
CPS and IoT SecurityIoT Security and Privacy

IoT Security and Privacy:
Remote Attestation

CPS and IoT Security

Alessandro Brighente

Master Degree in Cybersecurity

CPS and IoT SecurityIoT Security and Privacy

The Software Problem

● IoT devices have their own software and this can be compromised by

malicious entities

● It is not easy to detect attacks in on-field devices, as Stuxnet showed

● We need solutions to attest the legitimacy of (software and hardware)

components by distantly looking at them and their behavior

● We need to account for the constrained resources of these devices

CPS and IoT SecurityIoT Security and Privacy

Remote Attestation

● Attestation is the activity of making a claim to an appraiser about the

properties of a target by supplying evidence which supports that claim

● An attester is a party performing the attestation activity

● An attestation protocol is a cryptographic protocol involving a target an

attester, an appraiser and possibly other principals serving as trust

proxies

● Target: supply evidence that will be considered authoritative by the

appraiser while respecting privacy goals of its target

CPS and IoT SecurityIoT Security and Privacy

Remote Attestation

● We denote as remote attestation a protocol whereby a challenge

(Chal) verifies the internal state of a device called a prover (Prov)

● This protocol is performed remotely, i.e., over the Internet

● Goal: an honest Prov should create an authentication token that

convinces Chal that the former is some well-defined expected state

● If Prov has been compromised by an adversary, the authentication

token must reflect this

CPS and IoT SecurityIoT Security and Privacy

Attestation Protocol

 An attestation protocol P is comprised by the following components

● Steup() - a probabilistic algorithm that, given a security parameter

outputs a long-term key k;

● Attest(k,.) - a deterministic algorithm that, given a key k and a device

state s, outputs an attestation token a

● Verify(k,.,.) - a deterministic algorithm that, given a key k, a device

state s, and an attestation token a, outputs 1 iff a corresponds to s, i.e.,

iff Attest(k,s) = a, and outputs 0 otherwise

CPS and IoT SecurityIoT Security and Privacy

Attestation Protocol

● The verifier challenges the prover

with a fresh nonce (uniformly

random and from a large pool)

● The prover attests its state with

the key and creates a token

● The verifier receives the token

and decides whether to accept it

CPS and IoT SecurityIoT Security and Privacy

Att-Forgery Security

Let us define the following game

Game 1 (Att-ForgeryChal,Prov(k)): Chall running P interacts with Prov as

follows

1. Chal runs k ← Setup(1k) and outputs sChal to Prov

2. Prov is given oracles access to Attest, i.e., adaptively submit q device

states and receive the corresponding token

3. Eventually Prov outputs a; the game outputs 1 iff Verify(k,s,a) = 1,

i.e., iff a corresponds to s = (sChal,sProv)

CPS and IoT SecurityIoT Security and Privacy

Att-Forgery Security

● An honest node has no problem winning the previous game

● If instead Prov has been compromised, its sProv has changed and

must attempt to simulate the operation of Attest

● We can define the following security notion for an attestation protocol

Definition: Att-Forgery Security. An attestation protocol P = (Setup, Attest,

Verify) is Att-Forgery-secure if there exists a negligible function negl such

that for any probabilistic polynomial time prover Prov and sufficiently large

k it holds Pr[Att-ForgeryChal Prov(k) = 1] < negl(k)

CPS and IoT SecurityIoT Security and Privacy

System Model

● The central goal of attestation is to verify Prov’s state

● Successful execution however does not guarantee that the entire

Prov’s system can be trusted or that it cannot be compromised after

attestation completion

● We assume Prov to be a low end embedded device with a single

thread of execution, limited storage capacity, and general complexity

● Although valid for any device, Att-Forgery-security is stronger if the

cost of the device is smaller than that of a TPM

CPS and IoT SecurityIoT Security and Privacy

System Model

● Prov has the following characteristics

○ Single memory space (no separation from kernel and user memory)
○ Single thread of execution with exception of interrupts (no direct

memory access)
○ Ability to disable interrupts and force a region of code to execute

automatically
○ Availability of Read Only Memory (ROM)
○ Ability to securely cleanup (erase) memory upon device reset
○ Hardware-based control mechanism to prevent unauthorized access

to certain memory location

CPS and IoT SecurityIoT Security and Privacy

System Model

● We make no assumptions about Chal

● A malicious Chal may perform a DoS by forcing Prov to take part in

the RA protocol at will

● Malicious Chal does not learn any new information about an honest

Prov by performing RA, since Chal must already know the desired

state of Prov in order to verify the attestation token

● We assume that Chal is honest

● Note: Challenger is the term from crypto, verifier is the term from RA.

We can use them interchangeably

CPS and IoT SecurityIoT Security and Privacy

Adversary Model

● We assume the adversary can compromise Prov at any time

● Once it is compromised, the adversary has control over the prover

device

● There however needs to be a key that the adversary cannot access

to although being in control of the prover

● We assume that the adversary cannot modify the hardware

components of the compromised device

● We also assume that there is a way to protect Attest against side

channel attacks

CPS and IoT SecurityIoT Security and Privacy

Properties Required

● Attest needs to have specific security properties

● We assure there exists a secure algorithm to compute a based on

the prover’s state s and a prover-specific key k (e.g., via HMAC)

● Attest must satisfy the following security properties

○ Only Attest can compute a valid token a
○ a accurately captures s, i.e., Attest(k,s) = Attest(k,s’) with negligible

probability
● Two ways to attacker remote attestation

○ Attack 1: The adversary simulates Attest and correctly computes a
○ Attack 2: returned a does not reflect s, i.e., escape detection

CPS and IoT SecurityIoT Security and Privacy

Properties Required

● The key k is the only secret held by Prov, and access to k allows the

adversary to simulate Attest (i.e., type 1 attack)

● Exclusive access: attest must have exclusive access to k.

● No leaks: Attest leaks no function of k other than a, i.e., after Attest

completes, the entire state of Prov is statistically independent from k

● Immutability: Attest code is immutable. This means that it needs to be

executed in-place from immutable memory

● Uninterruptibility: the attacker has no means to interrupt the

execution of attest

CPS and IoT SecurityIoT Security and Privacy

Features from Properties

● We derive a set of features that are both necessary and sufficient for

remote attestation that achieve the five security properties

● Exclusive access to k: in our system model, the best solution is to

add a small hardware-based check that monitors the address byt and

the program counter and enforces that k is only accessible when PC

is within attest

● No leaks: we need a way to erase all intermediate values that

depend on k, except the attestation token a, when they are no longer

needed

CPS and IoT SecurityIoT Security and Privacy

Features from Properties

● Immutability: to ensure Attest to be immutable, we place it in ROM

and execute it in place. We consider it as an inexpensive way to

enforce immutability.

● Uninterruptibility: on a platform with a single thread of execution,

the adversary can still regain control after invoking Attest by

scheduling an interrupt. Both Attest and instructions to enable and

disable interrupts should be atomic

CPS and IoT SecurityIoT Security and Privacy

Features from Properties

● Invocation from start: we must enforce exclusive invocation of

Attest from its very first instruction. To this aim, custom hardware is

needed to enforce the logic: if the program counter is an address

within the Attest code, other than the first instruction address, then

the previous instruction must also be within Attest

● This prevents the adversary to jump in the middle of attest, there is

no way to enforce this without OS support

● We hence need to monitor the Attest region and reset the device if

detecting illegal behavior

CPS and IoT SecurityIoT Security and Privacy

Types of Remote Attestation

● Remote attestation can be performed in several ways, with different

requirements in terms of device capabilities, equipment, and security

guarantees

● At a high level, we can distinguish between software-based

attestation and root of trust-based attestation

CPS and IoT SecurityIoT Security and Privacy

Software-Based Attestation

● In software-based attestation, typically we use timing information to

allow the verifier to assess the correctness of the firmware running on

the prover

● These approaches generally require strict timing requirements on the

network, which might not always be feasible in generic IoT

● They also generally consider a one-hop communication between

verifier and prover, which makes it hard to be realized in large IoT

networks

CPS and IoT SecurityIoT Security and Privacy

Software-Based Attestation

● A Naive approach for verifying the prover’s memory content would be

to challenge the prover in computing a MAC of the memory content

with a verifier-provided key

● The verifier knows the memory content of the legitimate device

● However, an attacker could easily cheat on this

● Indeed, the attacker could save the original memory content and

move it to an empty portion of the memory or to an external device

that could be accessible when needing to compute the MAC-based

proof

CPS and IoT SecurityIoT Security and Privacy

Pseudo-Random Memory Traversal

● The embedded device has a memory-content verification procedure

that can be remotely activated by the verifier

● The procedure uses a pseudorandom memory traversal

● In particular, the challenge is used as seed for a pseudorandom

number generator that generates a list of memory addresses to be

checked

● The adversary has no mean to know in advance the portion of the

memory that will be checked

CPS and IoT SecurityIoT Security and Privacy

Pseudo-Random Memory Traversal

● In case the verification procedure is heading towards a portion of the

memory that has been altered, the attacker needs to divert it to the a

memory location where the correct copy is stored

● This however causes an increase in the time needed to compute the

verification

● Thus the verifier will either see a non valid authentication token or a

suspiciously long time needed to compute the authentication token

CPS and IoT SecurityIoT Security and Privacy

Attestation Based On Root of Trust

● These schemes leverage a root of trust residing inside the prover

● This component is a assumed to be trusted and is the endpoint of the

attestation protocol

● It usually comprises a combination of hardware and software

● The value to be attested is stored inside the root of trust

● In IoT devices, the root of trust is realized using hardware with

minimal security capabilities, such as code and memory isolation

● Four strategies: interactive RA, Interactive Self-RA, Non-interactive

RA, and non-interactive self-RA

CPS and IoT SecurityIoT Security and Privacy

Interactive RA

● It consists of an interactive protocol between prover P and verifier V

● V sends a challenge N to P’s root of trust Rp, which responds with a

proof of the device’s configuration, e.g., c = hash(conf(P))||N

● The proof h is either signal (public key crypto) or tagged via MAC

(symmetric key)

● V verifies the integrity of P by verifying the authenticity of h

CPS and IoT SecurityIoT Security and Privacy

Interactive RA

CPS and IoT SecurityIoT Security and Privacy

Interactive Self-RA

● Leveraging the capabilities of Trusted Execution Environments, it is

possible to verify c at P’s side given the list of potential allowed

configurations securely stored and accessible by Rp

● After receiving N from V anc computing c, Rp produces a

signed/MACed token h authenticating a binary result r (true of false)

● This is then delivered to V as a customized token

CPS and IoT SecurityIoT Security and Privacy

Interactive Self-RA

CPS and IoT SecurityIoT Security and Privacy

Non-Interactive RA

● The prover P autonomously decides the time at which attestation

should happen and locally generates a pseudo-random nonce N

● Remove the need for V to start the process, but require additional

hardware, e.g., secure source of time

● Examples of additional needs include Real Time Clocks, Attestation

Trigger Circuit, or Reliable Read-Only Clocks

CPS and IoT SecurityIoT Security and Privacy

Non-Interactive RA

CPS and IoT SecurityIoT Security and Privacy

Non-Interactive Self-RA

● Variation of the

previous one,

where P’s TEE

know the set of

possible

configurations and

can therefore

perform self

attestation

CPS and IoT SecurityIoT Security and Privacy

Collective RA

● In large networks, it might be convenient to assess the status of

multiple nodes instead of performing single attestations

● Collective remote attestation has been introduced to limit the time

needed to perform attestation of multiple interconnected devices

● We consider a large network of low-end devices which are

heterogeneous in terms of software and hardware configurations

● These are provers, and of course we have the verifier

● We need an additional device, i.e., the aggregator

CPS and IoT SecurityIoT Security and Privacy

Formal Verification of RA

● Verifiable Remote Attestation for Simple Embedded Devices

(VRASED)

● A hybrid hardware/software solution to provide formal verification

● Security of hardware while minimizing cost thanks to software

● First formally verified remote attestation scheme

CPS and IoT SecurityIoT Security and Privacy

Overview of VRASED

● VRASED is composed of a HW module (HW-Mod) and a SW

implementation (SW-Att) of Prv’s behavior according to the RA

protocol

● HW-Mod enforces access control to K (Prv’s unique secret key) in

addition to secure and atomic execution of SW-Att

● SW-Att is responsible for computing an attestation report

CPS and IoT SecurityIoT Security and Privacy

Formal Verification, Model
Checking, Temporal Logic

● Computer-aided formal verification involves three basic steps:

○ The system of interest must be described via a formal model (e.g.,
finite state machine)

○ Properties that the model should satisfy must be formally specified
○ The system model must be checked against formally specified

properties to guarantee that the system retains such properties

● Checking can be achieved via either theorem proving or model

checking

CPS and IoT SecurityIoT Security and Privacy

Formal Verification, Model
Checking, Temporal Logic

● In model checking, properties are specified as formulae using

temporal logic and system models are represented as FSMs

● A system is represented by a triple (S, S0, T) where S is a finite set of

states, is the set of possible initial states, and is the

transition relation set (set of states that can be reached in a single

step from each state)

● Thanks to temporal logic we can represent expected system behavior

over time

● We use NuSMV

CPS and IoT SecurityIoT Security and Privacy

NuSMV

● In NuSMV, properties are specified in Linear Temporal Logic,

particularly useful for sequential systems

● Use of propositional connectives such as conjunction

disjunction negation and implication

● LTL includes also temporal connectives enabling sequential

reasoning

● We define a list of useful temporal connectives

CPS and IoT SecurityIoT Security and Privacy

NuSMV

● We define a list of useful temporal connectives

● NuSMV works by checking LTL specifications against the system

FSM for all reachable states in such FSM

CPS and IoT SecurityIoT Security and Privacy

Adv Capability

● We consider an adversary A that can control the entire software

state, code, and data of Prv

● A can modify any writable memory and read any memory that is not

explicitly protected by access control rules. A can hence read

anything that is not protected by HW-Mod

● A can also relocate malware from one memory segment to another to

avoid being detected

● A may also have full control over direct memory access controller on

Prv

CPS and IoT SecurityIoT Security and Privacy

Verification Axioms

● We focus on attestation functionality of Prv

● The verification approach relies on the following axioms

● A1 - Program counter: the PC always contains the address of the

instruction being executed in a given cycle

● A2 - Memory address: whenever memory is read or written, a

data-address signal (Daddr) contains the address of the corresponding

memory location. Ren and Wen bits must be set for read and write

access, respectively

CPS and IoT SecurityIoT Security and Privacy

Verification Axioms

● A3 - DMA: whenever a DMA controller attempts to access main

system memory, a DMA-address signal DMAaddr reflects the address

of the memory location being accessed and a DMAen bit must be set.

DMA cannot access memory when DMAen is off

● A4 - MCU reset: at the end of a successful reset routine, all registers

(including PC) are set to zero before resuming normal software

execution flow. Since resets are handled by MCU hardware, no way

yo modify them

● A5 - Interrupts: when interrupt, the corresponding irq signal is set

CPS and IoT SecurityIoT Security and Privacy

Verification Axioms

● The MSP430 design supports all the five axioms

● Sw-Att uses HACL* HMAC-SHA256 function implemented and

verified in F*

● We assume that the standard compiler can be trusted to semantically

preserve its expected behavior

● A6 - Callee-Saves-Register: any register touched in a function is

cleaned by default when the function returns

● A7 - Semantic preservation: functional correctness of HMAC

semantically preserved when converted in C

https://en.wikipedia.org/wiki/TI_MSP430
https://www.fstar-lang.org/

CPS and IoT SecurityIoT Security and Privacy

VRASED System Architecture

● Implemented by adding HW-Mod to the

MCU architecture

● Memory layout is extended to include

ROM housing SW-Att code and K

● Access control and SW-Att atomicity are

enforced by HW-Mod

● HW-Mod takes 7 input signals from the

MCU core

CPS and IoT SecurityIoT Security and Privacy

Notation

CPS and IoT SecurityIoT Security and Privacy

Notation

● We use the following notation

● ARmin and ARmax: first and last physical addresses of the memory

region to be attested

● CRmin and CRmax: physical addresses of the first and last instructions of

SW-Att in ROM

● Kmin and Kmax: first and last physical addresses of the ROM region

where K is stored

● XSmin and XSmax: first and last physical addresses of the RAM region

reserved for SW-Att computation

CPS and IoT SecurityIoT Security and Privacy

Notation

● We use the following notation

● MACaddr: fixed address that stores the result of SW-Att computation

(HMAC)

● MACsize: size of HMAC result

● [A,B] denotes that contiguous memory region between A and B

● Therefore,

● Holds when PC is within CRmin and CRmax

CPS and IoT SecurityIoT Security and Privacy

FSM Representation

● Each FSM output changes in time as a function of both the current

state and current input values

● Each FSM has as inputs a subset of the following signals and wires

● Each FSM has only one output, reset, that indicates whether any

security property was violated. Implicit representation:

○ reset is 1 whenever FSM transitions to reset state
○ reset remains 1 until a transition leaving the reset state is triggered
○ reset is 0 in all other states

CPS and IoT SecurityIoT Security and Privacy

RA Soundness

● RA soundness corresponds to computing an integrity ensuring function

over memory at time t

● We use an HMAC computed on memory AR with a one-time key

derived from K and Chal

● Since SW-Att is not instantaneous, RA soundness must endure that

attested memory does not change during the computation of the

HMAC (temporal consistency)

● In other words, the result of SW-Att call must reflect the entire state of

the attested memory at the time when SW-Att is called

CPS and IoT SecurityIoT Security and Privacy

RA Soundness

● In other words, the result of SW-Att call must reflect the entire state of

the attested memory at the time when SW-Att is called

CPS and IoT SecurityIoT Security and Privacy

RA Security

CPS and IoT SecurityIoT Security and Privacy

VRASED SW-Att

● To minimize required hardware feature, hybrid RA approaches

implement integrity ensuring functions (e.g., HMAC) in software

● Derive a new unique context-specific key (key) from the master key K

via HMAC-based key derivation function on Chal

● Call HACL*’s HMAC using key as the HMAC key

● Sw-Att resides in ROM. guaranteeing software immutability

● Moreover, HW-Mod enforces that no other software running on Prv can

access memory allocated by SW-Att

CPS and IoT SecurityIoT Security and Privacy

VRASED SW-Att

CPS and IoT SecurityIoT Security and Privacy

VRASED SW-Att

Memory range to be attested

CPS and IoT SecurityIoT Security and Privacy

VRASED SW-Att

Natural language: if the memory counter is always
preserved until the PC gets to CMmax, finally MR will contain
a valid response

CPS and IoT SecurityIoT Security and Privacy

Key Access Control (HW-Mod)

● If malware manages to read K from ROM, it can reply to Vrf with a

forged result

● MW-Mod access control (AC) sub-module enforces that K can only be

accessed bt SW-Att

● The system must transition to the Reset state whenever code from

outside CR tries to read from Daddr within the key space

CPS and IoT SecurityIoT Security and Privacy

Key Access Control (HW-Mod)

● We design a FSM from the LTL specification with two states: run and

reset

● Outputs sìreset =1 when the AC submodule transitions to reset,

implying a hard reset on the MCU

CPS and IoT SecurityIoT Security and Privacy

Atomicity and Controlled Invocation
(HW-Mod)

● We define two LTL specifications for atomic execution and controlled

invocation

CPS and IoT SecurityIoT Security and Privacy

Atomicity and Controlled Invocation
(HW-Mod)

● Enforce that the only way for SW-Att execution to terminate is through

its last instruction PC=CRmax

● Specified by checking current and next PC values using neXt operator

● If current PC value is within SW-Att region and next PC value is out of

SW-Att region, then either current PC values is the address of the last

instruction in SW-Att(CRmax), or reset is triggered in the next cycle

CPS and IoT SecurityIoT Security and Privacy

Atomicity and Controlled Invocation
(HW-Mod)

● Enforce that the only way for PC to enter SW-Att region is through the

very first instruction CRmin

● This and the previous invariant (LTL specification) imply that it is

impossible to jump into the middle of SW-Att or leave SW-Att before

reaching the last instruction

CPS and IoT SecurityIoT Security and Privacy

Atomicity and Controlled Invocation
(HW-Mod)

● Atomicy is verified by the following LTL specification

● Although atomicity could be violated by interrupts, this LTL specification

prevents an interrupt to happen while SW-Att is executing

● Therefore, if interrupts are not disabled by software running on Prv

before calling SW-Att, any interrupt that could violate SW-Att atomicity

will necessarily cause an MCU reset

CPS and IoT SecurityIoT Security and Privacy

Verified Model

● The FSM has 5 states

○ Two basic states notCR and midCR represent movements when PC
points to an address 1)outside CR, and 2) within CR, respectively

○ Two fstCR and lstCR represent states when the PC points to the first
and last instructions of SW-Att, respectively

○ A reset state
● Transition to reset state whenever 1) any sequence of values for PC

does not obey the aforementioned conditions, 2) irq is logical 1 while

executing SW-Att

CPS and IoT SecurityIoT Security and Privacy

Verified Model

CPS and IoT SecurityIoT Security and Privacy

Next

● VRASED

● TOCTOU

● CASU

● GAROTA

CPS and IoT SecurityIoT Security and Privacy

An Example of Collective RA

● Let us consider an IoT distributed system where nodes communicate

in an asynchronous manner via a publish/subscribe pattern

● The verifier performs attestation in two steps: initialization at time T0

and attestation at time T1

● During initialization time, the verifier initiates the attestation

procedure with one or more services (publishers)

● The publisher then performs the local attestation and publishes the

result together with the data it produced

CPS and IoT SecurityIoT Security and Privacy

An Example of Collective RA

● Every subscriber service receives the publish the data and also

perform the attestation

● At attestation time, verifier sends an attestation request to one or

more subscribers, which act as prover for the whole network

● Subscribers report an attestation result that includes the result of all

the previous services that were directly or indirectly involved in

triggering a given event to which the subscriber was registered

CPS and IoT SecurityIoT Security and Privacy

An Example of Collective RA

Verifier Publisher

CPS and IoT SecurityIoT Security and Privacy

An Example of Collective RA

Verifier Publisher Subscriber

CPS and IoT SecurityIoT Security and Privacy

An Example of Collective RA

Verifier Publisher Subscriber

● This is the final attestation procedure, where the verifier retrieves the

attestation result GHVS, singed, and containing the received nonce

