
Ethical HackingWeb Security

Web Security

Ethical Hacking

Alessandro Brighente
Eleonora Losiouk

Master Degree on Cybersecurity

Ethical HackingWeb Security

Cross-Site Requests and Its Problems

● When a page from a website sends an

HTTP request back to the website, it is

called same-site request

● If a request is sent to a different website,

it is called cross-site request because

where the page comes from and where

the request goes are different

● E.g.: A web page (not Facebook) can

include a Facebook link, so when users

click on the link, HTTP request is sent to

Facebook

Ethical HackingWeb Security

● When a request is sent to example.com from a page coming from example.com,

the browser attaches all the cookies belonging to example.com

● Now, when a request is sent to example.com from another site (different from

example.com), the browser will attach the cookies too

● Because of above behaviour of the browsers, the server cannot distinguish

between the same-site and cross-site requests

● It is possible for third-party websites to forge requests that are exactly the

same as the same-site requests

● This is called Cross-Site Request Forgery (CSRF)

Cross-Site Requests and Its Problems

Ethical HackingWeb Security

Cross-Site Request Forgery Attack

● Environment Setup:

○ Target website

○ Victim user who has an active session on the target website

○ Malicious website controlled

● Steps:

○ The attacker crafts a webpage that can forge a cross-site request to be sent

to the targeted website

○ The attacker needs to attract the victim user to visit the malicious website

○ The victim is logged into the targeted website

Ethical HackingWeb Security

CSRF Attacks on HTTP Get Services

● HTTP GET requests: data (foo and bar) are attached in the URL

● HTTP POST requests: data (foo and bar) are placed inside the data field of the HTTP

request

Ethical HackingWeb Security

CSRF Attack on GET Requests - Basic Idea

● Consider an online banking web application www.bank32.com which allows

users to transfer money from their accounts to other people’s accounts

● An user is logged in into the web application and has a session cookie which

uniquely identifies the authenticated user

● HTTP request to transfer $500 from his/her account to account 3220:

http://www.bank32.com/transfer.php?to=3220&amount=500

● In order to perform the attack, the attacker needs to send out the forged

request from the victim’s machine so that the browsers will attach the

victim’s session cookies with the requests

http://www.bank32.com
http://www.bank32.com/transfer.php?to=3220&amount=500

Ethical HackingWeb Security

● The attacker can place the piece of code (to trigger request) in the form of

Javascript code in the attacker’s web page.

● HTML tags like img and iframe can trigger GET requests to the URL specified in

src attribute. Response for this request will be an image/webpage.

CSRF Attack on GET Requests - Basic Idea

<img src="http://www.bank32.com/transfer.php?to=3220&amount=500" alt="image"
width="1" height="1"/>

<iframe src="http://www.bank32.com/transfer.php?to=3220&amount=500">
</iframe>

Ethical HackingWeb Security

CSRF Attacks on HTTP POST Services

● POST requests can be generated using HTML forms

● When the user clicks on a Submit button, POST request will be sent out to the URL

specified in the action field with the parameters included in the body

● Attacker’s job is to click on the button without the help from the user

● The attacker can rely on hidden forms and Javascript code

Ethical HackingWeb Security

CSRF Attacks on HTTP POST Services

● Line ①: Creates a form

dynamically; request type is set

to “POST”

● Line ②: The fields in the form are

“hidden”. Hence, after the form is

constructed, it is added to the

current web page

● Line ③: Submits the form

automatically

● Line ④: The JavaScript function

“forge_post()” will be invoked

automatically once the page is

loaded

Ethical HackingWeb Security

Fundamental Causes of CSRF

● The server cannot distinguish whether a request is cross-site or same-site
○ Same-site request: coming from the server’s own page. Trusted
○ Cross-site request: coming from other site’s pages. Not Trusted
○ We cannot treat these two types of requests the same

● Does the browser know the difference?
○ Of course. The browser knows from which page a request is generated
○ Can browser help?

● How to help server?
○ Referer header (browser’s help)
○ Same-site cookie (browser’s help)
○ Secret token (the server helps itself to defend against CSRF)

Ethical HackingWeb Security

Countermeasures: Referer Header

● HTTP header field identifying the address of the web page from where
the request is generated

● A server can check whether the request is originated from its own
pages or not

● This field reveals part of browsing history causing privacy concern and
hence, this field is mostly removed from the header

● The server cannot use this unreliable source

Ethical HackingWeb Security

Countermeasures: Secret Token

● The server embeds a random secret value inside each web page
● When a request is initiated from this page, the secret value is included

with the request
● The server checks this value to see whether a request is cross-site or

not
● Pages from a different origin will not be able to access the secret value

This is guaranteed by browsers (the same origin policy)
● The secret is randomly generated and is different for different users. So,

there is no way for attackers to guess or find out this secret

Ethical HackingWeb Security

Countermeasures: Same-Site Cookies

● A special type of cookie in browsers like Chrome and Opera, which
provide a special attribute to cookies called SameSite

● This attribute is set by the servers and it tells the browsers whether a
cookie should be attached to a cross-site request or not

● Cookies with this attribute are always sent along with same-site
requests, but whether they are sent along with cross-site depends on
the value of this attribute

● Values
○ Strict (Not sent along with cross-site requests)
○ Lax (Sent with cross-site requests)

