
IoT Security and Privacy CPS and IoT Security

IoT Security and
Privacy: Remote

Attestation
CPS and IoT Security

Alessandro Brighente

Master Degree in
Cybersecurity

The Software Problem

IoT Security and Privacy CPS and IoT Security

● IoT devices have their own software and this can be compromised by

malicious entities

● It is not easy to detect attacks in on-field devices, as Stuxnet showed
● We need solutions to attest the legitimacy of (software and hardware)

components by distantly looking at them and their behavior

● We need to account for the constrained resources of these devices

Remote Attestation

IoT Security and Privacy CPS and IoT Security

● Attestation is the activity of making a claim to an appraiser about the

properties of a target by supplying evidence which supports that claim

● An attester is a party performing the attestation activity
● An attestation protocol is a cryptographic protocol involving a target an

attester, an appraiser and possibly other principals serving as trust

proxies

● Target: supply evidence that will be considered authoritative by the

appraiser while respecting privacy goals of its target

Remote Attestation

IoT Security and Privacy CPS and IoT Security

● We denote as remote attestation a protocol whereby a challenge

(Chal) verifies the internal state of a device called a prover (Prov)

● This protocol is performed remotely, i.e., over the Internet
● Goal: an honest Prov should create an authentication token that

convinces Chal that the former is some well-defined expected state

● If Prov has been compromised by an adversary, the authentication

token must reflect this

Attestation Protocol

An attestation protocol P comprises the following components
● Steup() -a probabilistic algorithm that, given a security parameter

outputs a long-term key k;

● Attest(k,.) - a deterministic algorithm that, given a key k and a device

state s, outputs an attestation token a

● Verify(k,.,.) - a deterministic algorithm that, given a key k, a device

state s, and an attestation token a, outputs 1 iff a corresponds to s, i.e.,

iff Attest(k,s) = a, and outputs 0 otherwise

IoT Security and Privacy CPS and IoT Security

Attestation Protocol

● The verifier challenges the prover

with a fresh nonce (uniformly

random and from a large pool)

● The prover attests its state with

the key and creates a token

● The verifier receives the token

and decides whether to accept it

IoT Security and Privacy CPS and IoT Security

Att-Forgery Security

IoT Security and Privacy CPS and IoT Security

Let us define the following game
Game 1 (Att-ForgeryChal,Prov(k)): Chal running P interacts with Prov as

follows

1. Chal runs k ← Setup(1k) and outputs sChal to Prov
2. Prov is given oracles access to Attest, i.e., adaptively submit q device

states and receive the corresponding token

3. Eventually Prov outputs a; the game outputs 1 iff Verify(k,s,a) = 1,

i.e., iff a corresponds to s = (sChal,sProv)

Att-Forgery Security

IoT Security and Privacy CPS and IoT Security

● An honest node has no problem winning the previous game
● If instead Prov has been compromised, its sProv has changed and

must attempt to simulate the operation of Attest

●We can define the following security notion for an attestation protocol

Definition: Att-Forgery Security. An attestation protocol P = (Setup,

Attest, Verify) is Att-Forgery-secure if there exists a negligible function

negl such that for any probabilistic polynomial time prover Prov and

sufficiently large k it holds Pr[Att-ForgeryChal Prov(k) = 1] < negl(k)

System Model

IoT Security and Privacy CPS and IoT Security

● The central goal of attestation is to verify Prov’s state
● Successful execution however does not guarantee that the entire

Prov’s system can be trusted or that it cannot be compromised after

attestation completion

● We assume Prov to be a low end embedded device with a single

thread of execution, limited storage capacity, and general complexity

● Although valid for any device, Att-Forgery-security is stronger if the

cost of the device is smaller than that of a TPM

System Model

IoT Security and Privacy CPS and IoT Security

● Prov has the following characteristics

○ Single memory space (no separation from kernel and user memory)
○ Single thread of execution with exception of interrupts (no direct

memory access)
○ Ability to disable interrupts and force a region of code to execute

automatically
○ Availability of Read Only Memory (ROM)
○ Ability to securely cleanup (erase) memory upon device reset
○ Hardware-based control mechanism to prevent unauthorized access

to certain memory location

System Model

IoT Security and Privacy CPS and IoT Security

● We make no assumptions about Chal
● A malicious Chal may perform a DoS by forcing Prov to take part in

the RA protocol at will

● Malicious Chal does not learn any new information about an honest

Prov by performing RA, since Chal must already know the desired

state of Prov in order to verify the attestation token

● We assume that Chal is honest
● Note: Challenger is the term from crypto, verifier is the term from RA.

We can use them interchangeably

Adversary Model

IoT Security and Privacy CPS and IoT Security

● We assume the adversary can compromise Prov at any time

● Once it is compromised, the adversary has control over the prover

device

● There however needs to be a key that the adversary cannot access

to although being in control of the prover
● We assume that the adversary cannot modify the hardware

components of the compromised device

● We also assume that there is a way to protect Attest against side

channel attacks

Properties Required

IoT Security and Privacy CPS and IoT Security

● Attest needs to have specific security properties
● We assure there exists a secure algorithm to compute a based on

the prover’s state s and a prover-specific key k (e.g., via HMAC)

● Attest must satisfy the following security properties

○ Only Attest can compute a valid token a
○ a accurately captures s, i.e., Attest(k,s) = Attest(k,s’) with negligible

probability
● Two ways to attack remote attestation

○ Attack 1: The adversary simulates Attest and correctly computes a
○ Attack 2: returned a does not reflect s, i.e., escape detection

Properties Required

IoT Security and Privacy CPS and IoT Security

● The key k is the only secret held by Prov, and access to k allows the

adversary to simulate Attest (i.e., type 1 attack)

● Exclusive access: attest must have exclusive access to k.
● No leaks: Attest leaks no function of k other than a, i.e., after Attest

completes, the entire state of Prov is statistically independent from k

● Immutability: Attest code is immutable. This means that it needs to be

executed in-place from immutable memory

● Uninterruptibility: the attacker has no means to interrupt the

execution of attest

Features from Properties

IoT Security and Privacy CPS and IoT Security

● We derive a set of features that are both necessary and sufficient for

remote attestation that achieve the five security properties

● Exclusive access to k: in our system model, the best solution is to

add a small hardware-based check that monitors the address and

the Program Counter (PC) and enforces that k is only accessible

when PC is within attest

● No leaks: we need a way to erase all intermediate values that

depend on k, except the attestation token a, when they are no longer

needed

Features from Properties

IoT Security and Privacy CPS and IoT Security

● Immutability: to ensure Attest to be immutable, we place it in ROM

and execute it in place. We consider it as an inexpensive way to

enforce immutability.

● Uninterruptibility: on a platform with a single thread of execution,

the adversary can still regain control after invoking Attest by

scheduling an interrupt. Both Attest and instructions to enable and

disable interrupts should be atomic

Features from Properties

IoT Security and Privacy CPS and IoT Security

● Invocation from start: we must enforce exclusive invocation of

Attest from its very first instruction. To this aim, custom hardware is

needed to enforce the logic: if the program counter is an address

within the Attest code, other than the first instruction address, then

the previous instruction must also be within Attest

● This prevents the adversary to jump in the middle of attest, there is

no way to enforce this without OS support

● We hence need to monitor the Attest region and reset the device if

detecting illegal behavior

Types of Remote Attestation

IoT Security and Privacy CPS and IoT Security

● Remote attestation can be performed in several ways, with different

requirements in terms of device capabilities, equipment, and security

guarantees

● At a high level, we can distinguish between software-based

attestation and root of trust-based attestation

Software-Based Attestation

IoT Security and Privacy CPS and IoT Security

● In software-based attestation, typically we use timing information to

allow the verifier to assess the correctness of the firmware running on

the prover

● These approaches generally require strict timing requirements on the

network, which might not always be feasible in generic IoT

● They also generally consider a one-hop communication between

verifier and prover, which makes it hard to be realized in large IoT

networks

Software-Based Attestation

IoT Security and Privacy CPS and IoT Security

● A Naive approach for verifying the prover’s memory content would be

to challenge the prover in computing a MAC of the memory content

with a verifier-provided key

● The verifier knows the memory content of the legitimate device

● However, an attacker could easily cheat on this
● Indeed, the attacker could save the original memory content and

move it to an empty portion of the memory or to an external device

that could be accessible when needing to compute the MAC-based

proof

Software-Based Attestation

IoT Security and Privacy CPS and IoT Security

Memory verification attack: The attacker replaces the verification code with malicious
verification code and copies the old verification code into empty memory.

Pseudo-Random Memory Traversal

IoT Security and Privacy CPS and IoT Security

● The embedded device has a memory-content verification procedure

that can be remotely activated by the verifier

● The procedure uses a pseudorandom memory traversal

● The verifier sends the device a randomly generated challenge
● The challenge is used as seed for a pseudorandom number

generator that generates a list of memory addresses to be

checked and iteratively updates a checksum of the memory

● The adversary has no mean to know in advance the portion of the

memory that will be checked

Pseudo-Random Memory Traversal

IoT Security and Privacy CPS and IoT Security

● In case the verification procedure is heading towards a portion of the

memory that has been altered, the attacker needs to divert it to the

memory location where the correct copy is stored

● This however causes an increase in the time needed to compute the

verification

● Thus the verifier will either see a non valid authentication token or a

suspiciously long time needed to compute the authentication token

Desired Properties

IoT Security and Privacy CPS and IoT Security

● The verification procedure needs the following properties

○ Pseudo-random memory traversal

○ Resistance to precomputation and replay

○ High probability of detecting even single-byte memory

changes

○ Small code size

○ Efficient implementation

○ Non-parallelizable

Pseudo-Random Memory Traversal

IoT Security and Privacy CPS and IoT Security

● We use a cryptographic pseudo-random number generator to

produce the sequence of memory locations to check

● The choice of the generator depends on the CPU architecture

● Helix is a fast stream cipher with built-in MAC functionality

optimized for 32-bit architectures

● Its keystream can be used to generate the sequence of memory

locations

● Using the challenge as its seed guarantees resistance to

pre-computation and replay attacks

High Probability of Detecting Changes

IoT Security and Privacy CPS and IoT Security

● Objective: small probability that the verification procedure returns

the correct checksum when the attacker modifies part of the

memory content

● First: we would like the verification procedure to touch every

memory location with high probability

● Second: the checksum function should be sensitive to value

changes (as small as one byte) and should be difficult for the

attacker to find a collusion

High Probability of Detecting Changes

IoT Security and Privacy CPS and IoT Security

● First: we would like the verification procedure to touch every

memory location with high probability

● Coupon Collector’s Problem: if each sample of a product is

associated with a coupon and there exist n coupons, what is the

probability that one needs to buy more than t boxes to get all n

coupon types? → O(n log n) accesses to the memory

● Given n total addresses, the number X of memory addresses

required is

 Pr [X > cn ln n] < n-c+1

High Probability of Detecting Changes

IoT Security and Privacy CPS and IoT Security

● Second: the checksum function should be sensitive to value

changes (as small as one byte) and should be difficult for the

attacker to find a collusion

● For low collision, we need a sufficiently long output: if output is n

bits, a lower bound on the collision probability is 2-n

● Let’s consider an example on an 8 bit architecture

● Efficiency implies that an additional if statement (used by the

attacker for redirection) introduces substantial slowdown

High Probability of Detecting Changes

IoT Security and Privacy CPS and IoT Security

● We use 64 bit checksum and treat the 64-bit checksum as a vector

of eighth 8-bit values

● In each iteration, we update one 8-bit value of the checksum

incorporating one memory value and mixing it in the RC4 values as

well as previous values of the checksum

● Derivation of the 16-bit address of the memory location to be

accessed: the high byte of the address is the RC4 value generated

in that round, the previous value of the checksum vector is the low

byte

Checksum Algorithm

IoT Security and Privacy CPS and IoT Security

Checksum Algorithm

IoT Security and Privacy CPS and IoT Security

● Ai ← (RC4i << 8) + C((i-j) mod 8)

● The first part left shifts the i-the output of RC4 by 8 bits to create

the first eight bits

● Suppose RC4i = 0x12 (00010010), C(j-i) mod 8 = 0x34 (00110100)

● Then, Ai = (0x12 << 8) + 0x34 = 0x1200 + 0x34 = 0x1234

● With the shifting, RC4i occupies the upper byte, while C occupies

the lower byte

● This results in a more distinct and useful address structure

Checksum Algorithm

IoT Security and Privacy CPS and IoT Security

● Cj ← Cj + Mem[Ai] XOR C(j-2) mod 8 + RC4i-1

● Cj ← rotate left one bit (Cj)

● The checksum accumulates data from memory, current status of

checksum vector, and randomness

● XOR ensures non-linearity and hardness for the attacker

● (j-2) mod 8 is a design choice, it ensures historical influence and

skips an index to further decouple consecutive bytes

● Rotation spread changes and ensures that small changes in the

input have significant changes in the output

Attestation Based On Root of Trust

IoT Security and Privacy CPS and IoT Security

● These schemes leverage a root of trust residing inside the prover
● This component is a assumed to be trusted and is the endpoint of the

attestation protocol

● It usually comprises a combination of hardware and software

● The value to be attested is stored inside the root of trust
● In IoT devices, the root of trust is realized using hardware with

minimal security capabilities, such as code and memory isolation

● Four strategies: interactive RA, Interactive Self-RA, Non-interactive

RA, and non-interactive self-RA

Interactive RA

IoT Security and Privacy CPS and IoT Security

● It consists of an interactive protocol between prover P and verifier V
● V sends a challenge N to P’s root of trust Rp, which responds with a

proof of the device’s configuration, e.g., c = hash(conf(P))||N

● The proof h is either signed (public key crypto) or tagged via

MAC (symmetric key)

● V verifies the integrity of P by verifying the authenticity of h

Interactive RA

IoT Security and Privacy CPS and IoT Security

Interactive Self-RA

IoT Security and Privacy CPS and IoT Security

● Leveraging the capabilities of Trusted Execution Environments, it is

possible to verify c at P’s side given the list of potential allowed

configurations securely stored and accessible by Rp

● After receiving N from V and computing c, Rp produces a

signed/MACed token h authenticating a binary result r (true or

false)

● This is then delivered to V as a customized token

Interactive Self-RA

IoT Security and Privacy CPS and IoT Security

Non-Interactive RA

IoT Security and Privacy CPS and IoT Security

● The prover P autonomously decides the time at which attestation

should happen and locally generates a pseudo-random nonce N

● Remove the need for V to start the process, but require additional

hardware, e.g., secure source of time

● Examples of additional needs include Real Time Clocks,

Attestation Trigger Circuit, or Reliable Read-Only Clocks

Non-Interactive RA

IoT Security and Privacy CPS and IoT Security

Non-Interactive Self-RA

● Variation of the

previous one,

where P’s TEE

know the set of

possible

configurations and

can therefore

perform self

attestation

IoT Security and Privacy CPS and IoT Security

Collective RA

IoT Security and Privacy CPS and IoT Security

● In large networks, it might be convenient to assess the status of

multiple nodes instead of performing single attestations

● Collective remote attestation has been introduced to limit the time

needed to perform attestation of multiple interconnected devices

● We consider a large network of low-end devices which are

heterogeneous in terms of software and hardware configurations

● These are provers, and of course we have the verifier

● We need an additional device, i.e., the aggregator

Formal Verification of RA

IoT Security and Privacy CPS and IoT Security

● Verifiable Remote Attestation for Simple Embedded Devices

(VRASED)

● A hybrid hardware/software solution to provide formal verification

● Security of hardware while minimizing cost thanks to software

● First formally verified remote attestation scheme

Overview of VRASED

IoT Security and Privacy CPS and IoT Security

● VRASED is composed of a HW module (HW-Mod) and a SW

implementation (SW-Att) of Prv’s behavior according to the RA

protocol

● HW-Mod enforces access control to K (Prv’s unique secret key)

in addition to secure and atomic execution of SW-Att

● SW-Att is responsible for computing an attestation report

Formal Verification, Model

Checking, Temporal Logic

IoT Security and Privacy CPS and IoT Security

● Computer-aided formal verification involves three basic steps:
○ The system of interest must be described via a formal model (e.g.,

finite state machine)
○ Properties that the model should satisfy must be formally specified
○ The system model must be checked against formally specified

properties to guarantee that the system retains such properties

● Checking can be achieved via either theorem proving or model

checking

Formal Verification, Model

Checking, Temporal Logic
● In model checking, properties are specified as formulae using

temporal logic and system models are represented as FSMs

● A system is represented by a triple (S, S0, T) where S is a finite set of

states, is the set of possible initial states, and is

the transition relation set (set of states that can be reached in a

single step from each state)

● Thanks to temporal logic we can represent expected system behavior

over time

● We use NuSMV

IoT Security and Privacy CPS and IoT Security

NuSMV

● In NuSMV, properties are specified in Linear Temporal Logic

(LTL), particularly useful for sequential systems

● Use of propositional connectives such as conjunction

disjunction negation and implication

● LTL includes also temporal connectives enabling sequential

reasoning

● We define a list of useful temporal connectives

IoT Security and Privacy CPS and IoT Security

NuSMV

● We define a list of useful temporal connectives

● NuSMV works by checking LTL specifications against the system

FSM for all reachable states in such FSM

IoT Security and Privacy CPS and IoT Security

Adv Capability

IoT Security and Privacy CPS and IoT Security

● We consider an adversary A that can control the entire software

state, code, and data of Prv

● A can modify any writable memory and read any memory that is not

explicitly protected by access control rules. A can hence read

anything that is not protected by HW-Mod

● A can also relocate malware from one memory segment to another to

avoid being detected

● A may also have full control over direct memory access controller on

Prv

Verification Axioms

IoT Security and Privacy CPS and IoT Security

● We focus on attestation functionality of Prv

● The verification approach relies on the following axioms
● A1 - Program counter: the PC always contains the address of the

instruction being executed in a given cycle

● A2 - Memory address: whenever memory is read or written, a
data-address signal (Daddr) contains the address of the corresponding

memory location. Ren and Wen bits must be set for read and write

access, respectively

Verification Axioms

IoT Security and Privacy CPS and IoT Security

● A3 - DMA: whenever a DMA controller attempts to access main

system memory, a DMA-address signal DMAaddr reflects the address

of the memory location being accessed and a DMAen bit must be set.

DMA cannot access memory when DMAen is off

● A4 - MCU reset: at the end of a successful reset routine, all registers

(including PC) are set to zero before resuming normal software

execution flow. Since resets are handled by MCU hardware, no way

to modify them

● A5 - Interrupts: when interrupt, the corresponding irq signal is set

Verification Axioms

IoT Security and Privacy CPS and IoT Security

● The MSP430 design supports all the five axioms
● Sw-Att uses HACL* HMAC-SHA256 function implemented and

verified in F*

● We assume that the standard compiler can be trusted to semantically

preserve its expected behavior

● A6 - Callee-Saves-Register: any register touched in a function is

cleaned by default when the function returns

● A7 - Semantic preservation: functional correctness of HMAC

semantically preserved when converted in C

https://en.wikipedia.org/wiki/TI_MSP430
https://www.fstar-lang.org/

VRASED System Architecture

● Implemented by adding HW-Mod to the

MCU architecture

● Memory layout is extended to include

ROM housing SW-Att code and K

● Access control and SW-Att atomicity are

enforced by HW-Mod

● HW-Mod takes 7 input signals from the

MCU core

IoT Security and Privacy CPS and IoT Security

Notation

IoT Security and Privacy CPS and IoT Security

Notation

IoT Security and Privacy CPS and IoT Security

● We use the following notation
● ARmin and ARmax: first and last physical addresses of the memory

region to be attested

● CRmin and CRmax: physical addresses of the first and last instructions of

SW-Att in ROM

● Kmin and Kmax: first and last physical addresses of the ROM region

where K is stored

● XSmin and XSmax: first and last physical addresses of the RAM region

reserved for SW-Att computation

Notation

● We use the following notation
● MACaddr: fixed address that stores the result of SW-Att computation

(HMAC)

● MACsize: size of HMAC result

● [A,B] denotes that contiguous memory region between A and B

● Therefore,

● Holds when PC is within CRmin and CRmax

IoT Security and Privacy CPS and IoT Security

FSM Representation

● Each FSM output changes in time as a function of both the current

state and current input values

● Each FSM has as inputs a subset of the following signals and wires

● Each FSM has only one output, reset, that indicates whether any

security property was violated. Implicit representation:

○ reset is 1 whenever FSM transitions to reset state
○ reset remains 1 until a transition leaving the reset state is triggered
○ reset is 0 in all other states

IoT Security and Privacy CPS and IoT Security

RA Soundness

IoT Security and Privacy CPS and IoT Security

● RA soundness corresponds to computing an integrity ensuring function

over memory at time t

● We use an HMAC computed on memory AR with a one-time key

derived from K and Chal

● Since SW-Att is not instantaneous, RA soundness must ensure that

attested memory does not change during the computation of the

HMAC (temporal consistency)

● In other words, the result of SW-Att call must reflect the entire state of

the attested memory at the time when SW-Att is called

RA Soundness

● In other words, the result of SW-Att call must reflect the entire state of

the attested memory at the time when SW-Att is called

IoT Security and Privacy CPS and IoT Security

RA Security

IoT Security and Privacy CPS and IoT Security

VRASED SW-Att

IoT Security and Privacy CPS and IoT Security

● To minimize required hardware feature, hybrid RA approaches

implement integrity ensuring functions (e.g., HMAC) in software

● Derive a new unique context-specific key (key) from the master key K

via HMAC-based key derivation function on Chal

● Call HACL*’s HMAC using key as the HMAC key

● Sw-Att resides in ROM, guaranteeing software immutability
● Moreover, HW-Mod enforces that no other software running on Prv can

access memory allocated by SW-Att

VRASED SW-Att

IoT Security and Privacy CPS and IoT Security

VRASED SW-Att

Memory range to be attested

IoT Security and Privacy CPS and IoT Security

VRASED SW-Att

Natural language: if the memory counter is always preserved
until the PC gets to CM

max
, finally MR will contain a valid

response

IoT Security and Privacy CPS and IoT Security

Key Access Control (HW-Mod)

● If malware manages to read K from ROM, it can reply to Vrf with a

forged result

● MW-Mod access control (AC) sub-module enforces that K can only be

accessed bt SW-Att

● The system must transition to the Reset state whenever code from

outside CR tries to read from Daddr within the key space

IoT Security and Privacy CPS and IoT Security

Key Access Control (HW-Mod)

● We design a FSM from the LTL specification with two states: run and

reset

● Outputs sìreset =1 when the AC submodule transitions to reset,

implying a hard reset on the MCU

IoT Security and Privacy CPS and IoT Security

Atomicity and Controlled Invocation

(HW-Mod)
● We define two LTL specifications for atomic execution and controlled

invocation

IoT Security and Privacy CPS and IoT Security

Atomicity and Controlled Invocation

(HW-Mod)
● Enforce that the only way for SW-Att execution to terminate is through

its last instruction PC=CRmax

● Specified by checking current and next PC values using neXt operator
● If current PC value is within SW-Att region and next PC value is out of

SW-Att region, then either current PC values is the address of the last

instruction in SW-Att(CRmax), or reset is triggered in the next cycle

IoT Security and Privacy CPS and IoT Security

Atomicity and Controlled Invocation

(HW-Mod)
● Enforce that the only way for PC to enter SW-Att region is through the

very first instruction CRmin

● This and the previous invariant (LTL specification) imply that it is

impossible to jump into the middle of SW-Att or leave SW-Att before

reaching the last instruction

IoT Security and Privacy CPS and IoT Security

Atomicity and Controlled Invocation

(HW-Mod)

● Atomicy is verified by the following LTL specification
● Although atomicity could be violated by interrupts, this LTL specification

prevents an interrupt to happen while SW-Att is executing

● Therefore, if interrupts are not disabled by software running on Prv

before calling SW-Att, any interrupt that could violate SW-Att atomicity

will necessarily cause an MCU reset

IoT Security and Privacy CPS and IoT Security

Verified Model

IoT Security and Privacy CPS and IoT Security

● The FSM has 5 states
○ Two basic states notCR and midCR represent movements when PC

points to an address 1)outside CR, and 2) within CR, respectively
○ Two fstCR and lstCR represent states when the PC points to the first

and last instructions of SW-Att, respectively
○ A reset state

● Transition to reset state whenever 1) any sequence of values for PC

does not obey the aforementioned conditions, 2) irq is logical 1 while

executing SW-Att

Verified Model

IoT Security and Privacy CPS and IoT Security

Next

IoT Security and Privacy CPS and IoT Security

● VRASED

● TOCTOU

● CASU

● GAROTA

The TOCTOU Problem in RA

IoT Security and Privacy CPS and IoT Security

● The scheme we analysed for RA has a fundamental limitation: it

measures the state of the prover’s executable at time when Sw-Att is

executed

● It provides no information about P’s state before RA measurements

or in between two RA measurements

● Problem of Time of Check to Time of Use (TOCTOU)

● This problem is different from temporal consistency among

successive RAs

TOCTOU Security Definition

IoT Security and Privacy CPS and IoT Security

● Augmentation of the RA security definition we already saw

TOCTOU Security Definition

IoT Security and Privacy CPS and IoT Security

● This definition allow the adversary to success if they produce a valid

response even though AR was modified at any point after t0
● It captures the security against transient attacks where the adversary

changes the modified memory back to its expected state before

leaving the device

● We only take into account executable memory, and not data memory

→ common concept for remote attestation

Comparison with Consecutive SM

IoT Security and Privacy CPS and IoT Security

● Some RA schemes consider consecutive self-measurements to

detect transient malware that comes and goes between two

successive RA measurements

● Strategy:

○ Prv intermittently and unilaterally invokes its RA functionality

○ Prv either reports to Vrf or accumulates evidences

○ Vrf checks for malware presence in each token

Comparison with Consecutive SM

IoT Security and Privacy CPS and IoT Security

Comparison with Consecutive SM

IoT Security and Privacy CPS and IoT Security

● The time between consecutive measurements leaves anyhow space

for the attacker

● An idea could be to increase the frequency at which RA is invoked

● However:

○ Determining such high frequency is not trivial

○ The complexity of the scheme is unbearable, leaving the device

mostly occupied in the RA task

RATA-A

IoT Security and Privacy CPS and IoT Security

RATA-A

IoT Security and Privacy CPS and IoT Security

● Monitors a set of CPU signals and detects whenever any location

within the attestation region (AR) is written through the signals we

saw in VRASED

● Whenever detecting a modification in AR, RATA-A logs the

timestamp (latest modification time) obtained from the real-time

clock and store it in a fixed memory region

● LMT in AR, and need to enforce that LMT is read-only for all the

software executing in the MCU and for DMA

RATA-A

IoT Security and Privacy CPS and IoT Security

RATA-A

IoT Security and Privacy CPS and IoT Security

● The whole construction can be modeled as a Mealy machine, where

the future state depends on the current state and current input

values

● Inputs are a set of signals, and outputs are two 1-bit values: reset

and setLMT (control the memory location of LMT)

● setLMT is 1 when transitioning to MOD state, 0 otherwise

● It monitors also write access to LMT, and transition to RESET

whenever there are attempts to this

RATA-B

IoT Security and Privacy CPS and IoT Security

● We would like to design a solution that does not rely on the presence

of real-time clocks on the prover device

● To this aim, we can leverage the fact that the challenge sent by the

verifier is unique on a per-attestation round basis

● We hence introduce RATA-B which is tightly coupled with the

authentication of the challenge sent by the verifier

RATA-B

IoT Security and Privacy CPS and IoT Security

● RATA-B monitors the same set of MCU signals as RATA-A and

works by overwriting the special memory region LMT in AR

● Instead of logging the RTC time stamp, it logs the challenge sent by

the verifier as part of its request and given as input to the attest()

● LMT is overwritten with the currently received challenge if and only if

a modification of AR occurred since the previous attest instance

RATA-B

IoT Security and Privacy CPS and IoT Security

● Security properties on which RATA-B relies

○ No software running on P can overwrite LMT, which is only

modifiable by RATA-B hardware

○ Update to LMT is only triggered immediately after a successful

authentication during attest computation

○ The first successful authentication happening after a

modification of AR always causes LMT to be update with the

current value of Chall stored in MR

RATA-B Verification Mechanism

IoT Security and Privacy CPS and IoT Security

● Let us denote as Chal1 and H1 the attestation challenge and

response, respectively, received by the verifier

● If H1 is a valid response (i.e., corresponds to an expected AR value),

time t1 at which such response is received is saved locally by Vrf

● In subsequent attestation results, Vrf checks the value of LMT for

correspondence with Chal1
● If LMT different from Chal1, Vrf knows that AR was modified after t1

RATA-B Observations

IoT Security and Privacy CPS and IoT Security

● Authentication of Vrf requests is fundamental for RATA-B security

● Without it, the attacker can simply choose a challenge and call Attest

after unauthorized modifications of AR, setting LMT=Challatt

● Uniqueness of LMT must be enforced via randomly sampling Chal

from a sufficiently large space

● If Chal repeats after n requests, the attacker can wait for the n-th

authentic request to complete, infect P, and later replay the previous

valid response

RATA-B

IoT Security and Privacy CPS and IoT Security

RATA-B FSM

IoT Security and Privacy CPS and IoT Security

● If a software modification of LMT is attempted, the FSM triggers

reset immediately

● If not modification are mare to AR since the previous computation of

attest, FSM remains in NotMOD state

● If any modification to AR is detected, FSM transitions to state MOD,

indicating that a modification occurred, although not modifying LMT

→ the information to be written in LMT is not available at this time

(Chal in next request)

RATA-B FSM

IoT Security and Privacy CPS and IoT Security

● When a call to attest is made

○ if FSM is in NotMOD, Attest is computed normally and FSM

remains in the same state

○ otherwise, FSM stays in MOD state until PC=CRauth, implying

successful authentication of Vrf’s request. FSM then transitions

to UPDATE causing LMT to be overwritten with Chal passed as

parameter to the current Attest call

An Example of Collective RA

IoT Security and Privacy CPS and IoT Security

● Let us consider an IoT distributed system where nodes communicate

in an asynchronous manner via a publish/subscribe pattern

● The verifier performs attestation in two steps: initialization at time T0

and attestation at time T1

● During initialization time, the verifier initiates the attestation

procedure to one or more services (publishers)

● The publisher then performs the local attestation and publishes the

result together with the data it produced

An Example of Collective RA

IoT Security and Privacy CPS and IoT Security

● Every subscriber service that receives the published data also

performs attestation

● At attestation time, verifier sends an attestation request to one or

more subscriber services, which act as prover for the whole

network

● Subscribers report an attestation result that includes the result of all

the previous services that were directly or indirectly involved in

triggering a given event to which the subscriber was registered

Attestation

IoT Security and Privacy CPS and IoT Security

● Since it is challenging to synchronize devices’ clocks, we leverage

the concept of vector clocks

● In this logical model, all clocks are initially set to zero

● Each time a service sends a message it increments its logical clock

by one and sends a copy of its own vector

● We assume that each IoT service is composed by a publisher P

and a subscriber S

An Example of Collective RA

Verifier Publisher

IoT Security and Privacy CPS and IoT Security

because not triggered by other
previous services

An Example of Collective RA

Verifier Publisher Subscriber

IoT Security and Privacy CPS and IoT Security

An Example of Collective RA

Verifier Publisher Subscriber

● This is the final attestation procedure, where the verifier retrieves the

attestation result GHVS, singed, and containing the received nonce

IoT Security and Privacy CPS and IoT Security

