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The Software Problem

● IoT devices have their own software and this can be compromised by 

malicious entities

● It is not easy to detect attacks in on-field devices, as Stuxnet showed

● We need solutions to attest the legitimacy of (software and hardware) 

components by distantly looking at them and their behavior

● We need to account for the constrained resources of these devices
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Remote Attestation

●  Attestation is the activity of making a claim to an appraiser about the 

properties of a target by supplying evidence which supports that claim

● An attester is a party performing the attestation activity

● An attestation protocol is a cryptographic protocol involving a target an 

attester, an appraiser and possibly other principals  serving as trust 

proxies

● Target: supply evidence that will be considered authoritative by the 

appraiser while respecting privacy goals of its target
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Remote Attestation 

● We denote as remote attestation a protocol whereby a challenge 

(Chal) verifies the internal state of a device called a prover (Prov)

● This protocol is performed remotely, i.e., over the Internet

● Goal: an honest Prov should create an authentication token that 

convinces Chal that the former is some well-defined expected state

● If Prov has been compromised by an adversary, the authentication 

token must reflect this 
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Attestation Protocol

 An attestation protocol P is comprised by the following components

● Steup() -  a probabilistic algorithm that, given a security parameter   

outputs a long-term key k;

● Attest(k,.) - a deterministic algorithm that, given a key k and a device 

state s, outputs an attestation token a

● Verify(k,.,.) - a deterministic algorithm that, given a key k, a device 

state s, and an attestation token a, outputs 1 iff a corresponds to s, i.e., 

iff Attest(k,s) = a, and outputs 0 otherwise 
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Attestation Protocol

● The verifier challenges the prover 

with a fresh nonce (uniformly 

random and from a large pool)

● The prover attests its state with 

the key and creates a token

● The verifier receives the token 

and decides whether to accept it
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Att-Forgery Security

Let us define the following game

Game 1 (Att-ForgeryChal,Prov(k)): Chall running P interacts with Prov as 

follows

1. Chal runs k ← Setup(1k) and outputs sChal to Prov

2. Prov is given oracles access to Attest, i.e., adaptively submit q device 

states and receive the corresponding token

3. Eventually Prov outputs a; the game outputs 1 iff Verify(k,s,a) = 1, 

i.e., iff a corresponds to s = (sChal,sProv)
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Att-Forgery Security

● An honest node has no problem winning the previous game

● If instead Prov has been compromised, its sProv has changed and 

must attempt to simulate the operation of Attest

● We can define the following security notion for an attestation protocol

Definition: Att-Forgery Security. An attestation protocol P = (Setup, Attest, 

Verify) is Att-Forgery-secure if there exists a negligible function negl such 

that for any probabilistic polynomial time prover Prov and sufficiently large 

k it holds Pr[Att-ForgeryChal Prov(k) = 1] < negl(k)
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System Model

● The central goal of attestation is to verify Prov’s state

● Successful execution however does not guarantee that the entire 

Prov’s system can be trusted or that it cannot be compromised after 

attestation completion

● We assume Prov to be a low end embedded device with a single 

thread of execution, limited storage capacity, and general complexity

● Although valid for any device, Att-Forgery-security is stronger if the 

cost of the device is smaller than that of a TPM
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System Model

● Prov has the following characteristics

○ Single memory space (no separation from kernel and user memory)
○ Single thread of execution with exception of interrupts (no direct 

memory access)
○ Ability to disable interrupts and force a region of code to execute 

automatically
○ Availability of Read Only Memory (ROM)
○ Ability to securely cleanup (erase) memory upon device reset
○ Hardware-based control mechanism to prevent unauthorized access 

to certain memory location
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System Model

● We make no assumptions about Chal

● A malicious Chal may perform a DoS by forcing Prov to take part in 

the RA protocol at will

● Malicious Chal does not learn any new information about an honest 

Prov by performing RA, since Chal must already know the desired 

state of Prov in order to verify the attestation token

● We assume that Chal is honest

● Note: Challenger is the term from crypto, verifier is the term from RA. 

We can use them interchangeably
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Adversary Model

● We assume the adversary can compromise Prov at any time

● Once it is compromised, the adversary has control over the prover 

device

● There however needs to be a key that the adversary cannot access 

to although being in control of the prover

● We assume that the adversary cannot modify the hardware 

components of the compromised device

● We also assume that there is a way to protect Attest against side 

channel attacks
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Properties Required 

● Attest needs to have specific security properties

● We assure there exists a secure algorithm to compute a based on 

the prover’s state s and a prover-specific key k (e.g., via HMAC)

● Attest must satisfy the following security properties

○ Only Attest can compute a valid token a
○ a accurately captures s, i.e., Attest(k,s) = Attest(k,s’) with negligible 

probability
● Two ways to attacker remote attestation

○ Attack 1: The adversary simulates Attest and correctly computes a
○ Attack 2: returned a does not reflect s, i.e., escape detection
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Properties Required 

● The key k is the only secret held by Prov, and access to k allows the 

adversary to simulate Attest (i.e., type 1 attack)

● Exclusive access: attest must have exclusive access to k.

● No leaks: Attest leaks no function of k other than a, i.e., after Attest 

completes, the entire state of Prov is statistically independent from k

● Immutability: Attest code is immutable. This means that it needs to be 

executed in-place from  immutable memory

● Uninterruptibility: the attacker has no means to interrupt the 

execution of attest
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Features from Properties

● We derive a set of features that are both necessary and sufficient for 

remote attestation that achieve the five security properties

● Exclusive access to k: in our system model, the best solution is to 

add a small hardware-based check that monitors the address byt and 

the program counter and enforces that k is only accessible when PC 

is within attest

● No leaks: we need a way to erase all intermediate values that 

depend on k, except the attestation token a, when they are no longer 

needed
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Features from Properties

● Immutability: to ensure Attest to be immutable, we place it in ROM 

and execute it in place. We consider it as an inexpensive way to 

enforce immutability.

● Uninterruptibility: on a platform with a single thread of execution, 

the adversary can still regain control after invoking Attest by 

scheduling an interrupt. Both Attest and instructions to enable and 

disable interrupts should be atomic
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Features from Properties

● Invocation from start: we must enforce exclusive invocation of 

Attest from its very first instruction. To this aim, custom hardware is 

needed to enforce the logic: if the program counter is an address 

within the Attest code, other than the first instruction address, then 

the previous instruction must also be within Attest

● This prevents the adversary to jump in the middle of attest, there is 

no way to enforce this without OS support 

● We hence need to monitor the Attest region and reset the device if 

detecting illegal behavior
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Types of Remote Attestation

● Remote attestation can be performed in several ways, with different 

requirements in terms of device capabilities, equipment, and security 

guarantees

● At a high level, we can distinguish between software-based 

attestation and root of trust-based attestation 
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Software-Based Attestation

● In software-based attestation, typically we use timing information to 

allow the verifier to assess the correctness of the firmware running on 

the prover

● These approaches generally require strict timing requirements on the 

network, which might not always be feasible in generic IoT

● They also generally consider a one-hop communication between 

verifier and prover, which makes it hard to be realized in large IoT 

networks
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Software-Based Attestation

● A Naive approach for verifying the prover’s memory content would be 

to challenge the prover in computing a MAC of the memory content 

with a verifier-provided key

● The verifier knows the memory content of the legitimate device

● However, an attacker could easily cheat on this

● Indeed, the attacker could save the original memory content and 

move it to an empty portion of the memory or to an external device 

that could be accessible when needing to compute the MAC-based 

proof
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Pseudo-Random Memory Traversal

● The embedded device has a memory-content verification procedure 

that can be remotely activated by the verifier

● The procedure uses a pseudorandom memory traversal

● In particular, the challenge is used as seed for a pseudorandom 

number generator that generates a list of memory addresses to be 

checked

● The adversary has no mean to know in advance the portion of the 

memory that will be checked
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Pseudo-Random Memory Traversal

● In case the verification procedure is heading towards a portion of the 

memory that has been altered, the attacker needs to divert it to the a 

memory location where the correct copy is stored

● This however causes an increase in the time needed to compute the 

verification

● Thus the verifier will either see a non valid authentication token or a 

suspiciously long time needed to compute the authentication token
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Attestation Based On Root of Trust

● These schemes leverage a root of trust residing inside the prover

● This component is a assumed to be trusted and is the endpoint of the 

attestation protocol

● It usually comprises a combination of hardware and software

● The value to be attested is stored inside the root of trust

● In IoT devices, the root of trust is realized using hardware with 

minimal security capabilities, such as code and memory isolation

● Four strategies: interactive RA, Interactive Self-RA, Non-interactive 

RA, and non-interactive self-RA



CPS and IoT SecurityIoT Security and Privacy

Interactive RA

● It consists of an interactive protocol between prover P and verifier V

● V sends a challenge N to P’s root of trust Rp, which responds with a 

proof of the device’s configuration, e.g., c = hash(conf(P))||N

● The proof h is either signal (public key crypto) or tagged via MAC 

(symmetric key)

● V verifies the integrity of P by verifying the authenticity of h
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Interactive RA
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Interactive Self-RA

● Leveraging the capabilities of Trusted Execution Environments, it is 

possible to verify c at P’s side given the list of potential allowed 

configurations securely stored and accessible by Rp

● After receiving N from V anc computing c, Rp produces a 

signed/MACed token h authenticating a binary result r (true of false)

● This is then delivered to V as a customized token
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Interactive Self-RA
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Non-Interactive RA

● The prover P autonomously decides the time at which attestation 

should happen and locally generates a pseudo-random nonce N

● Remove the need for V to start the process, but require additional 

hardware, e.g., secure source of time

● Examples of additional needs include Real Time Clocks, Attestation 

Trigger Circuit, or Reliable Read-Only Clocks
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Non-Interactive RA
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Non-Interactive Self-RA

● Variation of the 

previous one, 

where P’s TEE 

know the set of 

possible 

configurations and 

can therefore 

perform self 

attestation
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Collective RA

● In large networks, it might be convenient to assess the status of 

multiple nodes instead of performing single attestations

● Collective remote attestation has been introduced to limit the time 

needed to perform attestation of multiple interconnected devices

● We consider a large network of low-end devices which are 

heterogeneous in terms of software and hardware configurations

● These are provers, and of course we have the verifier

● We need an additional device, i.e., the aggregator
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Formal Verification of RA

● Verifiable Remote Attestation for Simple Embedded Devices 

(VRASED)

● A hybrid hardware/software solution to provide formal verification

● Security of hardware while minimizing cost thanks to software

● First formally verified remote attestation scheme
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Overview of VRASED

● VRASED is composed of a HW module (HW-Mod) and a SW 

implementation (SW-Att) of Prv’s behavior according to the RA 

protocol

● HW-Mod enforces access control to K (Prv’s unique secret key)  in 

addition to secure and atomic execution of SW-Att

● SW-Att is responsible for computing an attestation report



CPS and IoT SecurityIoT Security and Privacy

Formal Verification, Model 
Checking, Temporal Logic

● Computer-aided formal verification involves three basic steps:

○ The system of interest must be described via a formal model (e.g., 
finite state machine)

○ Properties that the model should satisfy must be formally specified
○ The system model must be checked against formally specified 

properties to guarantee that the system retains such properties

● Checking can be achieved via either theorem proving or model 

checking
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Formal Verification, Model 
Checking, Temporal Logic

● In model checking, properties are specified as formulae using 

temporal logic and system models are represented as FSMs

● A system is represented by a triple (S, S0, T) where S is a finite set of 

states,             is the set of possible initial states, and                  is the 

transition relation set (set of states that can be reached in a single 

step from each state)

● Thanks to temporal logic we can represent expected system behavior 

over time 

● We use NuSMV
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NuSMV

● In NuSMV, properties are specified in Linear Temporal Logic, 

particularly useful for sequential systems

● Use of propositional connectives such as conjunction           

disjunction       negation       and implication

● LTL includes also temporal connectives enabling sequential 

reasoning

● We define a list of useful temporal connectives  
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NuSMV

● We define a list of useful temporal connectives

● NuSMV works by checking LTL specifications against the system 

FSM for all reachable states in such FSM  
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Adv Capability 

● We consider an adversary A that can control the entire software 

state, code, and data of Prv

● A can modify any writable memory and read any memory that is not 

explicitly protected by access control rules. A can hence read 

anything that is not protected by HW-Mod

● A can also relocate malware from one memory segment to another to 

avoid being detected

● A may also have full control over direct memory access controller on 

Prv 



CPS and IoT SecurityIoT Security and Privacy

Verification Axioms

● We focus on attestation functionality of Prv

● The verification approach relies on the following axioms

● A1 - Program counter: the PC always contains the address of the 

instruction being executed in a given cycle

● A2 - Memory address: whenever memory is read or written, a 

data-address signal (Daddr) contains the address of the corresponding 

memory location. Ren and Wen bits must be set for read and write 

access, respectively
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Verification Axioms

● A3 - DMA: whenever a DMA controller attempts to access main 

system memory, a DMA-address signal DMAaddr reflects the address 

of the memory location being accessed and a DMAen bit must be set. 

DMA cannot access memory when DMAen is off

● A4 - MCU reset: at the end of a successful reset routine, all registers 

(including PC) are set to zero before resuming normal software 

execution flow. Since resets are handled by MCU hardware, no way 

yo modify them

● A5 - Interrupts: when interrupt, the corresponding irq signal is set 
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Verification Axioms

● The MSP430 design supports all the five axioms

● Sw-Att uses HACL* HMAC-SHA256 function implemented and 

verified in F*

● We assume that the standard compiler can be trusted to semantically 

preserve its expected behavior

● A6 - Callee-Saves-Register: any register touched in a function is 

cleaned by default when the function returns

● A7 - Semantic preservation: functional correctness of HMAC 

semantically preserved when converted in C

https://en.wikipedia.org/wiki/TI_MSP430
https://www.fstar-lang.org/


CPS and IoT SecurityIoT Security and Privacy

VRASED System Architecture

● Implemented by adding HW-Mod to the 

MCU architecture

● Memory layout is extended to include 

ROM housing SW-Att code and K

● Access control and SW-Att atomicity are 

enforced by HW-Mod

● HW-Mod takes 7 input signals from the 

MCU core
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Notation
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Notation

● We use the following notation

● ARmin and ARmax: first and last physical addresses of the memory 

region to be attested

● CRmin and CRmax: physical addresses of the first and last instructions of 

SW-Att in ROM

● Kmin and Kmax: first and last physical addresses of the ROM region 

where K is stored

● XSmin and XSmax: first and last physical addresses of the RAM region 

reserved for SW-Att computation
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Notation

● We use the following notation

● MACaddr: fixed address that stores the result of SW-Att computation 

(HMAC)

● MACsize: size of HMAC result

● [A,B] denotes that contiguous memory region between A and B

● Therefore,

●               Holds when PC is within CRmin and CRmax 
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FSM Representation

● Each FSM output changes in time as a function of both the current 

state and current input values

● Each FSM has as inputs a subset of the following signals and wires

● Each FSM has only one output, reset, that indicates whether any 

security property was violated. Implicit representation:

○ reset is 1 whenever FSM transitions to reset state
○ reset remains 1 until a transition leaving the reset state is triggered
○ reset is 0 in all other states
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RA Soundness 

● RA soundness corresponds to computing an integrity ensuring function 

over memory at time t

● We use an HMAC computed on memory AR with a one-time key 

derived from K and Chal

● Since SW-Att is not instantaneous, RA soundness must endure that 

attested memory does not change during the computation of the 

HMAC (temporal consistency)

● In other words, the result of SW-Att call must reflect the entire state of 

the attested memory at the time when SW-Att is called
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RA Soundness

● In other words, the result of SW-Att call must reflect the entire state of 

the attested memory at the time when SW-Att is called
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RA Security
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VRASED SW-Att

● To minimize required hardware feature, hybrid RA approaches 

implement integrity ensuring functions (e.g., HMAC) in software

● Derive a new unique context-specific key (key) from the master key K 

via HMAC-based key derivation function on Chal

● Call HACL*’s HMAC using key as the HMAC key

● Sw-Att resides in ROM. guaranteeing software immutability

● Moreover, HW-Mod enforces that no other software running on Prv can 

access memory allocated by SW-Att
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VRASED SW-Att
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VRASED SW-Att

Memory range to be attested
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VRASED SW-Att

Natural language: if the memory counter is always 
preserved until the PC gets to CMmax, finally MR will contain 
a valid response
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Key Access Control (HW-Mod)

● If malware manages to read K from ROM, it can reply to Vrf with a 

forged result

● MW-Mod access control (AC) sub-module enforces that K can only be 

accessed bt SW-Att

● The system must transition to the Reset state whenever code from 

outside CR tries to read from Daddr within the key space
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Key Access Control (HW-Mod)

● We design a FSM from the LTL specification with two states: run and 

reset

● Outputs sìreset =1 when the AC submodule transitions to reset, 

implying a hard reset on the MCU
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Atomicity and Controlled Invocation 
(HW-Mod)

● We define two LTL specifications for atomic execution and controlled 

invocation
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Atomicity and Controlled Invocation 
(HW-Mod)

● Enforce that the only way for SW-Att execution to terminate is through 

its last instruction PC=CRmax

● Specified by checking current and next PC values using neXt operator

● If current PC value is within SW-Att region and next PC value is out of 

SW-Att region, then either current PC values is the address of the last 

instruction in SW-Att(CRmax), or reset is triggered in the next cycle
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Atomicity and Controlled Invocation 
(HW-Mod)

● Enforce that the only way for PC to enter SW-Att region is through the 

very first instruction CRmin 

● This and the previous invariant (LTL specification) imply that it is 

impossible to jump into the middle of SW-Att or leave SW-Att before 

reaching the last instruction
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Atomicity and Controlled Invocation 
(HW-Mod)

● Atomicy is verified by the following LTL specification

● Although atomicity could be violated by interrupts, this LTL specification 

prevents an interrupt to happen while SW-Att is executing

● Therefore, if interrupts are not disabled by software running on Prv 

before calling SW-Att, any interrupt that could violate SW-Att atomicity 

will necessarily cause an MCU reset
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Verified Model

● The FSM has 5 states

○ Two basic states notCR and midCR represent movements when PC 
points to an address 1)outside CR, and 2) within CR, respectively

○ Two fstCR and lstCR represent states when the PC points to the first 
and last instructions of SW-Att, respectively

○ A reset state
● Transition to reset state whenever 1) any sequence of values for PC 

does not obey the aforementioned conditions, 2) irq is logical 1 while 

executing SW-Att
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Verified Model
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Next

● VRASED

● TOCTOU

● CASU

● GAROTA
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An Example of Collective RA

● Let us consider an IoT distributed system where nodes communicate 

in an asynchronous manner via a publish/subscribe pattern

● The verifier performs attestation in two steps: initialization at time T0 

and attestation at time T1

● During initialization time, the verifier initiates the attestation 

procedure with one or more services (publishers)

● The publisher then performs the local attestation and publishes the 

result together with the data it produced
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An Example of Collective RA

● Every subscriber service receives the publish the data and also 

perform the attestation

● At attestation time, verifier sends an attestation request to one or 

more subscribers, which act as prover for the whole network

● Subscribers report an attestation result that includes the result of all 

the previous services that were directly or indirectly involved in 

triggering a given event to which the subscriber was registered
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An Example of Collective RA

Verifier Publisher
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An Example of Collective RA

Verifier Publisher Subscriber
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An Example of Collective RA

Verifier Publisher Subscriber

● This is the final attestation procedure, where the verifier retrieves the 

attestation result GHVS, singed, and containing the received nonce


