
1/26Ethical HackingWeb Security

Web Security

Ethical Hacking

Alessandro Brighente
Eleonora Losiouk

Master Degree on Cybersecurity

2/26Ethical HackingWeb Security

Introduction to Web Security

● Websites and web applications, as networks and hardware devices,

may be vulnerable to different cyberattacks

● Web security refers to the security exploitation and defense measures

over websites and web applications

● An attacker needs to first recognize the components of the application

and how it expects to interact with the user

3/26Ethical HackingWeb Security

Cross-Site Scripting

● Cross-Site Scripting (XSS) is the most common vulnerability in the

internet

● Comes out of increased interaction with the user

● Take advantage of the fact that web applications execute scripts on the

users’ browser

● Dynamically created scripts pose risks on web applications, especially if

they can be contaminated or modified

4/26Ethical HackingWeb Security

XSS Types

● Three top categories

○ Stored: the code is stored on a database before execution
○ Reflected: the code is reflected by a server
○ DOM-Based: code both stored and executed in the browser

● There exist also other types, but these have been identified as those

from which common web applications need to watch out for on a daily

basis

5/26Ethical HackingWeb Security

Discovery and Exploitation

● Imagine that you are not happy with a service provided by a company,

and that you have a space on their website to report feedbacks

● You want to emphasize how discontent you are, but the writing space

does not provide the option for bold text

● So you do something like

I am very unhappy with the service

6/26Ethical HackingWeb Security

Discovery and Exploitation

● The costumer care employee reads your message and sees the bold

word

● This is the chain of actions:

○ User submits the comment via web form
○ The comment is stored in the database
○ The comment is requested via HTTP request from the employee
○ The comment is injected in the web page
○ The comment is interpreted as DOM rather than text

● Due to an architectural mistake we have something potentially very

harmful for a company

7/26Ethical HackingWeb Security

Discovery and Exploitation

● Since the text is appended to the DOM it is interpreted as DOM markup

● Remember we included the strong tag

● If tag is executed, then the attacker might encode some more malicious

actions to take advantage of this vulnerability

● Script tags are the most popular way to take advantage of XSS

vulnerabilities

● What if code is embedded in the text?

8/26Ethical HackingWeb Security

Discovery and Exploitation

● I am very unhappy with the service

<script> …

const customerData = [];

customers.forEach((customer) => {

customerData.push({

firstName: customer.querySelector('.firstName').innerText,

lastName: customer.querySelector('.lastName').innerText,

email: customer.querySelector('.email').innerText,

phone: customer.querySelector('.phone').innerText

});

}); … </script>

9/26Ethical HackingWeb Security

Discovery and Exploitation

● In this case, we are delivering a stored XSS attack

● The code for the attack is stored in the application owner’s database

● When the script tag hits the DOM it starts its execution as it is

interpreted through the script tags, not as text

● The code runs without requiring interaction from the user on the other

side

● The code traverses the DOM and steals privileged data belonging to

the company

● There would also be a part for conversion in a JSON format

10/26Ethical HackingWeb Security

Discovery and Exploitation

● Since the code is inside a script tag, it will not be spotted by the

employee of the costumer service

● He will only see the text part, whereas that in the script tag will just be

executed

● The text is interpreted as text, and the part in the tag as if a legitimate

developer wrote it

● Since the code is in the database, every time someone downloads the

comment they will also run the script

11/26Ethical HackingWeb Security

Stored XSS Attacks

Attacker
submits form

API receives data
from attacker

Stored in
DB

API collects data
and sends to client

User request data
from attacker

Data injected in the
DOM for reading

Interpreted as script
and executed

12/26Ethical HackingWeb Security

Stored XSS Attacks

Attacker
submits form

API receives data
from attacker

Stored in
DB

API collects data
and sends to client

User request data
from attacker

Data injected in the
DOM for reading

Interpreted as script
and executed

User request data
from attacker

User request data
from attacker

13/26Ethical HackingWeb Security

Reflected XSS

● They work as stored XSS, but are not stored on a database nor should

they regularly hit a server

● A reflected XSS does not to be relayed, it affects the code of the client

directly in the browser

Attacker creates a
malicious link

Web Victim clicks on the
link, opens the page

Defected in
browser’s DOM

14/26Ethical HackingWeb Security

Example of Reflected XSS

● We want to look up for documentation to open a new bank account

● The service provider website has a search bar we can use

● Our search redirects us to a URL:

support.mega-bank.com/search?query=open+savings+account

● We see the corresponding heading

● We try to modify the URL in

support.mega-bank.com/search?query=open+checking+account

● We see the corresponding heading

15/26Ethical HackingWeb Security

Example of Reflected XSS

● We know that the heading and URL are correlated

● We then try to add a strong tag in the URL

● If we see the bold word on the header, bingo!

● Let’s include a script tag in the heading

● We have found an XSS vulnerability, but this will not be stored in a

database

● The server reads it and send it back to the client

16/26Ethical HackingWeb Security

Reflected XSS

● Since they are not stored in a database they are more difficult to detect

● They often target a user directly

● The example we showed can exploit different channels: advertisement,

emails with URLs,...

● Also in this case we can discover different types of information at the

victim’s side

● It is however harder to distribute

17/26Ethical HackingWeb Security

DOM Based XSS

● Takes advantages of vulnerabilities in the DOM

● Can be either reflected or stored

● Some browsers might be vulnerable to certain attacks, some others are

not due to changes in the DOM implementations

● Much more difficult to find, as they take advantage of specific

vulnerabilities in implementations

● They never require interaction with the server

18/26Ethical HackingWeb Security

DOM Based XSS

● They require a source and a sink

○ Source = DOM object capable of storing text
○ Sink = DOM API capable of executing scripts stored as text

● Since they never interact with a server, no static analysis tool can find

them

● The difficulty relies in the task of finding bugs in a specific DOM

● Different version of a web browser may or may not be vulnerable to the

same DOM XSS

19/26Ethical HackingWeb Security

DOM Based XSS Example

● Navigating a website we notice that we can navigate the content and

apply some filtering policy

● Since the resources at the portal side are limited, searching and sorting

take place at the client side

● Searching “oil” produces a URL:

investors.mega-bank.com/listing?search=oil

● And filtering for US produces the URL:

investors.mega-bank.com/listing#usa

20/26Ethical HackingWeb Security

DOM Based XSS Example

● Changes in URL not necessarily imply that an interaction with the server

is happening

● Modern webApps have their own JavaScript-based routers

● Therefore, query parameters may cause DOM XSS on the local machine

● Malicious code in sources does not cause any trouble unless there is

another piece of code that makes use of it

21/26Ethical HackingWeb Security

DOM Based XSS Example

● Grab hash from URL and find matches

const hash = document.location.hash;

const funds = [];

const nMatches = findNumberOfMatches(funds, hash);

● Write number of matches and append hash to the DOM

document.write(nMatches + ‘matches found for’ + hash);

22/26Ethical HackingWeb Security

DOM Based XSS Example

● Grab hash from URL and find matches

const hash = document.location.hash;

const funds = [];

const nMatches = findNumberOfMatches(funds, hash);

● Write number of matches and append hash to the DOM

document.write(nMatches + ‘matches found for’ + hash);

source

sink

23/26Ethical HackingWeb Security

DOM Based XSS Example

● The attacker generates the following lik

investors.mega-bank.com/listing#<script>alert(document.cookie);</script>

● The sink document.write will execute the hash value as a script,

displaying the current session cookies

● Based on what we have seen we can also do something more harmful

● No interaction with the server, and legitimate strings to not cause

problems

● May go undetected for a long time

