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Introduction to Web Security

● Websites and web applications, as networks and hardware devices, 

may be vulnerable to different cyberattacks

● Web security refers to the security exploitation and defense measures 

over websites and web applications

● An attacker needs to first recognize the components of the application 

and how it expects to interact with the user
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Cross-Site Scripting

● Cross-Site Scripting (XSS) is the most common vulnerability in the 

internet

● Comes out of increased interaction with the user

● Take advantage of the fact that web applications execute scripts on the 

users’ browser

● Dynamically created scripts pose risks on web applications, especially if 

they can be contaminated or modified
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XSS Types

● Three top categories

○ Stored: the code is stored on a database before execution
○ Reflected: the code is reflected by a server
○ DOM-Based: code both stored and executed in the browser

● There exist also other types, but these have been identified as those 

from which common web applications need to watch out for on a daily 

basis
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Discovery and Exploitation

● Imagine that you are not happy with a service provided by a company, 

and that you have a space on their website to report feedbacks

● You want to emphasize how discontent you are, but the writing space 

does not provide the option for bold text

● So you do something like

I am <strong>very</strong> unhappy with the service
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Discovery and Exploitation

● The costumer care employee reads your message and sees the bold 

word

● This is the chain of actions:

○ User submits the comment via web form
○ The comment is stored in the database
○ The comment is requested via HTTP request from the employee
○ The comment is injected in the web page
○ The comment is interpreted as DOM rather than text

● Due to an architectural mistake we have something potentially very 

harmful for a company
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Discovery and Exploitation

● Since the text is appended to the DOM it is interpreted as DOM markup

● Remember we included the strong tag

● If tag is executed, then the attacker might encode some more malicious 

actions to take advantage of this vulnerability

● Script tags are the most popular way to take advantage of XSS 

vulnerabilities

● What if code is embedded in the text?
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Discovery and Exploitation

● I am very unhappy with the service

<script> …

const customerData = [];

customers.forEach((customer) => {

customerData.push({

firstName: customer.querySelector('.firstName').innerText,

lastName: customer.querySelector('.lastName').innerText,

email: customer.querySelector('.email').innerText,

phone: customer.querySelector('.phone').innerText

});

}); … </script>
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Discovery and Exploitation

● In this case, we are delivering a stored XSS attack

● The code for the attack is stored in the application owner’s database

● When the script tag hits the DOM it starts its execution as it is 

interpreted through the script tags, not as text

● The code runs without requiring interaction from the user on the other 

side

● The code traverses the DOM and steals privileged data belonging to 

the company

● There would also be a part for conversion in a JSON format
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Discovery and Exploitation

● Since the code is inside a script tag, it will not be spotted by the 

employee of the costumer service

● He will only see the text part, whereas that in the script tag will just be 

executed

● The text is interpreted as text, and the part in the tag as if a legitimate 

developer wrote it

● Since the code is in the database, every time someone downloads the 

comment they will also run the script
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Stored XSS Attacks
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Reflected XSS

● They work as stored XSS, but are not stored on a database nor should 

they regularly hit a server

● A reflected XSS does not to be relayed, it affects the code of the client 

directly in the browser

Attacker creates a 
malicious link

Web Victim clicks on the 
link, opens the page

Defected in 
browser’s DOM
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Example of Reflected XSS

● We want to look up for documentation to open a new bank account

● The service provider website has a search bar we can use

● Our search redirects us to a URL: 

support.mega-bank.com/search?query=open+savings+account

● We see the corresponding heading

● We try to modify the URL in

support.mega-bank.com/search?query=open+checking+account

● We see the corresponding heading
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Example of Reflected XSS

● We know that the heading and URL are correlated

● We then try to add a strong tag in the URL

● If we see the bold word on the header, bingo!

● Let’s include a script tag in the heading

● We have found an XSS vulnerability, but this will not be stored in a 

database

● The server reads it and send it back to the client
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Reflected XSS

● Since they are not stored in a database they are more difficult to detect

● They often target a user directly

● The example we showed can exploit different channels: advertisement, 

emails with URLs,...

● Also in this case we can discover different types of information at the 

victim’s side

● It is however harder to distribute
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DOM Based XSS

● Takes advantages of vulnerabilities in the DOM

● Can be either reflected or stored

● Some browsers might be vulnerable to certain attacks, some others are 

not due to changes in the DOM implementations

● Much more difficult to find, as they take advantage of specific 

vulnerabilities in implementations

● They never require interaction with the server
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DOM Based XSS

● They require a source and a sink

○ Source = DOM object capable of storing text
○ Sink = DOM API capable of executing scripts stored as text

● Since they never interact with a server, no static analysis tool can find 

them

● The difficulty relies in the task of finding bugs in a specific DOM

● Different version of a web browser may or may not be vulnerable to the 

same DOM XSS
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DOM Based XSS Example

● Navigating a website we notice that we can navigate the content and 

apply some filtering policy

● Since the resources at the portal side are limited, searching and sorting 

take place at the client side

● Searching “oil” produces a URL:

investors.mega-bank.com/listing?search=oil

● And filtering for US produces the URL:

investors.mega-bank.com/listing#usa
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DOM Based XSS Example

● Changes in URL not necessarily imply that an interaction with the server 

is happening

● Modern webApps have their own JavaScript-based routers

● Therefore, query parameters may cause DOM XSS on the local machine

● Malicious code in sources does not cause any trouble unless there is 

another piece of code that makes use of it
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DOM Based XSS Example

● Grab hash from URL and find matches

const hash = document.location.hash;

const funds = [];

const nMatches = findNumberOfMatches(funds, hash);

● Write number of matches and append hash to the DOM

document.write(nMatches + ‘matches found for’ + hash);
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DOM Based XSS Example

● Grab hash from URL and find matches

const hash = document.location.hash;

const funds = [];

const nMatches = findNumberOfMatches(funds, hash);

● Write number of matches and append hash to the DOM

document.write(nMatches + ‘matches found for’ + hash);

source

sink
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DOM Based XSS Example

● The attacker generates the following lik

investors.mega-bank.com/listing#<script>alert(document.cookie);</script>

● The sink document.write will execute the hash value as a script, 

displaying the current session cookies

● Based on what we have seen we can also do something more harmful

● No interaction with the server, and legitimate strings to not cause 

problems

● May go undetected for a long time


