
CPS and IoT SecurityIoT Security and Privacy

IoT Authentication
CPS and IoT Security

Alessandro Brighente

Master Degree in Cybersecurity

CPS and IoT SecurityIoT Security and Privacy

Attack to Authentication

● Authentication usually assumes that keys are secret and cannot be

obtained by adversaries

● Closed network, where only devices that gain a secret through a

secure out-of-band channel get their secrets, it might be challenging

for attackers

● Among, the others, Zigbee is one of the protocols that has been

considered to be secure due its closeness

CPS and IoT SecurityIoT Security and Privacy

Attack to Authentication

● There are two factors that makes it challenging to compromise Zigbee

networks

● Closed nature: Zigbee devices are equipped with a dedicated

commissioning process to add new devices to the network

● Commissioning usually requires users’ actions to enable the controller

to accept joining requests (e.g., pushing a button on the controller)

● Except commissioning, the Zigbee network is closed and the controller

will not process the joining request

CPS and IoT SecurityIoT Security and Privacy

Zigbee Protocol Stack

● It consists of five layers:

○ Physical
○ Medium Access Control (MAC)
○ Network (NWK)
○ Application Support Sublayer (APS)
○ Zigbee Cluster Library (ZCL)

CPS and IoT SecurityIoT Security and Privacy

Zigbee Protocol Stack

● It consists of five layers:

○ Physical
○ Medium Access Control (MAC)
○ Network (NWK)
○ Application Support Sublayer (APS)
○ Zigbee Cluster Library (ZCL)

● Every coordinator has a 16-bit PAN ID and a 64-bit Extended PAN ID

(EPID), which both uniquely defines the network

● Expressed in clear format in MAC and Network layers

Sets one of the 16 channels from 802.15.4

Data transmission and routing

Application

CPS and IoT SecurityIoT Security and Privacy

Encryption and Authentication
Recall

● AES encryption and CCM mode of operation (authenticity and

confidentiality)

● 32-bit Message Integrity Code (MIC) is calculated and appended after

the encrypted payload for integrity protection

● Brute forcing a 32-bit MIC is infeasible in terms of time consumption

● With a packet transmission rate of 200 packets/s the brute force would

take more than 248 days

CPS and IoT SecurityIoT Security and Privacy

Threat Model

● Factors making Zigbeee networks challenging to compromise:

○ Closed network with a dedicated commissioning process to add new
devices in the network (press a button on the controller)

○ Zigbee uses encryption with AES CCM. Without keys you cannot
infiltrate the network

● We now want to understand whether it is possible to still infiltrate the

network

CPS and IoT SecurityIoT Security and Privacy

Attack to Authentication

● Simplified Zigbee network with two

nodes: one device, one controller

● Attacker not authorized, not part of the

network

● Attacker sniffs publicly available Zigbee

network information: MAC, net

addresses, PAN ID, EPID (unencrypted

in MAC and network layer headers)

CPS and IoT SecurityIoT Security and Privacy

Impersonation Attack

● The attacker impersonates a node that is already in the target Zigbee

network

● Since the controller has the most capabilities, we focus on

impersonation of the controller

● The following attack steps can be launched at arbitrary time during

the closed normal operations of Zigbee networks

CPS and IoT SecurityIoT Security and Privacy

Impersonation Attack

● Step 1: the attack device needs to overwrite its

manufacturer-produced physical address and pretend to be the

controller

● This controller’s address can be obtained by sniffing Zigbee packets,

since the MAC address is contained in plaintext in the header

CPS and IoT SecurityIoT Security and Privacy

Impersonation Attack

● Step 2: The attacker further imitates the network identifiers

● Extracts the controller network address and network PAN ID by

eavesdropping regular Zigbee packets

● To get EPID, the adversary broadcasts a beacon request

● The controller will send a beacon reply with EPID and state that the

network is closed and does not accept join requests

● The adversary selects a target device and obtain its address via

packet sniffing

CPS and IoT SecurityIoT Security and Privacy

Impersonation Attack

● Step 3: the attack device constructs packets and injects them into the

Zigbee network

● The goal is to cause the target device to process forged control

packets and end up in dysfunctional statuses

● Though Zigbee uses encryption on the network layer payload,

packets crafted with specific control fields and commands can induce

vulnerabilities

CPS and IoT SecurityIoT Security and Privacy

Power-on Phase

● We now manipulate MAC packets during the power on phase

● Every time a device boots up, it uses its manufacturer-provided MAC

● We can simply change the code, and replace the one fetched from

one of sources including non-volatile memory, flash, or random

generation

CPS and IoT SecurityIoT Security and Privacy

Network Setup Phase

● More challenging, as the adversary needs to interact with a closed

network

● During normal operations the network does not accept association

requests, and authorized nodes have their roles in the network

● A new device is not recognized and cannot play any role

● Instead of trying to access the network, we can impersonate the

controller and create a new network, as a twin of the original one

● We exploit the Zigbee network formation to enforce network-setup

manipulation

CPS and IoT SecurityIoT Security and Privacy

Network Setup Phase

● Network formation needs three steps from a controller

○ Enabling the radio antenna
○ Setting PAN ID and EPID
○ Adding routing path of the target device without commissioning

● To avoid the original controller to interfere with the network formation,

we assume that the setup is conducted outside of the transmission

range of the target Zigbee network (after needed sniffing)

CPS and IoT SecurityIoT Security and Privacy

PAN ID Manipulation

● The 16-bit PAN ID is contained in every Zigbee packet to identify the

associated network

● We aim at modifying the PAN ID of the new Zigbee network that the

module (attacker) creates and make it the same as the target network

● The PAN ID is stored in a configuration file that can hence be

changed upon sniffing the target one

CPS and IoT SecurityIoT Security and Privacy

EPID Manipulation

● Zigbee mainly uses PAN ID in regular communications, while EPID is

used in commissioning or rejoining process

● An adversary can acquire the EPIDs of the nearby Zigbee networks

by simply broadcasting a beacon request

● During network formation, we assign the EPID to the newly created

network by setting the specific value

CPS and IoT SecurityIoT Security and Privacy

Routing Insertion

● Although we now have a twin network with the proper identifiers, it

does not contain any node yet

● We need to induce the framework module to believe that a target

device is associated with this new network and stand-by for

communications

● At the end of the network formation, the module will be in open mode

for a couple of hundred seconds to accept new nodes to join

● However, a device has no reason to actively sending association

requests

CPS and IoT SecurityIoT Security and Privacy

Fuzzing Packets

● Now that we created a malicious network, we can start exploring

whether it is possible to send packets that cause malfunctioning

● We first need to understand what is the structure of packets we can

send without legitimate keys

● Then we can start exploring how to randomly generate packets to find

vulnerabilities

CPS and IoT SecurityIoT Security and Privacy

Semantic Exploration of Packets

● A first approach would be to randomly put content into the generated

packets and blindly test whether they cause the Zigbee network to

malfunction

● However, this is highly inefficient and results in many non valid

packets

● Two challenges that we want to address in the fuzzing process:

○ Zigbee uses encryption
○ Packets have varied length and formats according to header values

CPS and IoT SecurityIoT Security and Privacy

Managing Encryption and Auth.

● With our attack, the malicious coordinator does not know the key

● Therefore, the packets it generates cannot be accepted unless being

encrypted with the proper key

● We hence examine unencrypted fields in Zigbee packets like MAC or

network headers

● We want to transmit plaintext messages that get processed

CPS and IoT SecurityIoT Security and Privacy

Managing Encryption and Auth.

● To have the payload of a layer encrypted, there are three

security-related fields on that layer: security enabled bit, security AUX

header, and message integrity code

● The security bit plays a decisive role: if set to 0, no security

mechanism, so no AUX header, nor MIC → forged packets are

processed at the receiver!

● Packets with security bit to 1 may have impact if the system has

implementation flaws

● We can develop strategies to fuzz this

CPS and IoT SecurityIoT Security and Privacy

Managing Encryption and Auth.

● If security bit is set to 1, use AES with CCM

● The 128-bit AES-CCM allows generating encryption output with

arbitrary length

● AES encrypts an incremental nonce and then XOR with plaintext

● The ciphertext maintains the same length as the plaintext

CPS and IoT SecurityIoT Security and Privacy

Packet Formats

● In addition to encryption, Zigbee has varied packet formats

● First, the different header values cause different header lengths and

consequently change the packet structure

● Second, in the payload, commands and attribute parameters are

correlated and require different lengths

● For instance, attribute IDs have different data types to achieve

various functionalities

● We hence need to actively enumerate each individual field by sending

packets and examining the format changes of captrured ones

CPS and IoT SecurityIoT Security and Privacy

Packet Formats

● Two steps for Zigbee analysis:

○ Decide the header fields to find the fuzzing locations
○ Retrieve the fuzzing ranges of commands and parameters

● First, every layer header has a frame control field which decides the

other header fields and whether the packet contains upper layers

● We enumerate the frame control values bit by bit to find the

corresponding structure changes and later construct

protocol-compliant lower layers when we fuzz the upper layers

CPS and IoT SecurityIoT Security and Privacy

Packet Formats

● Second, we focus on cluster ID, command ID, and attribute ID in

different upper layers for our fuzzing

● These fields are correlated across different layers

● For example, different command IDs require different lengths of

attribute IDs, and the cluster ID in the APS header determines the

ZCL layer command ID

● We test their minimum and maximum values to get ranges

CPS and IoT SecurityIoT Security and Privacy

Network Layer Fuzzing

● We first configure the network layer header and payload

● The header can use three types of address settings (mix of network

and MAC addresses) and two security bit settings (0, 1)

● Network layer packets include command ID, and each command has

a one byte attribute that can be fuzzed

● There are 13 valid network commands

● If securiyt bit = 0, 13x28= 3328 combinations to try

CPS and IoT SecurityIoT Security and Privacy

Network Layer Fuzzing

● If security bit =1, network payload is encrypted and MIC added for

integrity check

● Since encryption preserves the content length, we prioritize cases

that could bring to meaningful results

● All network commands are 1 byte, and add another byte as attributes

● We set random MIC values and fuzz the payload only with the length

of possible commands

CPS and IoT SecurityIoT Security and Privacy

Network Layer Fuzzing

● We fuzz encryption payload lengths of 8 and 16 bits → 28+216=65792

combinations

● NWK header has 3 unencrypted bits that can be fuzzed for different

packet settings

● Total fuzzing number is 65792x23= 526336

CPS and IoT SecurityIoT Security and Privacy

Example of Attack: Key Leakage

● This attack cause vulnerable systems to leak security information

● Some of the ZCL cluster ID fuzzed can cause key leakage in Zigbee

networks

● The attack packet will cause the device to send rejoin requests

● During the rejoin process, the controller will resend the network key

which is only encrypted by the default public link key

● With the publicly known link key and the frame counter in the packet

(plaintext), we are able to decrypt and retrieve the network key of the

network

CPS and IoT SecurityIoT Security and Privacy

Group Pairing and Key Exchange

CPS and IoT SecurityIoT Security and Privacy

Need for Keys

● Traditional approach for key management envision a central device

with authoritative capabilities handling them all

● However, this represents a single point of failure that may

compromise the overall network security

● IoT platforms have recently been pushing towards decentralized IoT

networking protocols (e.g., OpenThread)

● Past efforts at decentralized IoT device pairing include two

approaches: human-in-the-loop, and context-based pairing

CPS and IoT SecurityIoT Security and Privacy

Decentralized Approaches

● In human-in-the-loop approaches a human needs to be physically

involved in the pairing process

● For instance, the user should touch or press a button, shake two

devices at the same time, enter password, or read QR codes

● With context based pairing we can increase scalability, as the human

is not needed

● In this, co-located sensors establish shared keys based on the

entropy extracted when they observe common events

CPS and IoT SecurityIoT Security and Privacy

An Example of Events

● We consider an IoT deployment with three devices

● Each device is equipped with either a microphone, a power meter, a

temperature sensor

● User A opens the door to go aìout, in the meanwhile user B turns on

the coffee machine

● While the coffee machine is on, user A returns and closes the door

● User A prepares a cup of coffee for herself and turns on the heater

CPS and IoT SecurityIoT Security and Privacy

An Example of Events

CPS and IoT SecurityIoT Security and Privacy

An Example of Events

CPS and IoT SecurityIoT Security and Privacy

Threat Model

● We consider an attacker aiming at eavesdropping the communication

between IoT devices and learn private information about users

● Devices are deployed within an indoor closed physical space and

controlled by a common trusted entity

● The attacker is not present within the boundaries of the indoor IoT

environment and cannot access, add devices or control devices

inside the network

● The attacker has complete knowledge of the pairing protocol and has

access to the communication channels

CPS and IoT SecurityIoT Security and Privacy

IoTCupid

● We now present IoTCupid, a solution for context-based IoT device

pairing

● The first step is to process the raw time-series data collected in

real-time and perform a threshold-based signal detection to separate

the sensor data corresponding to events from background noise

● The second step is to extract distinctive time-series features from the

signals each sensor has detected

● It then extends a fuzzy clustering algorithm to group independent and

concurrent signals into different events

CPS and IoT SecurityIoT Security and Privacy

IoTCupid

● The clustered events are used to obtain the sequence of time

intervals between consecutive events of a given type, serving as

evidence of the device’s context

● Lastly, IoT devices use their inter-event timings to authenticate each

other and establish a shared group key

● IoTCupid encodes the inter-event timings into passwords and extends

a partitioned group password-based authenticated key exchange

scheme for a group key establishment protocol

CPS and IoT SecurityIoT Security and Privacy

IoTCupid

CPS and IoT SecurityIoT Security and Privacy

IoTCupid

● We consider devices that sense the same event as a group

● Each subset of devices that have the same inter-event timings

establishes a group key

● IoTCupid does not require a central gateway or IoT hub, but

guarantees secure ad-hoc connectivity among heterogeneous IoT

devices

● To initiate association, devices broadcast their public keys encrypted

with the extracted inter-event timing for establishing group keys

CPS and IoT SecurityIoT Security and Privacy

Sensor Data Extraction

● To extract signals corresponding to events, we first segment sensor

data into multiple samples with window size ws

● To address fluctuations during the day, we normalize the sensor

readings to eliminate these fluctuations impact and capture transient

changes caused by events

● We then apply a smoothing filter by computing the exponentially

weighted moving average

Sw = a*Yw+(1-a)*Sw-1, where a is the weight, Yw is the sensor data

and Sw-1 is the EWMA of the preceding window

CPS and IoT SecurityIoT Security and Privacy

Event Detection

● We use a threshold-based approach to distinguish event’s influence

on sensor readings from background noise

● We use a lower threshold TL to identify peaks in sensor readings that

distinguish events’ impact from background noise

● We use an upper threshold TU to remove high amplitude noise signals

● We consider the consecutive timestamps at which sensor values

exceed TL but are blow TU as a single event

CPS and IoT SecurityIoT Security and Privacy

Event Detection

Discontinuities aggregated to avoid a single event being classified as multiple

CPS and IoT SecurityIoT Security and Privacy

Event Detection

● If sensors measure continuous

quantities (e.g., temperature), the

previous approach is not good

● For instance, a heater-on event

occurring at time t causes a gradual

increase in temperature sensor values

after a delay Deltat

● Same event at different timing may

have different delays (figure)

CPS and IoT SecurityIoT Security and Privacy

Event Detection

● To account for gradual changes and the varying delay, we leverage the

rate of change in the sensor readings to detect signals corresponding

to events for continuously influenced sensors

● We first compute the derivative of the pre-processed sensor values in

each window w as S’w= (Sw_ws-SW0)/ws, where ws is the window size

and the terms in parentheses are recorded as the first and last sensor

values in the window

● We then apply lower and upper thresholds based on the average

derivative of each sensor

CPS and IoT SecurityIoT Security and Privacy

Event Detection

We extract the timestamps where the

absolute value of the sensor readings’

derivatives lie within the

predetermined TU and TU for the

sensor

CPS and IoT SecurityIoT Security and Privacy

Content Extraction

● Context is about event clustering

● The idea is to cluster the detected signals into different events to

extract their inter-event timings

● We do not leverage any prior information about the event types for

clustering, as a single device might detect multiple events

● As a first step, we extract time domain features (min, max,..) from the

signals corresponding to events

● To select a set of features Fmin we perform dimensionality reduction via

Principal Component Analysis (PCA)

CPS and IoT SecurityIoT Security and Privacy

Fuzzy C-Means Event Clustering

● In real deployments, multiple events may occur simultaneously and

produce overlapping signals

● This implies that the signal features of simultaneous events might

significantly differ from those in single events

Hard clustering
is not a good
idea in case of
simultaneous
events

CPS and IoT SecurityIoT Security and Privacy

Fuzzy C-Means Event Clustering

● We extend fuzzy C-Means clustering to assign the detected signals

into one or more appropriate event clusters based on the extracted

features

● We partition signals into c (input parameter) clusters

● This method allow events occurring simultaneously to belong to their

appropriate cluster

CPS and IoT SecurityIoT Security and Privacy

Context Evidence Generation

● IoTCupid generates inter-event timings for each device after clustering

the detected signals into different event types

● Each device extract inter event times of event occurrences in each

cluster, and uses it as evidence in the group key establishment

● With this, although devices may be heterogeneous, two devices

detecting the same event will measure the same inter-event timings

● Although devices might be non-synchronized, inter-event timings are

CPS and IoT SecurityIoT Security and Privacy

Challenges for Key Generation

● Recalling that the IoT deployment might be dynamic, deriving group

keys might be challenging

● First, groups must be generated dynamically based on the devices

that sense the asme event

● Second, the protocol should support device addition and removal

● When a device is added, it should pair with other nodes

● When a device is removed its keys must be revoked to prevent an

adversary from capturing them

CPS and IoT SecurityIoT Security and Privacy

Challenges for Key Generation

● Group keys can be generated using the secure communication

channels from individual keys derived through a standard pairing

protocol

● Group Diffie-Hellman is one of them, but it requires multiple rounds

● Furthermore, when a device is added to the IoT network, it must first

individually pair with other devices to be authenticated and then

participate in the group key establishment

● NOT A GOOD OPTION

CPS and IoT SecurityIoT Security and Privacy

Challenges for Key Generation

● We could use fuzzy commitment schemes tp generate individual keys

● The idea is to use error-correcting codes and enable verifying two

evidences when they have small differences (Hamming distance < th.)

● However, these schemes are vulnerable to offline brute-force key

guessing attacks

● The adversary collects the network traffic and tries all evidences until

they find the one that can decrypt the network traffic

CPS and IoT SecurityIoT Security and Privacy

Challenges for Key Generation

● To prevent offline brute-force key guessing attacks, we could use a

large number of evidences (i.e., a large number of inter-arrival times)

● This is however highly inefficient, as it may take a long time to derive

keys

● Password-Authenticated Key Exchange (PAKE) protocols have been

proposed to prevent offline brute-force attacks

● We should however extend them into the group setting

CPS and IoT SecurityIoT Security and Privacy

Group PAKE

● GPAKE enables multiple devices sharing the same evidence to derive

group keys

● The passwords of all devices that participate in the key agreement

must be the same, as the scheme abort without establishing a shared

key even if a single password is different

● An adversary could leverage this limitation by joining the key

agreement protocol with arbitrary evidences to deny legitimate key

derivation → denial of key exchange

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

● Objectives: dynamic group generation with computational efficiency,

device addition/removal, resilience to offline brute-force and denial of

key exchange attacks

● We encode inter-event timings to be used as passwords

● Devices then use the passwords to run a partitioned GPAKE scheme

such that each subset of devices sensing the same events derives a

group key

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Inter-event timing extraction

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Compensate different operating
frequencies using a quantization
window W → trade-off efficiency
and pwd entropy

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Public EC parameters

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Generate key pair per event type,
encrypt pk with pwd

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Broadcast encrypted pk with id

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Try decryption with all pwds; if
one matches get public key

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Generate session id using
received ID and pks

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Derive intermediate two-party
ECDH keys

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

generate random values for each event type,
encrypts them using the intermediate keys,
and broadcasts along with its ID and the session ID

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Check if its ID is in the session ID of the received
message. If yes, decrypt with intermediate key to get
random number of other device

CPS and IoT SecurityIoT Security and Privacy

New Key Establishment Protocol

Add random values to derive group keys

