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Attack to Authentication

● Authentication usually assumes that keys are secret and cannot be 

obtained by adversaries

● Closed network, where only devices that gain a secret through a 

secure out-of-band channel get their secrets, it might be challenging 

for attackers

● Among, the others, Zigbee is one of the protocols that has been 

considered to be secure due its closeness
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Attack to Authentication

● There are two factors that makes it challenging to compromise Zigbee 

networks

● Closed nature: Zigbee devices are equipped with a dedicated 

commissioning process to add new devices to the network

● Commissioning usually requires users’ actions to enable the controller 

to accept joining requests (e.g., pushing a button on the controller)

● Except commissioning, the Zigbee network is closed and the controller 

will not process the joining request
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Zigbee Protocol Stack

● It consists of five layers:

○ Physical 
○ Medium Access Control (MAC)
○ Network (NWK)
○ Application Support Sublayer (APS)
○ Zigbee Cluster Library (ZCL)
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Zigbee Protocol Stack

● It consists of five layers:

○ Physical 
○ Medium Access Control (MAC)
○ Network (NWK)
○ Application Support Sublayer (APS)
○ Zigbee Cluster Library (ZCL)

● Every coordinator has a 16-bit PAN ID and a 64-bit Extended PAN ID 

(EPID), which both uniquely defines the network

● Expressed in clear format in MAC and Network layers

Sets one of the 16 channels from 802.15.4

Data transmission and routing

Application
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Encryption and Authentication 
Recall

● AES encryption and CCM mode of operation (authenticity and 

confidentiality)

● 32-bit Message Integrity Code (MIC) is calculated and appended after 

the encrypted payload for integrity protection

● Brute forcing a 32-bit MIC is infeasible in terms of time consumption

● With a packet transmission rate of 200 packets/s the brute force would 

take more than 248 days
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Threat Model

● Factors making Zigbeee networks challenging to compromise:

○ Closed network with a dedicated commissioning process to add new 
devices in the network (press a button on the controller)

○ Zigbee uses encryption with AES CCM. Without keys you cannot 
infiltrate the network

● We now want to understand whether it is possible to still infiltrate the 

network
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Attack to Authentication

● Simplified Zigbee network with two 

nodes: one device, one controller

● Attacker not authorized, not part of the 

network

● Attacker sniffs publicly available Zigbee 

network information: MAC, net 

addresses, PAN ID, EPID (unencrypted 

in MAC and network layer headers)
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Impersonation Attack

● The attacker impersonates a node that is already in the target Zigbee 

network

● Since the controller has the most capabilities, we focus on 

impersonation of the controller

● The following attack steps can be launched at arbitrary time during 

the closed normal operations of Zigbee networks
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Impersonation Attack

● Step 1: the attack device needs to overwrite its 

manufacturer-produced physical address and pretend to be the 

controller

● This controller’s address can be obtained by sniffing Zigbee packets, 

since the MAC address is contained in plaintext in the header
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Impersonation Attack

● Step 2: The attacker further imitates the network identifiers

● Extracts the controller network address and network PAN ID by 

eavesdropping regular Zigbee packets

● To get EPID, the adversary broadcasts a beacon request

● The controller will send a beacon reply with EPID and state that the 

network is closed and does not accept join requests

● The adversary selects a target device and obtain its address via 

packet sniffing
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Impersonation Attack

● Step 3: the attack device constructs packets and injects them into the 

Zigbee network

● The goal is to cause the target device to process forged control 

packets and end up in dysfunctional statuses

● Though Zigbee uses encryption on the network layer payload, 

packets crafted with specific control fields and commands can induce 

vulnerabilities
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Power-on Phase

● We now manipulate MAC packets during the power on phase

● Every time a device boots up, it uses its manufacturer-provided MAC

● We can simply change the code, and replace the one fetched from 

one of sources including non-volatile memory, flash, or random 

generation
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Network Setup Phase

● More challenging, as the adversary needs to interact with a closed 

network

● During normal operations the network does not accept association 

requests, and authorized nodes have their roles in the network

● A new device is not recognized and cannot play any role

● Instead of trying to access the network, we can impersonate the 

controller and create a new network, as a twin of the original one

● We exploit the Zigbee network formation to enforce network-setup 

manipulation
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Network Setup Phase

● Network formation needs three steps from a controller

○ Enabling the radio antenna
○ Setting PAN ID and EPID
○ Adding routing path of the target device without commissioning

● To avoid the original controller to interfere with the network formation, 

we assume that the setup is conducted outside of the transmission 

range of the target Zigbee network (after needed sniffing)



CPS and IoT SecurityIoT Security and Privacy

PAN ID Manipulation

● The 16-bit PAN ID is contained in every Zigbee packet to identify the 

associated network

● We aim at modifying the PAN ID of the new Zigbee network that the 

module (attacker) creates and make it the same as the target network

● The PAN ID is stored in a configuration file that can hence be 

changed upon sniffing the target one
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EPID Manipulation

● Zigbee mainly uses PAN ID in regular communications, while EPID is 

used in commissioning or rejoining process

● An adversary can acquire the EPIDs of the nearby Zigbee networks 

by simply broadcasting a beacon request

●  During network formation, we assign the EPID to the newly created 

network by setting the specific value
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Routing Insertion

● Although we now have a twin network with the proper identifiers, it 

does not contain any node yet

● We need to induce the framework module to believe that a target 

device is associated with this new network and stand-by for 

communications

● At the end of the network formation, the module will be in open mode 

for a couple of hundred seconds to accept new nodes to join

● However, a device has no reason to actively sending association 

requests
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Fuzzing Packets

● Now that we created a malicious network, we can start exploring 

whether it is possible to send packets that cause malfunctioning

● We first need to understand what is the structure of packets we can 

send without legitimate keys

● Then we can start exploring how to randomly generate packets to find 

vulnerabilities
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Semantic Exploration of Packets

● A first approach would be to randomly put content into the generated 

packets and blindly test whether they cause the Zigbee network to 

malfunction

● However, this is highly inefficient and results in many non valid 

packets

● Two challenges that we want to address in the fuzzing process:

○ Zigbee uses encryption
○ Packets have varied length and formats according to header values
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Managing Encryption and Auth.

● With our attack, the malicious coordinator does not know the key

● Therefore, the packets it generates cannot be accepted unless being 

encrypted with the proper key

● We hence examine unencrypted fields in Zigbee packets like MAC or 

network headers

● We want to transmit plaintext messages that get processed
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Managing Encryption and Auth.

● To have the payload of a layer encrypted, there are three 

security-related fields on that layer: security enabled bit, security AUX 

header, and message integrity code

● The security bit plays a decisive role: if set to 0, no security 

mechanism, so no AUX header, nor MIC → forged packets are 

processed at the receiver!

● Packets with security bit to 1 may have impact if the system has 

implementation flaws

● We can develop strategies to fuzz this
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Managing Encryption and Auth.

● If security bit is set to 1, use AES with CCM

● The 128-bit AES-CCM allows generating encryption output with 

arbitrary length

● AES encrypts an incremental nonce and then XOR with plaintext

● The ciphertext maintains the same length as the plaintext
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Packet Formats

● In addition to encryption, Zigbee has varied packet formats

● First, the different header values cause different header lengths and 

consequently change the packet structure

● Second, in the payload, commands and attribute parameters are 

correlated and require different lengths

● For instance, attribute IDs have different data types to achieve 

various functionalities

● We hence need to actively enumerate each individual field by sending 

packets and examining the format changes of captrured ones
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Packet Formats

● Two steps for Zigbee analysis:

○ Decide the header fields to find the fuzzing locations
○ Retrieve the fuzzing ranges of commands and parameters

● First, every layer header has a frame control field which decides the 

other header fields and whether the packet contains upper layers

● We enumerate the frame control values bit by bit to find the 

corresponding structure changes and later construct 

protocol-compliant lower layers when we fuzz the upper layers
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Packet Formats

● Second, we focus on cluster ID, command ID, and attribute ID in 

different upper layers for our fuzzing

● These fields are correlated across different layers

● For example, different command IDs require different lengths of 

attribute IDs, and the cluster ID in the APS header determines the 

ZCL layer command ID

● We test their minimum and maximum values to get ranges
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Network Layer Fuzzing

● We first configure the network layer header and payload

● The header can use three types of address settings (mix of network 

and MAC addresses) and two security bit settings (0, 1)

● Network layer packets include command ID, and each command has 

a one byte attribute that can be fuzzed

● There are 13 valid network commands

● If securiyt bit = 0, 13x28= 3328 combinations to try
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Network Layer Fuzzing

● If security bit =1, network payload is encrypted and MIC added for 

integrity check

● Since encryption preserves the content length, we prioritize cases 

that could bring to meaningful results

● All network commands are 1 byte, and add another byte as attributes

● We set random MIC values and fuzz the payload only with the length 

of possible commands
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Network Layer Fuzzing

● We fuzz encryption payload lengths of 8 and 16 bits → 28+216=65792 

combinations

● NWK header has 3 unencrypted bits that can be fuzzed for different 

packet settings

● Total fuzzing number is 65792x23= 526336
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Example of Attack: Key Leakage

● This attack cause vulnerable systems to leak security information

● Some of the ZCL cluster ID fuzzed can cause key leakage in Zigbee 

networks

● The attack packet will cause the device to send rejoin requests

● During the rejoin process, the controller will resend the network key 

which is only encrypted by the default public link key

● With the publicly known link key and the frame counter in the packet 

(plaintext), we are able to decrypt and retrieve the network key of the 

network
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Group Pairing and Key Exchange
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Need for Keys

● Traditional approach for key management envision a central device 

with authoritative capabilities handling them all

● However, this represents a single point of failure that may 

compromise the overall network security

● IoT platforms have recently been pushing towards decentralized IoT 

networking protocols (e.g., OpenThread)

● Past efforts at decentralized IoT device pairing include two 

approaches: human-in-the-loop, and context-based pairing
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Decentralized Approaches

● In human-in-the-loop approaches a human needs to be physically 

involved in the pairing process

● For instance, the user should touch or press a button, shake two 

devices at the same time, enter password, or read QR codes

● With context based pairing we can increase scalability, as the human 

is not needed

●  In this, co-located sensors establish shared keys based on the 

entropy extracted when they observe common events
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An Example of Events

● We consider an IoT deployment with three devices

● Each device is equipped with either a microphone, a power meter, a 

temperature sensor

● User A opens the door to go aìout, in the meanwhile user B turns on 

the coffee machine

● While the coffee machine is on, user A returns and closes the door

● User A prepares a cup of coffee for herself and turns on the heater
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An Example of Events
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An Example of Events



CPS and IoT SecurityIoT Security and Privacy

Threat Model

● We consider an attacker aiming at eavesdropping the communication 

between IoT devices and learn private information about users

● Devices are deployed within an indoor closed physical space and 

controlled by a common trusted entity

● The attacker is not present within the boundaries of the indoor IoT 

environment and cannot access, add devices or control devices 

inside the network

● The attacker has complete knowledge of the pairing protocol and has 

access to the communication channels
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IoTCupid

● We now present IoTCupid, a solution for context-based IoT device 

pairing

● The first step is to process the raw time-series data collected in 

real-time and perform a threshold-based signal detection to separate 

the sensor data corresponding to events from background noise

● The second step is to extract distinctive time-series features from the 

signals each sensor has detected

●  It then extends a fuzzy clustering algorithm to group independent and 

concurrent signals into different events
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IoTCupid

● The clustered events are used to obtain the sequence of time 

intervals between consecutive events of a given type, serving as 

evidence of the device’s context

● Lastly, IoT devices use their inter-event timings to authenticate each 

other and establish a shared group key

● IoTCupid encodes the inter-event timings into passwords and extends 

a partitioned group password-based authenticated key exchange 

scheme for a group key establishment protocol
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IoTCupid
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IoTCupid

● We consider devices that sense the same event as a group

● Each subset of devices that have the same inter-event timings 

establishes a group key

● IoTCupid does not require a central gateway or IoT hub, but 

guarantees secure ad-hoc connectivity among heterogeneous IoT 

devices

● To initiate association, devices broadcast their public keys encrypted 

with the extracted inter-event timing for establishing group keys
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Sensor Data Extraction

● To extract signals corresponding to events, we first segment sensor 

data into multiple samples with window size ws

● To address fluctuations during the day, we normalize the sensor 

readings to eliminate these fluctuations impact and capture transient 

changes caused by events

● We then apply a smoothing filter by computing the exponentially 

weighted moving average

Sw = a*Yw+(1-a)*Sw-1, where a is the weight, Yw is the sensor data 

and Sw-1 is the EWMA of the preceding window
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Event Detection

● We use a threshold-based approach to distinguish event’s influence 

on sensor readings from background noise

● We use a lower threshold TL to identify peaks in sensor readings that 

distinguish events’ impact from background noise

● We use an upper threshold TU to remove high amplitude noise signals

● We consider the consecutive timestamps at which sensor values 

exceed TL but are blow TU as a single event
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Event Detection

Discontinuities aggregated to avoid a single event being classified as multiple
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Event Detection

● If sensors measure continuous 

quantities (e.g., temperature), the 

previous approach is not good

●  For instance, a heater-on event 

occurring at time t causes a gradual 

increase in temperature sensor values 

after a delay Deltat

● Same event at different timing may 

have different delays (figure)
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Event Detection

● To account for gradual changes and the varying delay, we leverage the 

rate of change in the sensor readings to detect signals corresponding 

to events for continuously influenced sensors

● We first compute the derivative of the pre-processed sensor values in 

each window w as S’w= (Sw_ws-SW0)/ws, where ws is the window size 

and the terms in parentheses are recorded as the first and last sensor 

values in the window

● We then apply lower and upper thresholds based on the average 

derivative of each sensor
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Event Detection

We extract the timestamps where the 

absolute value of the sensor readings’ 

derivatives lie within the 

predetermined TU and TU for the 

sensor
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Content Extraction

● Context is about event clustering

● The idea is to cluster the detected signals into different events to 

extract their inter-event timings

● We do not leverage any prior information about the event types for 

clustering, as a single device might detect multiple events

● As a first step, we extract time domain features (min, max,..) from the 

signals corresponding to events

● To select a set of features Fmin we perform dimensionality reduction via 

Principal Component Analysis (PCA)
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Fuzzy C-Means Event Clustering

● In real deployments, multiple events may occur simultaneously and 

produce overlapping signals

● This implies that the signal features of simultaneous events might 

significantly differ from those in single events

Hard clustering 
is not a good 
idea in case of 
simultaneous 
events
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Fuzzy C-Means Event Clustering

● We extend fuzzy C-Means clustering to assign the detected signals 

into one or more appropriate event clusters based on the extracted 

features

● We partition signals into c (input parameter) clusters

● This method allow events occurring simultaneously to belong to their 

appropriate cluster
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Context Evidence Generation

● IoTCupid generates inter-event timings for each device after clustering 

the detected signals into different event types

● Each device extract inter event times of event occurrences in each 

cluster, and uses it as evidence in the group key establishment

● With this, although devices may be heterogeneous, two devices 

detecting the same event will measure the same inter-event timings

● Although devices might be non-synchronized, inter-event timings are
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Challenges for Key Generation

● Recalling that the IoT deployment might be dynamic, deriving group 

keys might be challenging

● First, groups must be generated dynamically based on the devices 

that sense the asme event

● Second, the protocol should support device addition and removal

● When a device is added, it should pair with other nodes

● When a device is removed its keys must be revoked to prevent an 

adversary from capturing them
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Challenges for Key Generation

● Group keys can be generated using the secure communication 

channels from individual keys derived through a standard pairing 

protocol

● Group Diffie-Hellman is one of them, but it requires multiple rounds

● Furthermore, when a device is added to the IoT network, it must first 

individually pair with other devices to be authenticated and then 

participate in the group key establishment

● NOT A GOOD OPTION
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Challenges for Key Generation

● We could use fuzzy commitment schemes tp generate individual keys

● The idea is to use error-correcting codes and enable verifying two 

evidences when they have small differences (Hamming distance < th.)

● However, these schemes are vulnerable to offline brute-force key 

guessing attacks

● The adversary collects the network traffic and tries all evidences until 

they find the one that can decrypt the network traffic
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Challenges for Key Generation

● To prevent offline brute-force key guessing attacks, we could use a 

large number of evidences (i.e., a large number of inter-arrival times)

● This is however highly inefficient, as it may take a long time to derive 

keys

● Password-Authenticated Key Exchange (PAKE) protocols have been 

proposed to prevent offline brute-force attacks

● We should however extend them into the group setting
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Group PAKE

● GPAKE enables multiple devices sharing the same evidence to derive 

group keys

● The passwords of all devices that participate in the key agreement 

must be the same, as the scheme abort without establishing a shared 

key even if a single password is different

● An adversary could leverage this limitation by joining the key 

agreement protocol with arbitrary evidences to deny legitimate key 

derivation → denial of key exchange
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New Key Establishment Protocol

● Objectives: dynamic group generation with computational efficiency, 

device addition/removal, resilience to offline brute-force and denial of 

key exchange attacks

● We encode inter-event timings to be used as passwords

● Devices then use the passwords to run a partitioned GPAKE scheme 

such that each subset of devices sensing the same events derives a 

group key
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New Key Establishment Protocol
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New Key Establishment Protocol

Inter-event timing extraction
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New Key Establishment Protocol

Compensate different operating 
frequencies using a quantization 
window W → trade-off efficiency 
and pwd entropy
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New Key Establishment Protocol

Public EC parameters
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New Key Establishment Protocol

Generate key pair per event type, 
encrypt pk with pwd
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New Key Establishment Protocol

Broadcast encrypted pk with id
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New Key Establishment Protocol

Try decryption with all pwds; if 
one matches get public key
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New Key Establishment Protocol

Generate session id using 
received ID and pks
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New Key Establishment Protocol

Derive intermediate two-party 
ECDH keys
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New Key Establishment Protocol

generate random values for each event type, 
encrypts them using the intermediate keys,
and broadcasts along with its ID and the session ID
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New Key Establishment Protocol

Check if its ID is in the session ID of the received 
message. If yes, decrypt with intermediate key to get 
random number of other device
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New Key Establishment Protocol

Add random values to derive group keys


