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Overview

The learning objective of this lab is for students to gain the first-hand experience on an interesting variant
of buffer-overflow attack; this attack can bypass an existing protection scheme currently implemented in
major Linux operating systems. A common way to exploit a buffer-overflow vulnerability is to overflow the
buffer with a malicious shellcode, and then cause the vulnerable program to jump to the shellcode stored in
the stack. To prevent these types of attacks, some operating systems allow programs to make their stacks
non-executable; therefore, jumping to the shellcode causes the program to fail. Unfortunately, the above
protection scheme is not fool-proof. There exists a variant of buffer-overflow attacks called Return-to-libc,
which does not need an executable stack; it does not even use shellcode. Instead, it causes the vulnerable
program to jump to some existing code, such as the system() function in the libc library, which is already
loaded into a process’s memory space. In this lab, students are given a program with a buffer-overflow
vulnerability; their task is to develop a Return-to-libc attack to exploit the vulnerability and finally to gain
the root privilege. In addition to the attacks, students will be guided to walk through some protection
schemes implemented in Ubuntu to counter buffer-overflow attacks. This lab covers the following topics: -
Buffer overflow vulnerability - Stack layout in a function invocation and Non-executable stack - Return-to-libc
attack and Return-Oriented Programming (ROP)

Lab environment. This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

1 Environment Setup

1.1 Note on x86 and x64 Architectures

The return-to-libc attack on the x64 machines (64-bit) is much more difficult than that on the x86 machines
(32-bit). Although the SEED Ubuntu 20.04 VM is a 64-bit machine, we decide to keep using the 32-bit
programs (x64 is compatible with x86, so 32-bit programs can still run on x64 machines). In the future, we



may introduce a 64-bit version for this lab. Therefore, in this lab, when we compile programs using gcc, we
always use the -m32 flag, which means compiling the program into 32-bit binary.

1.2 Turning off countermeasures

You can execute the lab tasks using our pre-built Ubuntu virtual machines. Ubuntu and other Linux
distributions have implemented several security mechanisms to make the buffer-overflow attack difficult. To
simplify our attacks, we need to disable them first.

Address Space Randomization. Ubuntu and several other Linux-based systems use address space ran-
domization to randomize the starting address of heap and stack, making guessing the exact addresses difficult.
Guessing addresses is one of the critical steps of buffer-overflow attacks. In this lab, we disable this feature
using the following command:

$ sudo sysctl -w kernel.randomize_va_space=0

The StackGuard Protection Scheme. The gcc compiler implements a security mechanism called Stack-
Guard to prevent buffer overflows. In the presence of this protection, buffer overflow attacks do not work.
We can disable this protection during the compilation using the -fno-stack-protector option. For example,
to compile a program example.c with StackGuard disabled, we can do the following:

$ gcc -m32 -fno-stack-protector example.c

Non-Executable Stack. Ubuntu used to allow executable stacks, but this has now changed. The binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. Kernel or dynamic linker uses this marking to decide
whether to make the stack of this running program executable or non-executable. This marking is done
automatically by the recent versions of gcc, and by default, stacks are set to be non-executable. To change
that, use the following option when compiling programs:

For executable stack:

$ gcc -m32 -z execstack -o test test.c
For non-executable stack:

$ gcc -m32 -z noexecstack -o test test.c

Because the objective of this lab is to show that the non-executable stack protection does not work, you
should always compile your program using the “-z noexecstack” option in this lab.

Configuring /bin/sh. In Ubuntu 20.04, the /bin/sh symbolic link points to the /bin/dash shell. The
dash shell has a countermeasure that prevents itself from being executed in a Set-UID process. If dash is
executed in a Set-UID process, it immediately changes the effective user ID to the process’s real user 1D,
essentially dropping its privilege. Since our victim program is a Set-UID program, and our attack uses the
system() function to run a command of our choice. This function does not run our command directly;
it invokes /bin/sh to run our command. Therefore, the countermeasure in /bin/dash immediately drops
the Set-UID privilege before executing our command, making our attack more difficult. To disable this
protection, we link /bin/sh to another shell that does not have such a countermeasure. We have installed a
shell program called zsh in our Ubuntu 16.04 VM. We use the following commands to link /bin/sh to zsh:

$ sudo 1ln -sf /bin/zsh /bin/sh

It should be noted that the countermeasure implemented in dash can be circumvented. We will do that in
a later task.

1.3 The Vulnerable Program

#include <stdlib.h>
#include <stdio.h>
#include <string.h>



#ifndef BUF_SIZE
#define BUF_SIZE 12
#endi f

int bof(char *str)

{
char buffer[BUF_SIZE];
unsigned int *framep;
// Copy ebp into framep
asm("movl 7%%ebp, %0" : "=r" (framep));
/* print out information for experiment purpose */
printf ("Address of buffer[] inside bof(): 0x%.8x\n", (unsigned)buffer);
printf ("Frame Pointer value inside bof(): 0x%.8x\n", (unsigned)framep) ;
strcpy(buffer, str); // <-- buffer overflow!
return 1;
}
int main(int argc, char *xargv)
{
char input[1000];
FILE *badfile;
badfile = fopen("badfile", "r");
int length = fread(input, sizeof(char), 1000, badfile);
printf ("Address of input[] inside main(): Ox%x\n", (unsigned int) input);
printf ("Input size: %d\n", length);
bof (input) ;
printf (" ("_")("_") Returned Properly ("_")("_")\n");
return 1;
}

// This function will be used in the optional task

void foo(){
static int i = 1;
printf ("Function foo() is invoked %d times\n", i++);
return;

}

The above program has a buffer overflow vulnerability. It first reads an input up to 1000 bytes from a file
called badfile. It then passes the input data to the bof () function, which copies the input to its internal
buffer using strcpy(). However, the internal buffer’s size is less than 1000, so here is potential buffer-
overflow vulnerability. This program is a root-owned Set-UID program, so if a normal user can exploit this
buffer overflow vulnerability, the user might be able to get a root shell. It should be noted that the program
gets its input from a file called badfile, which is provided by users. Therefore, we can construct the file
in a way such that when the vulnerable program copies the file contents into its buffer, a root shell can be
spawned.

Compilation. Let us first compile the code and turn it into a root-owned Set-UID program. Do not
forget to include the -fno-stack-protector option (for turning off the StackGuard protection) and the
“~z noexecstack” option (for turning on the non-executable stack protection). It should also be noted that
changing ownership must be done before turning on the Set-UID bit, because ownership changes cause the



Set-UID bit to be turned off. All these commands are included in the provided Makefile.

# Note: N should be replaced by the value set by the instructor

$ gcc -m32 -DBUF_SIZE=N -fno-stack-protector -z noexecstack -o retlib retlib.c
$ sudo chown root retlib

$ sudo chmod 4755 retlib

2 Lab Tasks

2.1 Task 1: Finding out the Addresses of 1libc Functions

In Linux, when a program runs, the 1ibc library will be loaded into memory. When the memory address
randomization is turned off, for the same program, the library is always loaded in the same memory address
(for different programs, the memory addresses of the 1ibc library may be different). Therefore, we can easily
find out the address of system() using a debugging tool such as gdb. Namely, we can debug the target
program retlib. Even though the program is a root-owned Set-UID program, we can still debug it, except
that the privilege will be dropped (i.e., the effective user ID will be the same as the real user ID). Inside
gdb, we need to type the run command to execute the target program once, otherwise, the library code will
not be loaded. We use the p command (or print) to print out the address of the system() and exit()
functions (we will need exit () later on).

$ touch badfile

$ gdb -q retlib # <-- Use "Quiet" mode

Reading symbols from ./retlib...

(No debugging symbols found in ./retlib)

gdb-peda$ break main

Breakpoint 1 at 0x1327

gdb-peda$ run

Breakpoint 1, 0x56556327 in main ()

gdb-peda$ p system

$1 = {<text variable, no debug info>} 0xf7e12420 <system>
gdb-peda$ p exit

$2 = {<text variable, no debug info>} 0xf7e04f80 <exit>
gdb-peda$ quit

It should be noted that even for the same program, if we change it from a Set-UID program to a non-Set-UID
program, the libc library may not be loaded into the same location. Therefore, when we debug the program,
we need to debug the target Set-UID program; otherwise, the address we get may be incorrect.

Running gdb in batch mode. If you prefer to run gdb in a batch mode, you can put the gdb commands
in a file, and then ask gdb to execute the commands from this file:

$ cat gdb_command.txt

break main

run

p system

p exit

quit

$ gdb -q -batch -x gdb_command.txt ./retlib

Breakpoint 1, 0x56556327 in main ()
$1 = {<text variable, no debug info>} 0xf7e12420 <system>
$2 = {<text variable, no debug info>} 0xf7e04f80 <exit>



2.2 Task 2: Putting the shell string in the memory

Our attack strategy is to jump to the system() function and get it to execute an arbitrary command. Since
we would like to get a shell prompt, we want the system() function to execute the “/bin/sh” program.
Therefore, the command string “/bin/sh” must be put in the memory first and we have to know its address
(this address needs to be passed to the system() function). There are many ways to achieve these goals; we
choose a method that uses environment variables. Students are encouraged to use other approaches. When
we execute a program from a shell prompt, the shell actually spawns a child process to execute the program,
and all the exported shell variables become the environment variables of the child process. This creates an
easy way for us to put some arbitrary string in the child process’s memory. Let us define a new shell variable
MYSHELL, and let it contain the string “/bin/sh”. From the following commands, we can verify that the
string gets into the child process, and it is printed out by the env command running inside the child process.

$ export MYSHELL=/bin/sh
$ env | grep MYSHELL
MYSHELL=/bin/sh

We will use the address of this variable as an argument to system() call. The location of this variable in
the memory can be found out easily using the following program:

void main(){

char* shell = getenv("MYSHELL");

if (shell)

printf ("%x\n", (unsigned int)shell);
}

Compile the code above into a binary called prtenv. If the address randomization is turned off, you will
find out that the same address is printed out. When you run the vulnerable program retlib inside the
same terminal, the address of the environment variable will be the same (see the special note below). You
can verify that by putting the code above inside retlib.c. However, the length of the program name does
make a difference. That’s why we choose 6 characters for the program name prtenv to match the length of
retlib.

Note. You should use the -m32 flag when compiling the above program, so the binary code prtenv will
be for 32-bit machines, instead of for 64-bit ones. The vulnerable program retlib is a 32-bit binary, so if
prtenv is 64-bit, the address of the environment variable will be different.

2.3 Task 3: Launching the Attack

We are ready to create the content of badfile. Since the content involves some binary data (e.g., the address
of the 1ibc functions), we can use Python to do the construction. We provide a skeleton of the code in the
following, with the essential parts left for you to fill out.

#!/usr/bin/env python3

import sys

# Fill content with non-zero values

content = bytearray(Oxaa for i in range(300))

X=0

sh_addr = 0x00000000 # The address of "/bin/sh"

content [X:X+4] = (sh_addr).to_bytes(4,byteorder='1little')
Y=0

system_addr = 0x00000000 # The address of system()

content [Y:Y+4] = (system_addr).to_bytes(4,byteorder='little')
Z=0

exit_addr = 0x00000000 # The address of exit()

content [Z:Z+4] = (exit_addr).to_bytes(4,byteorder='little')



# Save content to a file
with open('"badfile", "wb") as f:
f.write(content)

You need to figure out the three addresses and the values for X, Y, and Z. If your values are incorrect, your
attack might not work. In your report, you need to describe how you decide the values for X, Y and Z. Either
show us your reasoning or, if you use a trial-and-error approach, show your trials.

A note regarding gdb. If you use gdb to figure out the values for X, Y, and Z, it should be noted that
the gdb behavior in Ubuntu 20.04 is slightly different from that in Ubuntu 16.04. In particular, after we set
a break point at function bof, when gdb stops inside the bof () function, it stops before the ebp register is
set to point to the current stack frame, so if we print out the value of ebp here, we will get the caller’s ebp
value, not bof’s ebp. We need to type next to execute a few instructions and stop after the ebp register is
modified to point to the stack frame of the bof () function.

Attack variation 1: Is the exit () function really necessary? Please try your attack without including the
address of this function in badfile. Run your attack again, report and explain your observations.

Attack variation 2: After your attack is successful, change the file name of retlib to a different name,
making sure that the length of the new file name is different. For example, you can change it to newretlib.
Repeat the attack (without changing the content of badfile). Will your attack succeed or not? If it does
not succeed, explain why.

2.4 Task 4 (Optional): Defeat Shell’s countermeasure

The purpose of this task is to launch the return-to-libc attack after the shell’s countermeasure is enabled.
Before doing Tasks 1 to 3, we relinked /bin/sh to /bin/zsh, instead of to /bin/dash (the original setting).
This is because some shell programs, such as dash and bash, have a countermeasure that automatically
drops privileges when they are executed in a Set-UID process. In this task, we would like to defeat such a
countermeasure, i.e., we would like to get a root shell even though the /bin/sh still points to /bin/dash.
Let us first change the symbolic link back:

$ sudo 1ln -sf /bin/dash /bin/sh

Although dash and bash both drop the Set-UID privilege, they will not do that if they are invoked with the
-p option. When we return to the system function, this function invokes /bin/sh, but it does not use the
-p option. Therefore, the Set-UID privilege of the target program will be dropped. If there is a function
that allows us to directly execute “/bin/bash -p”, without going through the system function, we can still
get the root privilege. There are actually many libc functions that can do that, such as the exec () family of
functions, including execl(), execle(), execv(), etc. Let’s take a look at the execv() function (you can
get all the information using the command man execve).

int execv(const char *pathname, char *const argv([]);
This function takes two arguments, one is the address to the command, the second is the address to the

argument array for the command. For example, if we want to invoke “/bin/bash -p” using execv, we need
to set up the following:

pathname = address of "/bin/bash"

argv[0] = address of "/bin/bash"
argv[1] = address of "-p"
argv[2] = NULL (i.e., 4 bytes of zero)

From the previous tasks, we can easily get the address of the two involved strings. Therefore, if we can
construct the argv[] array on the stack, get its address, we will have everything that we need to conduct
the return-to-libc attack. This time, we will return to the execv() function. There is one catch here. The
value of argv[2] must be zero (an integer zero, four bytes). If we put four zeros in our input, strcpy () will
terminate at the first zero; whatever is after that will not be copied into the bof () function’s buffer. This



seems to be a problem, but keep in mind, everything in your input is already on the stack; they are in the
main() function’s buffer. It is not hard to get the address of this buffer. To simplify the task, we already let
the vulnerable program print out that address for you. Just like in Task 3, you need to construct your input,
so when the bof () function returns, it returns to execv(), which fetches from the stack the address of the
“/bin/bash” string and the address of the argv[] array. You need to prepare everything on the stack, so
when execv() gets executed, it can execute “/bin/bash -p” and give you the root shell. In your report,
please describe how you construct your input.

2.5 Task 5 (Optional): Return-Oriented Programming

There are many ways to solve the problem in Task 4. Another way is to invoke setuid(0) before invoking
system(). The setuid(0) call sets both real user ID and effective user ID to 0, turning the process into a
non-Set-UID one (it still has the root privilege). This approach requires us to chain two functions together.
The approach was generalized to chaining multiple functions together, and was further generalized to chain
multiple pieces of code together. This led to the Return-Oriented Programming (ROP). Using ROP to solve
the problem in Task 4 is quite sophisticated, and it is beyond the scope of this lab. However, we do want
to give students a taste of ROP, asking them to work on a special case of ROP. In the retlib.c program,
there is a function called foo(), which is never called in the program. That function is intended for this
task. Your job is to exploit the buffer-overflow problem in the program, so when the program returns from
the bof () function, it invokes foo () 10 times, before giving you the root shell. In your lab report, you need
to describe how your input is constructed. Here is what the results will look like.

$ ./retlib

times
times
times

Function foo() is invoked 1
Function foo() is invoked 2
Function foo() is invoked 3
Function foo() is invoked 4 times
Function foo() is invoked 5 times
Function foo() is invoked 6 times
Function foo() is invoked 7 times
Function foo() is invoked 8 times
Function foo() is invoked 9 times
Function foo() is invoked 10 times
bash-5.0# #<-- Got root shell!

Guidelines. Let’s review what we did in Task 3. We constructed the data on the stack, such that when the
program returns from bof (), it jumps to the system() function, and when system() returns, the program
jumps to the exit() function. We will use a similar strategy here. Instead of jumping to system() and
exit (), we will construct the data on the stack, such that when the program returns from bof, it returns to
foo; when foo returns, it returns to another foo. This is repeated for 10 times. When the 10th foo returns,
it returns to the execv() function to give us the root shell.

3 Guidelines: Understanding the Function Call Mechanism

3.1 Understanding the stack layout

To know how to conduct Return-to-libc attacks, we need to understand how stacks work. We use a small C
program to understand the effects of a function invocation on the stack.

/* foobar.c */
#include<stdio.h>
void foo(int x)

{



printf ("Hello world: %d\n", x);

}
int main()
{
foo(1);
return O;
}

We can use “gcc -m32 -S foobar.c” to compile this program to the assembly code. The result- ing file
foobar.s will look like the following:

9 pushl %ebp

10 movl %esp, %ebp

11 subl $8, Yesp

12 movl 8(%ebp), %heax

13 movl %eax, 4(%esp)

14 movl $.LCO, (%esp) : string "Hello world: %d\n"
15 call printf

21 main:

22 leal 4(%esp), %hecx
23 andl $-16, Y%esp

24 pushl -4(%ecx)

25 pushl %ebp

26 movl %esp, %ebp

27 pushl %ecx

28 subl $4, %esp

29 movl $1, (%esp)

30 call foo

31 movl $0, %eax

32 addl $4, %esp

33 popl Yecx

34 popl %ebp

35 leal -4(%ecx), %esp
36 ret

3.2 Calling and entering foo ()

Let us concentrate on the stack while calling foo(). We can ignore the stack before that. Please note that
line numbers instead of instruction addresses are used in this explanation.

e Line 28-29: These two statements push the value 1, i.e. the argument to the foo(), into the stack.
This operation increments %esp by four. The stack after these two statements is depicted in Figure
(a).

e Line 30: call foo: The statement pushes the address of the next instruction that immediately follows
the call statement into the stack (i.e the return address), and then jumps to the code of foo(). The
current stack is depicted in Figure (b).

e Line 9-10: The first line of the function foo () pushes %ebp into the stack, to save the previous frame
pointer. The second line lets %ebp point to the current frame. The current stack is depicted in Figure
(c).

o Line 11: subl $8, %esp: The stack pointer is modified to allocate space (8 bytes) for local variables
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(a) Line 28: subl $4, Y%esp
Line 29: movl $1, (%esp)

(b) Line 30: call foo

(c) Line 9: push %ebp
Line 10: movl %esp, %ebp

bfffe764 bfffe764 . bfffe764
arameters
, Parameters 00000001
Parameters 00000001 | pere760 arameters 00000001 | 7760 . bfffe760
Return addr 080483dc bfffe7Sc Return addr|  080483dc bfffe75c «p
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(e) Line 16: leave (f) Line 17: ret

(d) Line 11: subl $8, %esp

Figure 1: Entering and Leaving foo()

and the two arguments passed to printf. Since there is no local variable in function foo, the 8 bytes
are for arguments only. See Figure (d).

3.3 Leaving foo()

Now the control has passed to the function foo(). Let us see what happens to the stack when the function
returns. - Line 16: leave: This instruction implicitly performs two instructions (it was a macro in earlier
x86 releases, but was made into an instruction later):

mov %ebp, %esp

pop ’ebp

The first statement releases the stack space allocated for the function; the second statement recovers the
previous frame pointer. The current stack is depicted in Figure (e).

e Line 17: ret: This instruction simply pops the return address out of the stack, and then jump to the

return address. The current stack is depicted in Figure (f).
e Line 32: addl $4, %esp: Further restore the stack by releasing more memories allocated for foo. As
you can see that the stack is now in exactly the same state as it was before entering the function foo

(i.e., before line 28).
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