
Ethical HackingSoftware Security

Software Security

Ethical Hacking

Alessandro Brighente
Eleonora Losiouk

Master Degree on Cybersecurity

Ethical HackingSoftware Security

Outline

● Format string
● Access optional arguments
● How printf() works
● Format string attack
● How to exploit the vulnerability
● Countermeasures

Ethical HackingSoftware Security

Format String

● printf() - To print out a string according to a format

int printf(const char *format, ...);

● The argument list of printf() consists of :
○ One concrete argument format
○ Zero or more optional arguments

● Hence, compilers don’t complain if less arguments are passed to
printf() during invocation

Ethical HackingSoftware Security

Access Optional Arguments

● myprint() shows how
printf() actually works

● Consider myprint() is
invoked in line 7

● va_list pointer (line 1)
accesses the optional
arguments

● va_start() macro (line 2)
calculates the initial position
of va_list based on the
second argument Narg (last
argument before the
optional arguments begin)

Ethical HackingSoftware Security

Access Optional Arguments

● va_start() macro gets the
start address of Narg, finds the
size based on the data type and
sets the value for va_list
pointer

● va_list pointer advances using
va_arg() macro

● va_arg(ap, int): Moves the
ap pointer (va_list) up by 4
bytes

● When all the optional arguments
are accessed, va_end() is
called

Ethical HackingSoftware Security

printf() Access Optional Arguments

● Here, printf() has three optional arguments. Elements starting with “%” are
called format specifiers

● printf() scans the format string and prints out each character until “%” is
encountered

● printf() calls va_arg(), which returns the optional argument pointed by
va_list and advances it to the next argument

Ethical HackingSoftware Security

● When printf() is invoked, the
arguments are pushed onto the
stack in reverse order

● When it scans and prints the format
string, printf() replaces %d with
the value from the first optional
argument and prints out the value

● va_list is then moved to the
position 2

printf() Access Optional Arguments

Ethical HackingSoftware Security

Missing Optional Arguments

● va_arg() macro doesn’t
understand if it reached the end of
the optional argument list

● It continues fetching data from the
stack and advancing va_list
pointer

Ethical HackingSoftware Security

Format String Vulnerability

● In these three examples, user’s
input (user_input) becomes part
of a format string

● What will happen if user_input
contains format specifiers?

Ethical HackingSoftware Security

What Can We Achieve?

● Attack 1 : Crash program
● Attack 2 : Print out data on the stack
● Attack 3 : Change the program’s data in the memory
● Attack 4 : Change the program’s data to specific value

Ethical HackingSoftware Security

Hints

● %s

○ For each %s, printf() fetches a value where va_list points to and advances va_list to
the next position

○ As we give %s, printf() treats the value as address and fetches data from that
address

● %x

○ printf() prints out the integer value pointed by va_list pointer and advances it by 4
bytes

● %n

○ writes the number of characters printed out so far into memory
○ %n treats the value pointed by the va_list pointer as a memory address and writes

into that location

Ethical HackingSoftware Security

Hints

● The address of var is given in the beginning of the input so that it is stored

on the stack

● $(command): Command substitution. Allows the output of the command to

replace the command itself

● Width modifier

○ %.10000000x

● Assuming the address of var is 0xbffff304 (can be obtained using gdb)

Ethical HackingSoftware Security

Countermeasures: Developer

● Avoid using untrusted user inputs for format strings in functions like
printf, sprintf, fprintf, vprintf, scanf, vfscanf

Ethical HackingSoftware Security

Countermeasures: Compiler

Compilers can detect potential format string vulnerabilities

● Use two compilers to

compile the program: gcc

and clang.

● We can see that there is a

mismatch in the format

string.

Ethical HackingSoftware Security

Countermeasures: Compiler

● With default settings, both compilers gave warning for the first printf().

● No warning was given out for the second one.

Ethical HackingSoftware Security

Countermeasures: Compiler

● On giving an option -wformat=2, both compilers give warnings for both printf
statements stating that the format string is not a string literal

● These warnings just act as reminders to the developers that there is a potential
problem but nevertheless compile the programs

Ethical HackingSoftware Security

Countermeasures

● Address randomization: Makes it difficult for the attackers to guess
the address of the target memory (return address, address of the
malicious code)

● Non-executable Stack/Heap: This will not work. Attackers can use the
return-to-libc technique to defeat the countermeasure.

● StackGuard: This will not work. Unlike buffer overflow, using format
string vulnerabilities, we can ensure that only the target memory is
modified; no other memory is affected.

