kept for a long period, also tens of years
- A database is designed for a specific purpose and to satisfy the needs of well identified **users**

A database management system (DBMS) is a general purpose software system which allows users to create, manage, and update a database

Definition of a database

- schema of the database (data types, structure, constraints) stored in the system catalog as metadata
- Construction of a database
 - storing of the data themselves
- Manipulation of a database
 - querying and updating the data

Databases are big

- their dimension is much bigger than central memory available, i.e. terabyte or more and more frequently petabyte
- Databases are **shared** among applications and users
 - reduction of redundancy and inconsistency
 - concurrency control to avoid undesired interaction between users/applications (isolation) and partial or incomplete operations on the data (atomicity)
- DBMS are durable, i.e. they keep the data also in the case of hardware/ software malfunctioning
- DBMS guarantee the security of the data
 - users and applications can access data only upon authentication and authorisation

DBMS are efficient

they optimise the use of resources, both in space and in time

The file system

- allows us to store **big** amounts of data
 - the support for data schema is fairly limited (directory trees)
 - it does not guarantee efficient access to data whose exact position is not already known
- provides a permanent data storage
- odoes not necessarily guarantee the durability of the data
 - you need additional functionalities on top of it, such as checksums or backup policies
- does not avoid data redundancy and inconsistency
- Odes not provide concurrency control in terms of isolation and atomicity
- requires ad-hoc application to provide DBMS-like functionalities

From Archives to Databases

From Archives to Databases

- Duplication and high data redundancy
 - different representations of the data in different archives (files)
 - inconsistencies possible
 - waste of resources
- Different life-cycles for the same data
 - inconsistencies possible
- Different physical features
 - Iocal and not global optimisation
- Different integrity constraints
 - inconsistencies possible

From Archives to Databases

Standard ANSI/SPARC Architecture

External schema: one for each application, where only the data relevant to that application are described

Logical schema:

integrated representation of the data, independent from the physical representation

Internal schema: physical representation into data structures and storage units

Tsichritzis, D. and Klug, A. The ANSI/X3/SPARC DBMS Framework Report of the Study Group on Database Management Systems. *Information Systems*, 3(3):173–191, 1978.

Thanks to the two-level architecture, access happens only through the external level (which may coincide with the logical level)

Two types of data independence

- physical independence: the external and logical levels are independent from the physical level, which may changes without affecting them
- logical independence: the external level is independent from the logical one
 - additions or modifications to the external views do not require changes at logical level

Designers and developers of DBMS

Database administrators (DBA)

Designer of databases

Designer and developers of applications

Users

parametric end users who perform pre-defined activities

casual end users who perform general and not pre-defined activities

A Bit of History

1970 1976	1987	1989 1992	1998 1999	9 2003	2006 2008	2011 2016	5 2021
odd Paper on the Chen Paper on the Relational Model ER Model	ISO SQL/86	ISO ISO SQL/89 SQL/92	Open Source ISO Initiative SQL:19	ISO 999 SQL:2003 S	ISO ISO SQL:2006 SQL:2008 S	ISO ISO SQL:2011 SQL:20	ISO 016 SQL:2021?
1977 IBM 1979 System R Oracle	1983 IBM DB2		1998 MySQL (Open Source				
		1000 1001			1000 0001		
	9// - 1985 agres (BM)	1986 - 1994 Postares (OBM) Pos	1994 - 1995 stores95 (SOL)		1996 - 2021 PostareSOI		
a	t Berkeley	at Berkeley	at Berkeley	G	alobal Development Te	eam	
1970))			, ,)	201

1970

Basi di Dati, A.Y. 2024/2025 BD in "Computer Engineering"

© Stefano Marchesin

- metadata catalog and data
- Separation between programs and data
 - data abstraction
- Multiple views on data
 - further data abstraction
- Data sharing and transaction management
 - **concurrency control, isolation** and **atomicity**

Redundancy control

it avoids errors due to data duplication and saves space

Access control

- authentication and authorization
- Durability
 - resilience to hardware/software malfunctioning

Efficiency

complex query processing by optimizing space and time resource consumption

- Ackoff, R. L. (1989). From Data to Wisdom. Journal of Applied Systems Analysis, 16:3–9.
- Batini, C., De Petra, G., Lenzerini, M., and Santucci, G. (2002). La progettazione concettuale dei dati. Franco Angeli, Milano.
- Garcia-Molina, H., Ullman, J. D., and Widom, J. (2009). Database Systems. The Complete Book. 2nd Edition, Pearson Prentice Hall, Upper Saddle River (NJ), USA.
- Rowley, J. (2007). The Wisdom Hierarchy: Representations of the DIKW Hierarchy. Journal of Information Science, 33(2):163–180.
- Tsichritzis, D. and Klug, A. (1978). The ANSI/X3/SPARC DBMS Framework Report of the Study Group on Database Management Systems. *Information Systems*, 3(3):173–191.
- Zeleny, M. (1987). Management Support Systems: Towards Integrated Knowledge Management. *Human Systems Management*, 7(1):59–70.

