
Ethical HackingWeb Security

Web Security

Ethical Hacking

Alessandro Brighente
Eleonora Losiouk

Master Degree on Cybersecurity

Ethical HackingWeb Security

Outline

● Overview on web applications with databases

● SQL Injection attack on SELECT statement

● SQL Injection attack on UPDATE statement

● Countermeasures

Ethical HackingWeb Security

Interacting with Database in Web Application

Browser Web application
server Database

HTTP
Request

SQL
Statement

ResultResult

Ethical HackingWeb Security

● The SELECT statement is the most common operation on
databases used to retrieve information from a database

SQL Overview

Ethical HackingWeb Security

● The WHERE clause is used to set conditions for several types of
SQL statements (e.g., SELECT, UPDATE, DELETE)

● The above SQL statement only reflects the rows for which the
predicate in the WHERE clause is TRUE

● The predicate is a logical expression; multiple predicates can be
combined using keywords AND and OR

SQL Overview

mysql> SQL Statement
WHERE predicate;

Ethical HackingWeb Security

● The 1=1 predicate looks quite useless in real queries, but it will become
useful in SQL Injection attacks

● We can use the UPDATE Statement to modify an existing record
● MySQL supports three comment styles

○ Text from the # character to the end of line is treated as a comment
○ Text from the “--” to the end of line is treated as a comment.
○ Similar to C language, text between /* and */ is treated as a comment

SQL Overview

mysql> SELECT * FROM credential; # comment till the end of the line
mysql> SELECT * FROM credential; – comment till the end of the line
mysql> SELECT * FROM credential /* in-line comment */ ;

Ethical HackingWeb Security

Connecting to MySQL Database

● PHP program connects to the database server before conducting query on database
● The code shown below uses new mysqli(…) along with its 4 arguments to create the

database connection

// Function to create a sql connection.
 function getDB() {
 $dbhost="10.9.0.6";
 $dbuser="seed";
 $dbpass="dees";
 $dbname="sqllab_users";
 // Create a DB connection
 $conn = new mysqli($dbhost, $dbuser, $dbpass, $dbname);
 if ($conn->connect_error) {
 echo "</div>";
 echo "</nav>";
 echo "<div class='container text-center'>";
 die("Connection failed: " . $conn->connect_error . "\n");
 echo "</div>";
 }
 return $conn;
 }

Ethical HackingWeb Security

● Construct the query string and then send it to the database for execution
● The channel between user and database creates a new attack surface for the

database

Web Applications Interaction with Database

<?php
 session_start();
 // if the session is new extract the username password from the GET request
 $input_uname = $_GET['username'];
 $input_pwd = $_GET['Password'];
 $hashed_pwd = sha1($input_pwd);
……

// create a connection
 $conn = getDB();
 // Sql query to authenticate the user
 $sql = "SELECT id, name, eid, salary, birth, ssn, phoneNumber, address, email,nickname,Password
 FROM credential
 WHERE name= '$input_uname' and Password='$hashed_pwd'";

Ethical HackingWeb Security

● Everything provided by user will become part of the SQL statement
● The intention of the web app developer by the following is for the user to

provide some data for the blank areas

● The SQL statement will become the following

SQL Injection Attack

SELECT id, name, eid, salary, birth, ssn, phoneNumber, address, email, nickname, Password
 FROM credential
 WHERE name= ' ' and Password=' '

SELECT id, name, eid, salary, birth, ssn, phoneNumber, address, email, nickname, Password
 FROM credential
 WHERE name= 'alice' and Password='test'

Ethical HackingWeb Security

●

● If the statement is UPDATE or INSERT INTO, we can change the database

SQL Injection Attack

<?php
 session_start();
 $input_email = $_GET['Email'];
 $input_nickname = $_GET['NickName'];
 $input_address= $_GET['Address'];
 $input_pwd = $_GET['Password'];
 $input_phonenumber = $_GET['PhoneNumber'];
 $uname = $_SESSION['name'];
 $eid = $_SESSION['eid'];
 $id = $_SESSION['id'];

……

 $sql = "UPDATE credential SET
nickname='$input_nickname',email='$input_email',address='$input_address',Password='$hashed_pwd',Ph
oneNumber='$input_phonenumber' where ID=$id;";

Ethical HackingWeb Security

The Fundamental Cause

Mixing data and code together is the cause of several types of
vulnerabilities and attacks including SQL Injection attack, XSS attack,
attacks on the system() function and format string attacks

Ethical HackingWeb Security

Countermeasures
● Before mixing user-provided data with code, inspect the data. Filter out any character that may be

interpreted as code

● Special characters are commonly used in SQL Injection attacks. To get rid of them, encode them

● Encoding a special character tells parser to treat the encoded character as data and not as code

● PHP’s mysqli extension has a built-in method called mysqli::real_escape_string(). It can be used to

encode the characters that have special meanings in SQL

Before encoding: aaa’
After encoding: aaa\’

<?php
$conn = new mysqli(“localhost”, “root”, “seedubuntu”, “dbtest”);
$email = $mysqli->real_escape_string($_GET['Email']);
$pwd = $mysqli->real_escape_string($_GET['Password']);
….
 $sql = "SELECT * from where ID=”$email" and password=”$pwd";

Ethical HackingWeb Security

● Fundamental cause of SQL injection: mixing data and code

● Fundamental solution: separate data and code.

● Main Idea: sending code and data in separate channels to the database server. This way

the database server knows not to retrieve any code from the data channel.

● How: using prepared statement

● Prepared Statement: we send an SQL statement template to the database, with certain

values called parameters left unspecified. The database parses, compiles and performs

query optimization on the SQL statement template and stores the result without executing

it. We later bind data to the prepared statement

Countermeasures

Ethical HackingWeb Security

Using prepared statements, we separate code and data.

Countermeasures

$conn = new mysqli ("localhost", "root", "seedubuntu", "dbtest");
$sql = "SELECT Name, Salary, SSN

FROM employee
WHERE eid= '$eid' and password=' $pwd'";

$conn->query($sql);
$result = $conn->query($sql);

$conn = new mysqli ("localhost", "root", "seedubuntu", "dbtest");
$sql = "SELECT Name, Salary, SSN

FROM employee
WHERE eid= ? and password=?";

if ($stmt = $conn->prepare ($sql)) {
$stmt->bind_param ("ss", $eid, $pwd);
$stmt->execute();
$stmt->bind_result ($name, $salary, $ssn);

Ethical HackingWeb Security

Why Are Prepared Statements Secure?

● Trusted code is sent via a code channel.

● Untrusted user-provided data is sent via data channel.

● Database clearly knows the boundary between code and data.

● Data received from the data channel is not parsed.

● Attacker can hide code in data, but the code will never be treated as

code, so it will never be attacked.

