
Firewall Exploration Lab

Ethical Hacking 2022/23, University of Padua

Eleonora Losiouk, Alessandro Brighente, Gabriele Orazi, Francesco Marchiori

Based on a work of Wenliang Du. This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. If you remix, transform, or build upon the material,
this copyright notice must be left intact, or reproduced in a way that is reasonable to the medium in which
the work is being re-published.

1 Overview
The learning objective of this lab is two-fold: learning how firewalls work, and setting up a simple firewall
for a network.

Students will first implement a simple stateless packet-filtering firewall, which inspects packets, and decides
whether to drop or forward a packet based on firewall rules. Through this implementation task, students
can get the basic ideas on how firewall works.

Actually, Linux already has a built-in firewall, also based on netfilter. This firewall is called iptables.
Students will be given a simple network topology, and are asked to use iptables to set up firewall rules
to protect the network. Students will also be exposed to several other interesting applications of iptables.
This lab covers the following topics:

• Firewall
• netfilter
• Loadable kernel module
• Using iptables to set up firewall rules
• Various applications of iptables

2 Environment Setup
For this lab, the network you will run with Docker will be composed of some machine as follows:

Net. 10.9.0.0/24
--

| | | 10.9.0.11
Attacker 10.9.0.5 Router
10.9.0.1 | 192.168.60.11

|
Net. 192.168.60.0./24

| | |
192.168.60.5 192.168.60.6 192.168.60.7

1

2.1 Container Setup and Commands
Please download the Labsetup.zip file to your machine (or in you VM, if you are using it) from Moodle,
unzip it, enter the Labsetup folder, and use the docker-compose.yml file to set up the lab environment.
You can find more details and ways to resolve some problems in this manual.

In the following, we list some of the commonly used commands related to docker-compose. Since we are
going to use these commands very frequently, we have created aliases for them in the .bashrc file (already
configured in our provided VM, but you can easily add them to your local favourite rc file).
$ docker-compose build # Build the container image
$ docker-compose up # Start the container
$ docker-compose down # Shut down the container

// Aliases for the Compose commands above
$ dcbuild # Alias for: docker-compose build
$ dcup # Alias for: docker-compose up
$ dcdown # Alias for: docker-compose down

All the containers will be running in the background. To run commands on a container, we often need to
get a shell on that container. We first need to use the “docker ps” command to find out the ID of the
container, and then use “docker exec” to start a shell on that container. We have created aliases for them
in the .bashrc file.
$ dockps // Alias for: docker ps --format "{{.ID}} {{.Names}}"
$ docksh <id> // Alias for: docker exec -it <id> /bin/bash

// The following example shows how to get a shell inside hostC

$ dockps
b1004832e275 hostA-10.9.0.5
0af4ea7a3e2e hostB-10.9.0.6
9652715c8e0a hostC-10.9.0.7

$ docksh 96
root@9652715c8e0a:/#

Note that if a Docker command requires a container ID, you do not need to type the entire ID string. Typing
the first few characters will be sufficient, as long as they are unique among all the containers.

If you want to use your local rc file, you can simply paste at the end the following:
Aliases for the Docker Compose
alias dcbuild='sudo docker-compose build' # Alias for: docker-compose build
alias dcup='sudo docker-compose up' # Alias for: docker-compose up
alias dcdown='sudo docker-compose down' # Alias for: docker-compose down
alias dockps='sudo docker ps --format "{{.ID}} {{.Names}}"'
alias docksh='f(){ sudo docker exec -it $1 /bin/bash; unset -f f; }; f'

Then, remember to relaunch the terminal or source your rc file.

3 Task 1: Implement a simple Firewall
In this task, we will implement a simple packet filtering type of firewall, which inspects each incoming and
outgoing packets, and enforces the firewall policies set by the administrator. Since the packet processing
is done within the kernel, the filtering must also be done within the kernel. Therefore, it seems that

2

https://github.com/seed-labs/seed-labs/blob/master/manuals/docker/SEEDManual-Container.md

implementing such a firewall requires us to modify the Linux kernel. In the past, this had to be done by
modifying and rebuilding the kernel. The modern Linux operating systems provide several new mechanisms
to facilitate the manipulation of packets without rebuilding the kernel image. These two mechanisms are
Loadable Kernel Module (LKM) and netfilter.

Notes about containers. Since all the containers share the same kernel, kernel modules are global.
Therefore, if we set a kernel model from a container, it affects all the containers and the host. For this
reason, it does not matter where you set the kernel module. In this lab, we will just set the kernel module
from the host VM.

Another thing to keep in mind is that containers’ IP addresses are virtual. Packets going to these virtual IP
addresses may not traverse the same path as what is described in the Netfilter document. Therefore, in this
task, to avoid confusion, we will try to avoid using those virtual addresses. We do most tasks on the host
VM. The containers are mainly for the other tasks.

3.1 Task 1.A: Implement a Simple Kernel Module
LKM allows us to add a new module to the kernel at the runtime. This new module enables us to extend
the functionalities of the kernel, without rebuilding the kernel or even rebooting the computer. The packet
filtering part of a firewall can be implemented as an LKM. In this task, we will get familiar with LKM.

The following is a simple loadable kernel module. It prints out “Hello World!” when the module is loaded;
when the module is removed from the kernel, it prints out “Bye-bye World!”. The messages are not printed
out on the screen; they are actually printed into the /var/log/syslog file. You can use “dmesg” to view
the messages.
/* Listing 1: hello.c */
#include <linux/module.h>
#include <linux/kernel.h>

int initialization(void) {
printk(KERN_INFO "Hello World!\n");
return 0;

}
void cleanup(void) {

printk(KERN_INFO "Bye-bye World!.\n");
}

module_init(initialization);
module_exit(cleanup);

We now need to create Makefile, which includes the following contents (the file is included in the lab setup
files). Just type make (with sudo if needed), and the above program will be compiled into a loadable kernel
module (if you copy and paste the following into Makefile, make sure replace the spaces before the make
commands with a tab).
obj-m += hello.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

The generated kernel module is in hello.ko. You can use the following commands to load the module, list
all modules, and remove the module. Also, you can use “modinfo hello.ko” to show information about a
Linux Kernel module.

3

$ sudo insmod hello.ko # inserting a module
$ lsmod | grep hello # list modules
$ sudo rmmod hello # remove the module
$ dmesg # check the messages

Task. Please compile this simple kernel module on your VM, and run it on the VM. Remember that for
this task, we will not use any containers.

Notes. If you prefer to use your own Ubuntu machine, make sure to install all the needed packets (sudo
apt install build-essentials gcc make flex and all the other requirements). You may have to debug
some errors while compiling the kernel module, so for this lab it is advised to use the VM. Another reason
to use the VM is to avoid problems with your machine since, in the following tasks, we will mess with the
kernel.

3.2 Task 1.B: Implement a Simple Firewall Using Netfilter
In this task, we will write our packet filtering program as an LKM, and then insert in into the packet
processing path inside the kernel. This cannot be easily done in the past before the netfilter was introduced
into the Linux.

Netfilter is designed to facilitate the manipulation of packets by authorized users. It achieves this goal by
implementing a number of hooks in the Linux kernel. These hooks are inserted into various places, including
the packet incoming and outgoing paths. If we want to manipulate the incoming packets, we simply need to
connect our own programs (within LKM) to the corresponding hooks. Once an incoming packet arrives, our
program will be invoked. Our program can decide whether this packet should be blocked or not; moreover,
we can also modify the packets in the program.

In this task, you need to use LKM and Netfilter to implement a packet filtering module. This module will
fetch the firewall policies from a data structure, and use the policies to decide whether packets should be
blocked or not. We would like students to focus on the filtering part, the core of firewalls, so students are
allowed to hardcode firewall policies in the program.

Hooking to Netfilter. Using netfilter is quite straightforward. All we need to do is to hook our functions
(in the kernel module) to the corresponding netfilter hooks. Here we show an example (the code is in
Labsetup/packet_filter, but it may not be exactly the same as this example).

The structure of the code follows the structure of the kernel module implemented earlier. When the kernel
module is added to the kernel, the registerFilter() function in the code will be invoked. Inside this
function, we register two hooks to netfilter. To register a hook, you need to prepare a hook data structure,
and set all the needed parameters, the most important of which are a function name (Line (1)) and a hook
number (Line (2)). The hook number is one of the 5 hooks in netfilter, and the specified function will be
invoked when a packet has reached this hook. In this example, when a packet gets to the LOCAL IN hook,
the function printInfo() will be invoked (this function will be given later). Once the hook data structure
is prepared, we attach the hook to netfilter in Line (3)).
/* Listing 2: Register hook functions to netfilter */
static struct nf_hook_ops hook1, hook2;

int registerFilter(void) {
printk(KERN_INFO "Registering filters.\n");

// Hook 1
hook1.hook = printInfo; // (1)
hook1.hooknum = NF_INET_LOCAL_IN; // (2)
hook1.pf = PF_INET;
hook1.priority = NF_IP_PRI_FIRST;
nf_register_net_hook(&init_net, &hook1); // (3)

4

// Hook 2
hook2.hook = blockUDP;
hook2.hooknum = NF_INET_POST_ROUTING;
hook2.pf = PF_INET;
hook2.priority = NF_IP_PRI_FIRST;
nf_register_net_hook(&init_net, &hook2);
return 0;

}
void removeFilter(void) {

printk(KERN_INFO "The filters are being removed.\n");
nf_unregister_net_hook(&init_net, &hook1);
nf_unregister_net_hook(&init_net, &hook2);

}
module_init(registerFilter);
module_exit(removeFilter);

Note for Ubuntu 16.04 VM: If you are using the 16.04 VM, you have to make some changes in the hook
registration and un-registration APIs. See the difference in the following:
// Hook registration:
nf_register_hook(&nfho); // For Ubuntu 16.04 VM
nf_register_net_hook(&init_net, &nfho); // For Ubuntu 20.04 VM

// Hook unregistration:
nf_unregister_hook(&nfho); // For Ubuntu 16.04 VM
nf_unregister_net_hook(&init_net, &nfho); // For Ubuntu 20.04 VM

Hook functions. We give an example of hook function below. It only prints out the packet information.
When netfilter invokes a hook function, it passes three arguments to the function, including a pointer to
the actual packet (skb). In the following code, Line (1) shows how to retrieve the hook number from the
state argument. In Line (2), we use ip_hdr() function to get the pointer for the IP header, and then use
the %pI4 format string specifier to print out the source and destination IP addresses in Line (3).
/* Listing 3: An example of hook function */
unsigned int printInfo(void *priv, struct sk_buff *skb,

const struct nf_hook_state *state) {
struct iphdr *iph;
char *hook;
switch (state->hook) { // (1)

case NF_INET_LOCAL_IN:
printk("*** LOCAL_IN"); break;

// .. (code omitted) ...
}
iph = ip_hdr(skb); // (2)
printk(" %pI4 --> %pI4\n", &(iph->saddr), &(iph->daddr)); // (3)
return NF_ACCEPT;

}

If you need to get the headers for other protocols, you can use the following functions defined in vari-
ous header files. The structure definition of these headers can be found inside the /lib/modules/5.4.
0-54-generic/build/include/uapi/linux folder, where the version number in the path is the result of
“uname -r”, so it may be different if the kernel version is different.
struct iphdr *iph = ip_hdr(skb) // (need to include <linux/ip.h>)
struct tcphdr *tcph = tcp_hdr(skb) // (need to include <linux/tcp.h>)

5

struct udphdr *udph = udp_hdr(skb) // (need to include <linux/udp.h>)
struct icmphdr *icmph = icmp_hdr(skb) // (need to include <linux/icmp.h>)

Blocking packets. We also provide a hook function example to show how to block a packet, if it satisfies
the specified condition. The following example blocks the UDP packets if their destination IP is 8.8.8.8
and the destination port is 53. This means blocking the DNS query to the nameserver 8.8.8.8.
Listing 4: Code example: blocking UDP
unsigned int blockUDP(void *priv, struct sk_buff *skb,

const struct nf_hook_state *state) {
struct iphdr *iph;
struct udphdr *udph;
u32 ip_addr;
char ip[16] = "8.8.8.8";
// Convert the IPv4 address from dotted decimal to a 32-bit number
in4_pton(ip, -1, (u8 *)&ip_addr, ’\0’, NULL); // (1)
iph = ip_hdr(skb);
if (iph->protocol == IPPROTO_UDP) {

udph = udp_hdr(skb);
if (iph->daddr == ip_addr && ntohs(udph->dest) == 53){ // (2)

printk(KERN_DEBUG "****Dropping %pI4 (UDP), port %d\n",
&(iph->daddr), port);
return NF_DROP; // (3)
}

}
return NF_ACCEPT; // (4)

}

In the code above, Line (1) shows, inside the kernel, how to convert an IP address in the dotted decimal
format (i.e., a string, such as 1.2.3.4) to a 32-bit binary (0x01020304), so it can be compared with the
binary number stored inside packets. Line (2) compares the destination IP address and port number with
the values in our specified rule. If they match the rule, the NF_DROP will be returned to netfilter (Line
(3)), which will drop the packet. Otherwise, the NF_ACCEPT will be returned (Line (4)), and netfilter will
let the packet continue its journey (NF_ACCEPT only means that the packet is accepted by this hook function;
it may still be dropped by other hook functions).

Tasks. The complete sample code is called seedFilter.c, which is included in the lab setup files (inside
the Files/packet_filter folder). Please do the following tasks (do each of them separately):

1. Compile the sample code using the provided Makefile. Load it into the kernel, and demonstrate that
the firewall is working as expected. You can use the following command to generate UDP packets to
8.8.8.8, which is Google’s DNS server. If your firewall works, your request will be blocked; otherwise,
you will get a response. dig @8.8.8.8 www.example.com

2. Hook the printInfo function to all of the netfilter hooks. Here are the macros of the hook numbers.
Using your experiment results to help explain at what condition will each of the hook function be
invoked.
NF_INET_PRE_ROUTING
NF_INET_LOCAL_IN
NF_INET_FORWARD
NF_INET_LOCAL_OUT
NF_INET_POST_ROUTING

3. Implement two more hooks to achieve the following:

1. Preventing other computers to ping the VM

6

2. Preventing other computers to telnet into the VM. Please implement two different hook functions,
but register them to the same netfilter hook. You should decide what hook to use. Telnet’s
default port is TCP port 23. To test it, you can start the containers, go to 10.9.0.5, run the
following commands (10.9.0.1 is the IP address assigned to the VM; for the sake of simplicity,
you can hardcode this IP address in your firewall rules):

ping 10.9.0.1
telnet 10.9.0.1

Important note: Since we make changes to the kernel, there is a high chance that you would crash the
kernel. Make sure you back up your files frequently, so you don’t lose them. One of the common reasons
for system crash is that you forget to unregister hooks. When a module is removed, these hooks will still be
triggered, but the module is no longer present in the kernel. That will cause system crash. To avoid this,
make sure for each hook you add to your module, add a line in removeFilter to unregister it, so when the
module is removed, those hooks are also removed.

4 Task 2: Experimenting with Stateless Firewall Rules
In the previous task, we had a chance to build a simple firewall using netfilter. Actually, Linux already
has a built-in firewall, also based on netfilter. This firewall is called iptables. Technically, the kernel part
implementation of the firewall is called Xtables, while iptables is a user-space program to configure the
firewall. However, iptables is often used to refer to both the kernel-part implementation and the user-space
program.

4.1 Background of iptables
In this task, we will use iptables to set up a firewall. The iptables firewall is designed not only to filter
packets, but also to make changes to packets. To help manage these firewall rules for different purposes,
iptables organizes all rules using a hierarchical structure: table, chain, and rules. There are several tables,
each specifying the main purpose of the rules as shown in Table 1. For example, rules for packet filtering
should be placed in the filter table, while rules for making changes to packets should be placed in the nat or
mangle tables.

Each table contains several chains, each of which corresponds to a netfilter hook. Basically, each
chain indicates where its rules are enforced. For example, rules on the FORWARD chain are enforced at
the NF_INET_FORWARD hook, and rules on the INPUT chain are enforced at the NF_INET_LOCAL_IN hook.
Each chain contains a set of firewall rules that will be enforced. When we set up firewalls, we add rules to
these chains. For example, if we would like to block all incoming telnet traffic, we would add a rule to the
INPUT chain of the filter table. If we would like to redirect all incoming telnet traffic to a different port on
a different host, basically doing port forwarding, we can add a rule to the INPUT chain of the mangle table,
as we need to make changes to packets.

Table 1: iptables Tables and Chains

Table Chain Functionality
filter INPUT Packet filtering

FORWARD
OUTPUT

nat PREROUTING Modifying source or destination
INPUT network addresses
OUTPUT
POSTROUTING

mangle PREROUTING Packet content modification

7

Table Chain Functionality
INPUT
FORWARD
OUTPUT
POSTROUTING

5 Using iptables
To add rules to the chains in each table, we use the iptables command, which is a quite powerful command.
Students can find the manual of iptables by typing “man iptables” or easily find many tutorials from
online. What makes iptables complicated is the many command-line arguments that we need to provide
when using the command. However, if we understand the structure of these command-line arguments, we
will find out that the command is not that complicated.

In a typical iptables command, we add a rule to or remove a rule from one of the chains in one of the tables,
so we need to specify a table name (the default is filter), a chain name, and an operation on the chain.
After that, we specify the rule, which is basically a pattern that will be matched with each of the packets
passing through. If there is a match, an action will be performed on this packet. The general structure of
the command is depicted in the following:

iptables -t <table> -<operation> <chain> <rule> -j <target>

---------- -------------------- ------- -----------
Table Chain Rule Action

The rule is the most complicated part of the iptables command. We will provide additional information
later when we use specific rules. In the following, we list some commonly used commands:
// List all the rules in a table (without line number)
iptables -t nat -L -n

// List all the rules in a table (with line number)
iptables -t filter -L -n --line-numbers

// Delete rule No. 2 in the INPUT chain of the filter table
iptables -t filter -D INPUT 2

// Drop all the incoming packets that satisfy the <rule>
iptables -t filter -A INPUT <rule> -j DROP

Note 1. Remember that iptables entries are applied in order: the first specified rule will be the first one
to be taken into consideration. If there is no match, the following entry will be checked. In case no other
entries are present, the default behavior will be applied. If you think about a simple table, imagine that
when you add a row you append it at the bottom and when you receive a packet you always start checking
from the top.

Moreover, remember that as soon as there is a match for an entry, the specified action will be taken and no
other entries are checked anymore since the packet is basically considered as processed.

Note 2. Docker relies on iptables to manage the networks it creates, so it adds many rules to the nat
table. When we manipulate iptables rules, we should be careful not to remove Docker rules. For example,
it will be quite dangerous to run the “iptables -t nat -F” command, because it removes all the rules in
the nat table, including many of the Docker rules. That will cause trouble to Docker containers. Doing this
for the filter table is fine, because Docker does not touch this table.

8

5.1 Task 2.A: Protecting the Router
In this task, we will set up rules to prevent outside machines from accessing the router machine, except
ping. Please execute the following iptables command on the router container, and then try to access it from
10.9.0.5.

1. Can you ping the router?
2. Can you telnet into the router (a telnet server is running on all the containers; an account called seed

was created on them with a password dees).

Please report your observation and explain the purpose for each rule:
iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT
iptables -A OUTPUT -p icmp --icmp-type echo-reply -j ACCEPT
iptables -P OUTPUT DROP # Set default rule for OUTPUT
iptables -P INPUT DROP # Set default rule for INPUT

Cleanup. Before moving on to the next task, please restore the filter table to its original state by running
the following commands:
iptables -F
iptables -P OUTPUT ACCEPT
iptables -P INPUT ACCEPT

Another way to restore the states of all the tables is to restart the container. You can do it using the following
command (you need to find the container’s ID first):

$ docker restart <Container ID>

5.2 Task 2.B: Protecting the Internal Network
In this task, we will set up firewall rules on the router to protect the internal network 192.168.60.0/24.
We need to use the FORWARD chain for this purpose.

The directions of packets in the INPUT and OUTPUT chains are clear: packets are either coming into (for
INPUT) or going out (for OUTPUT). This is not true for the FORWARD chain, because it is bi-directional: packets
going into the internal network or going out to the external network all go through this chain. To specify the
direction, we can add the interface options using “-i xyz” (coming in from the xyz interface) and/or “-o
xyz” (going out from the xyz interface). The interfaces for the internal and external networks are different.
You can find out the interface names via the “ip addr” command.

In this task, we want to implement a firewall to protect the internal network. More specifically, we need to
enforce the following restrictions on the ICMP traffic:

1. Outside hosts cannot ping internal hosts.
2. Outside hosts can ping the router.
3. Internal hosts can ping outside hosts.
4. All other packets between the internal and external networks should be blocked.

You will need to use the “-p icmp” options to specify the match options related to the ICMP protocol. You
can run “iptables -p icmp -h” to find out all the ICMP match options. The following example drops the
ICMP echo request.

iptables -A FORWARD -p icmp --icmp-type echo-request -j DROP

When you are done with this task, please remember to clean the table or restart the container before moving
on to the next task.

9

5.3 Task 2.C: Protecting Internal Server
In this task, we want to protect the TCP servers inside the internal network (192.168.60.0/24). More
specifically, we would like to achieve the following objectives.

1. All the internal hosts run a telnet server (listening to port 23). Outside hosts can only access the
telnet server on 192.168.60.5, not the other internal hosts.

2. Outside hosts cannot access other internal servers.
3. Internal hosts can access all the internal servers.
4. Internal hosts cannot access external servers.
5. In this task, the connection tracking mechanism is not allowed. It will be used in a later task.

You will need to use the “-p tcp” options to specify the match options related to the TCP protocol. You
can run “iptables -p tcp -h” to find out all the TCP match options. The following example allows the
TCP packets coming from the interface eth0 if their source port is 5000.

iptables -A FORWARD -i eth0 -o eth1 -p tcp --sport 5000 -j ACCEPT

When you are done with this task, please remember to clean the table or restart the container before moving
on to the next task.

6 Task 3: Connection Tracking and Stateful Firewall (Optional)
In the previous task, we have only set up stateless firewalls, which inspect each packet independently. How-
ever, packets are usually not independent; they may be part of a TCP connection, or they may be ICMP
packets triggered by other packets. Treating them independently does not take into consideration the con-
text of the packets, and can thus lead to inaccurate, unsafe, or complicated firewall rules. For example,
if we would like to allow TCP packets to get into our network only if a connection was made first, we
cannot achieve that easily using stateless packet filters, because when the firewall examines each individual
TCP packet, it has no idea whether the packet belongs to an existing connection or not, unless the firewall
maintains some state information for each connection. If it does that, it becomes a stateful firewall.

6.1 Task 3.A: Experiment with the Connection Tracking
To support stateful firewalls, we need to be able to track connections. This is achieved by the conntrack
mechanism inside the kernel. In this task, we will conduct experiments related to this module, and get
familiar with the connection tracking mechanism. In our experiment, we will check the connection tracking
information on the router container. This can be done using the following command:

conntrack -L

The goal of the task is to use a series of experiments to help students understand the connection concept
in this tracking mechanism, especially for the ICMP and UDP protocols, because unlike TCP, they do not
have connections. Please conduct the following experiments. For each experiment, please describe your
observation, along with your explanation.

1. ICMP experiment: Run the following command and check the connection tracking information on the
router. Describe your observation. How long is the ICMP connection state be kept?

On 10.9.0.5, send out ICMP packets
ping 192.168.60.5

2. UDP experiment: Run the following command and check the connection tracking information on the
router. Describe your observation. How long is the UDP connection state be kept?

On 192.168.60.5, start a netcat UDP server
nc -lu 9090

10

On 10.9.0.5, send out UDP packets
nc -u 192.168.60.5 9090
<type something, then hit return>

3. TCP experiment: Run the following command and check the connection tracking information on the
router. Describe your observation. How long is the TCP connection state be kept?

On 192.168.60.5, start a netcat TCP server
nc -l 9090
On 10.9.0.5, send out TCP packets
nc 192.168.60.5 9090
<type something, then hit return>

6.2 Task 3.B: Setting Up a Stateful Firewall (Optional)
Now we are ready to set up firewall rules based on connections. In the following example, the “-m conntrack”
option indicates that we are using the conntrack module, which is a very important module for iptables;
it tracks connections, and iptables replies on the tracking information to build stateful firewalls. The
--ctsate ESTABLISHED,RELATED indicates that whether a packet belongs to an ESTABLISHED or RELATED
connection. The rule allows TCP packets belonging to an existing connection to pass through.

iptables -A FORWARD -p tcp -m conntrack \
--ctstate ESTABLISHED,RELATED -j ACCEPT

The rule above does not cover the SYN packets, which do not belong to any established connection. Without
it, we will not be able to create a connection in the first place. Therefore, we need to add a rule to accept
incoming SYN packet:

iptables -A FORWARD -p tcp -i eth0 --dport 8080 --syn \
-m conntrack --ctstate NEW -j ACCEPT

Finally, we will set the default policy on FORWARD to drop everything. This way, if a packet is not accepted
by the two rules above, they will be dropped.

iptables -P FORWARD DROP

Please rewrite the firewall rules in Task 2.C, but this time, we will add a rule allowing internal hosts
to visit any external server (this was not allowed in Task 2.C). After you write the rules using the
connection tracking mechanism, think about how to do it without using the connection tracking mechanism
(you do not need to actually implement them). Based on these two sets of rules, compare these two different
approaches, and explain the advantage and disadvantage of each approach. When you are done with this
task, remember to clear all the rules.

7 Task 4: Limiting Network Traffic (Optional)
In addition to blocking packets, we can also limit the number of packets that can pass through the firewall.
This can be done using the limit module of iptables. In this task, we will use this module to limit how
many packets from 10.9.0.5 are allowed to get into the internal network. You can use “iptables -m limit
-h” to see the manual:
$ iptables -m limit -h
limit match options:
--limit avg max average match rate: default 3/hour

[Packets per second unless followed by

11

/sec /minute /hour /day postfixes]
--limit-burst number number to match in a burst, default 5

Please run the following commands on router, and then ping 192.168.60.5 from 10.9.0.5. Describe your
observation. Please conduct the experiment with and without the second rule, and then explain whether the
second rule is needed or not, and why.
iptables -A FORWARD -s 10.9.0.5 -m limit \

--limit 10/minute --limit-burst 5 -j ACCEPT

iptables -A FORWARD -s 10.9.0.5 -j DROP

8 Task 5: Load Balancing (Optional)
The iptables is very powerful. In addition to firewalls, it has many other applications. We will not be
able to cover all its applications in this lab, but we will experimenting with one of the applications, load
balancing. In this task, we will use it to load balance three UDP servers running in the internal network.

Let’s first start the server on each of the hosts: 192.168.60.5, 192.168.60.6, and 192.168.60.7 (the -k
option indicates that the server can receive UDP datagrams from multiple hosts):

nc -luk 8080

We can use the statistic module to achieve load balancing. You can type the following command to get
its manual. You can see there are two modes: random and nth. We will conduct experiments using both of
them.
$ iptables -m statistic -h
statistic match options:
--mode mode Match mode (random, nth)
random mode:
[!] --probability p Probability
nth mode:
[!] --every n Match every nth packet
--packet p Initial counter value (0 <= p <= n-1, default 0)

1. Using the nth mode (round-robin). On the router container, we set the following rule, which applies
to all the UDP packets going to port 8080. The nth mode of the statistic module is used; it implements
a round-robin load balancing policy: for every three packets, pick the packet 0 (i.e., the first one), change
its destination IP address and port number to 192.168.60.5 and 8080, respectively. The modified packets
will continue on its journey.

iptables -t nat -A PREROUTING -p udp --dport 8080 \
-m statistic --mode nth --every 3 --packet 0 \
-j DNAT --to-destination 192.168.60.5:8080

It should be noted that those packets that do not match the rule will continue on their journeys; they will
not be modified or blocked. With this rule in place, if you send a UDP packet to the router’s 8080 port, you
will see that one out of three packets gets to 192.168.60.5.
On 10.9.0.5
echo hello | nc -u 10.9.0.11 8080
<hit Ctrl-C>

Please add more rules to the router container, so all the three internal hosts get the equal number of packets.
Please provide some explanation for the rules.

12

2. Using the random mode. Let’s use a different mode to achieve the load balancing. The following rule
will select a matching packet with the probability P. You need to replace P with a probability number.

iptables -t nat -A PREROUTING -p udp --dport 8080 \
-m statistic --mode random --probability P \
-j DNAT --to-destination 192.168.60.5:8080

Please use this mode to implement your load balancing rules, so each internal server get roughly the same
amount of traffic (it may not be exactly the same, but should be close when the total number of packets is
large). Please provide some explanation for the rules.

9 Extra
Since Ubuntu 8.04 LTS, the UncomplicatedFirewall (ufw) was added as a frontend to the more complete
but complex iptables. You can take a look at the documentation on the Ubuntu Wiki page or at the
manual. You can decide to try again some of the tasks of this lab using ufw.

13

https://wiki.ubuntu.com/UncomplicatedFirewall
http://manpages.ubuntu.com/manpages/xenial/en/man8/ufw.8.html

	Overview
	Environment Setup
	Container Setup and Commands

	Task 1: Implement a simple Firewall
	Task 1.A: Implement a Simple Kernel Module
	Task 1.B: Implement a Simple Firewall Using Netfilter

	Task 2: Experimenting with Stateless Firewall Rules
	Background of iptables

	Using iptables
	Task 2.A: Protecting the Router
	Task 2.B: Protecting the Internal Network
	Task 2.C: Protecting Internal Server

	Task 3: Connection Tracking and Stateful Firewall (Optional)
	Task 3.A: Experiment with the Connection Tracking
	Task 3.B: Setting Up a Stateful Firewall (Optional)

	Task 4: Limiting Network Traffic (Optional)
	Task 5: Load Balancing (Optional)
	Extra

