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Autonomous Driving
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● An autonomous vehicle is a car capable of sensing the surrounding 

environment and take sae actions without human intervention

● These sensors include thermographic cameras, radar, lidar, 

cameras, GPS, and inertial measurement units

● The sensors’ output is used as input for a controller which creates a 

model to identify the most appropriate navigation path



Perception
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● Autonomous vehicles use different types of sensors to perceive the 

environment and monitor their own physical parameters

○ Cameras

○ LiDAR

○ RADAR

○ SONAR

○ IMU

○ GNSS
● Sensor fusion techniques are used to reduce measurement 

uncertainties due to noise



Planning
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● Using the data obtained from the perception system, the ego 

vehicle performs behavior planning

● The optimal behavior needs to be decided by predicting states of the 

ego vehicle as well as other objects in the surrounding

● Based on the planned behavior, generate an optimal trajectory

● The entire process is called motion planning



SAE Levels of Automation
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● The Society of Automotive Engineers (SAE) defined 6 levels of 

driving automation

● Level 0: no automation, manual control
● Level 1: driver assistance with monitoring functionalities (e.g., cruise 

control)

● Level 2:  partial automation with the car taking autonomous actions 

such as steering and acceleration, but the human can always take back 

the control



SAE Levels of Automation
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● Level 3: conditional automation, where the vehicle can perform 

most of the driving task, but human override is still required

● Level 4: high automation where the vehicle performs all driving tasks 

under specific circumstances and in geofenced areas. Human override is 

still an option

● Level 5: full automation with the vehicle performing all driving tasks in 

all conditions. No human attention or interaction is required



Current State
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● There are several limitations and barriers that could impede 

adoption of AVs, including: the need for sufficient consumer demand, 

assurance of data security, protection against cyberattacks, 

regulations compatible with driverless operation, resolved liability 

laws, societal attitude and behavior change regarding distrust and 

subsequent resistance to AV use, and the development of 

economically viable AV technologies

● Hacking autonomous cars

https://twitter.com/davidzipper/status/1676968755522588682


Cruise Control
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● Cruise Control (CC) is a system that automatically controls the 

speed of a motor vehicle

● It is a servomechanism, i.e., a system that automatically uses 

error-sensing negative feedback to correct the throttle of the car and 

maintain a constant speed

● CC is a simple implementation of a control system that, in control 

theory, is called proportional-integral-derivative (PID) controller



Basic Stuff on Control Theory
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● Field of engineering and applied math. That deals with the control of 

dynamical systems

● The objective is to develop a controller, i.e., a device that acts on the 

system to achieve a desired state

● The controller monitors the process via a process variable and 

compares it with a reference or  set point

● The difference between these values is called the error signal



Open Loop (Feedforward)
 Controller

● Compares a value that is not given by the process with the 

reference input

● For instance, a boiler that needs to heat the water for a given 

amount of time
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Closed Loop (Feedback) Controller

● Compares a value that is given by the process with the reference 

input

● For instance, a car’s cruise control or a thermostat
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PID Controller
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● It is a control loop mechanism using feedback to apply continuously 

modulated control

● It continuously computes an error as the difference between a 

desired setpoint and a measured process variable

● Based on the error value, it applies a correction based on 

proportional, integral, and derivative terms



Control Strategies

13Autonomous Driving CPS and IoT 
Security

● A control system for an autonomous vehicle is broken down in two 

fundamental components

○ Longitudinal control:  control of the longitudinal motion of the 

vehicle, with variables being the throttle and brake inputs

○ Lateral control: control the lateral dynamics of the vehicles, with 

variables being the steering inputs to govern the steering angle and 

heading (two different things)



Kinematic Model
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● Kinematics is the study of motion of a system disregarding the 

forces and torques that govern it

● Can be employed in situations wherein kinematics relations are able to 

sufficiently approximate the actual system dynamics

● Valid only for systems that do not perform aggressive maneuvers at 

lower speeds, e.g., driving slowly and making smooth turns

● We however start from them to make things simpler



Kinematic Bicycle Model

● Model to capture vehicle dynamics under normal driving conditions
● Strike a good balance between simplicity and accuracy → widely 

adopted

● The idea is to define a vehicle state and see how it evolves over time 

based on the previous state and current control inputs

● Let the vehicle state q comprise the x,y coordinates of location, 

heading angle theta, and velocity v
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Kinematic Bicycle Model
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Kinematic Bicycle Model

● For controls, we need to consider both longitudinal and lateral 

steering commands

● Brake and throttle contribute to longitudinal acceleration in range 

[-a’
max

, a
max

]

● Steering command alters the steering angle of the vehicle

● The control vector is hence
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Kinematic Bicycle Model

● Using the distance between the rear wheel axle and the vehicle’s 

center of gravity, we can compute the slip angle beta as

● Ideally
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Kinematic Bicycle Model

● Resolving the velocity vector v into x and y we get

● In order to get theta, we first need to calculate S as

→
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Kinematic Bicycle Model

● Finally, we can compute

● We hence get the continuous-time kinematic model

● And hence the discrete-time model

State transition equation
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PID Controller
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PID Controller

● The error term is computed as the difference between a desired 

setpoint and the output of the process

● Based on the error value, the controller applies a correction

● P is proportional to the error

● I is the integral of the error in a predefined past time window
● D is the derivative of the error and is the best estimate of the future 

trend
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PID Controller for CC
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● The controller takes the input on the car’s speed value from a 

speedometer cable, the engine’s RPM, or wheel speed sensor

● Based on the error value, the controller pulls the throttle cable to 

increase or decrease the speed

● Proportional part of the controller

○ Adjust the throttle proportional to the speed difference between the 

target one and the actual one



PID Controller for CC

● The integral of the speed is the distance

○ Difference with the distance it would have traveled at the 

target speed

○ Deals with hills

● The derivative of the speed is acceleration

○ Helps in responding quickly to changes
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Adaptive Cruise Control
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● Adaptive Cruise Control (ACC) is a system that automatically 

controls the speed of a motor vehicle by integrating sensing 

capabilities on the vehicle

● The vehicle uses a radar/LiDar/laser to compute the distance from a car 

in the front

● This distance is reported to the controller, which acts on the speed to 

maintain a minimum safety distance

● SAE Level 1 of autonomous cars



Example of ACC
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● Assume we have two cars, one in the front (lead) and one in the 

back

● We assume that the one in the back (ego vehicle) has ACC

● Ego uses a radar to measure the distance to the lead vehicle

● The lead car is supposed to be driving in the same lane
● Ego also uses the radar to measure the relative speed between the two 

cars



Example of ACC
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Example of ACC
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● First mode: the ego vehicle should drive at a driver’s specified speed 

as long as it maintains a safe distance with the lead vehicle

● Second mode: the space between the two vehicles is controlled (by 

changing the ego vehicle’s speed) so that the two vehicles do not get 

closer than a safe distance

● According to real-time measurements, either working modes can be 

enabled by the ACC system



Example of ACC
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● To determine the operating mode, the ACC applies the following 

rules

○ If relative distance is >= safe distance, then use speed control 

mode to track the driver set velocity

○ If relative distance is < than safe distance, then the space control 

mode is active and keep track of the distance



ACC Attack Scenarios
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● We explore two different attack scenarios

● Attack 1: the attacker compromises the ACC unit
● The attacker remains dormant and monitors the measured distance to 

the front vehicle

● At the times this distance is at its lowest (presumably near the 

minimum safe distance), it creates a spike in the control signal and 

makes the vehicle accelerate

● This could similarly happen when the front vehicle suddenly brakes and 

the compromised ACC refuses to reduce the speed



ACC Attack Scenarios
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● We explore two different attack scenarios

● Attack 2: the attacker compromises the ACC unit

● Unlike the first scenario he/she does not ambush for the attack

● Trivially lowers the ACC’s reference distance
● During the times ACC is in mode 2 and tries to maintain the safe 

distance, it is practically following a false reference

● Since this difference is trivial and not noticeable to the driver, this 

attack remains covert or stealth



Cooperative Adaptive Cruise
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 Control
● Cooperative Adaptive Cruise Control (CACC) is a system that 

automatically controls the speed of a motor vehicle by integrating 

sensing capabilities on the vehicle and communication capabilities with 

other vehicles

● It uses Vehicle-to-Everything (V2X) communication
● In addition to what ACC does, CACC uses the preceding vehicle’s 

acceleration in a feed-forward loop

● This info passes via the Cooperative Awareness Messages



Cooperative Adaptive Cruise
 Control
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Cooperative Adaptive Cruise
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 Control

● Perception Phase:

○ Get information from on-board sensors and include them in CAN 

data

○ The Wireless Safety Unit (WSU) provides i) data transmitted by other 

CAVs in the CACC system through V2V communications, ii) data 

collected by GPS with wider area augmentation system differential 

corrections (e.g., vehicle position assigned in the CACC system)

○ Information derived from on-board sensors such as Lidar, odometer and 

flag signals will also be received and included on the CAN bus data 

structure



Cooperative Adaptive Cruise
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 Control

● Planning Phase:

○ Includes the high level controller (longitudinal control algorithms)
○ The controller is usually connected and instructs the vehicle via the CAN 

bus

○ Very similar to ACC

● Actuation Phase:

○ Execute target reference command transmitted from the planning 

phase

○ Low-level controller converts the target speed commands into 

throttle and brake actions



Control in CACC
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● The vehicle dynamics is calculated by the vehicle controller
● In particular, we often use longitudinal control, i.e., we write the sum of 

the forces acting on the vehicle and use them to maintain the same 

longitudinal speed of the other vehicles in a CACC system while keeping 

a fixed longitudinal inter-vehicle distance

● CACC technology allows CAVs to form vehicle platoons with shorter 

inter-vehicle  distances



A Model of CACC

● Let us consider a platoon of K cars, numbered from 0 to K-1
● We assume that the cars all drive in a single straight lane and that 

their order can not change

● We denote the spatial position, velocity, acceleration of car i as

● We indicate the distance between the front bumper of car i and the 

rear bumper of car i-1 as

● We indicate the desired distance between car i and car i-1 as
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A Model of CACC

● Cars desire to follow a constant headway policy
● where the last term is a constant distance offset and h is the desired 

headway of car i

● Given the error at car i

● As
● We can define the control strategy based on the desired 

acceleration value

● Sum of feedback input and communication-received input
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Measured in seconds



A Model of CACC

● We measure inter-vehicle distance with radar and use PD feedback for 

in-vehicle info

● We account for a values received via DSRC stating the control 

strategy of vehicle i-1

● This controller has been shown to work in real life
● J. Ploeg, B. T. Scheepers, E. van Nunen, N. van de Wouw, and H. Nijmeijer. Design and 

experimental evaluation of cooperative adaptive cruise control. In Intelligent 

Transportation Systems (ITSC), 2011 14th International IEEE Conference on, pages 

260–265. IEEE, 2011
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Effects of Control in CACC
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Attack Strategies in CACC

● An attacker can cause a series of abnormal behaviors in CACC 

system, in particular referring to the platooning case

● The attacker may either be an external actor or an inner 

vehicle/byzantine  node

● Reduced headway attack: a car ignores the recommended headway 

speed that guarantees string stability and follows closer

● This attack would likely be implemented by a driver who wants to 

increase fuel savings by decreasing draft or a driver who manually 

drives with extremely small headways
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Attack Strategies in CACC

● Joining without radar: a car attempts to become part of a platoon 

without having the necessary radar, or other distancing equipment

● A driver who does not want to buy a new vehicle but retrofits a car 

with DSRC which, unlike radar, does not require per vehicle tuning

● The reaction of the car is uniquely based on the feedforward 

information which is dangerous in case of communication problems 

(e.g., congestion)

● The attacker control strategy is hence
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Attack Strategies in CACC

● Mis-report Attack:  The attacker misinforms the vehicle that is 

following to increase the following car’s headway or to cause a 

change in the following car’s behavior

● The attacker mounting this attack could either follow the prescribed 

control law or choose an alternative control law

● Assuming the attacker misreporting only its behavior, then
● This is motivated by wanting to increase the following distance of the 

preceding car
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Attack Strategies in CACC
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● Collision Induction Attack:  the attacker broadcasts an acceleration 

profile indicating that they are speeding up which causes the following 

vehicle to accelerate

● The attacker starts to  aggressively brake which causes the error 

between the attacker and following car to quickly increase

● Very similar to attacks that could be mounted in the current highway 

system

● If a driver was to jam on their breaks during rush hour while being 

tailgated, the vehicle would likely be rear ended.



Collision Induction Attack
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Summary

How do we detect and defend against these attacks?
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System Description

● We can describe our CACC system with a double integrator model with 

a lag constant nu for each car
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System Description

● Let us define a vector with the state of the car
● The state update equation of the car can be written as a linear 

system

where
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System Description (2)

● We alsod define a variable X representing the state of the whole 

system

● We define the inputs to the system as

● This allows us to write the equation for the whole system
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Discretization

● We assume that the controller implements digital control instead than 

analog

● The controller sampling time will depend also on the sampling time of the 

radar and of the communication system

● Thus, we can rewrite the update equations as

● We also rewrite the control strategy as

● Assuming that radar update is 1ms and DSRC update is 100 ms
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Model-Based Detection
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● Every car model the expected behavior of the vehicle directly in front of 

them

● Vehicles then compare the calculated expected behavior with the 

observed behavior

● The car is then able to detect both malicious and benign abnormalities
● Once abnormal behavior is detected, the car switches from operating in a 

cooperative platoon framework to a radar only based adaptive cruise 

control framework where it is safe even if the preceding car is mounting 

an attack



Model-Based Detection
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Model-Based Detection

● Car i wants to model the behavior of car i-1 given the data packets 

from car i-j

● We define the modeled state of car i-1 as                 (notice: pedix m 
stands for “modeled”)

● We can define the state of all cars in the model as

● We can write the system update equation for the model as
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Model-Based Detection

● We assume all cars behave according to the control law in red

● During an update period we can hence use it to define (remember       ) 
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1 



Model-Based Detection

● During a non-update period we can hence use it to define 
(again        ) 
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1 



Model-Based Detection
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● The modeling technique is based on double integrator and can be 

made complicate at wish

● Considering tradeoffs in accuracy, calculation cost, and time for 

calculation

● Improvements that could be considered in the modeling include 

capturing non-linear behavior of the vehicles drivetrain and using 

terrain mapping to predict variation



Thresholding

● Once we have the prediction model, we can predict whether the error is 

acceptable or not

● We indicate the measured values as

● We also assume we can compute acceleration and velocity
● However, we cannot measure the error with vehicles further than i-1 since 

we do not have a line of sight with cars further than a single hop
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Thresholding

● We use an model error normalized to acceleration for vehicles for which 
we only have the received information and no measuring possibility 
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Results

Collision induction attack detection and mitigation
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A Different Methodology
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● Model predictive control can be implemented in multiple ways
● In the previous example, each vehicle implements the model of the 

preceding vehicle

● However, we can model more complex systems
● For instance, it could be possible for vehicle i to simulate the entire 

platoon up to vehicle i-1



Replay Attacks in CACC
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● The platoon of vehicles is ideally going to reach a steady state 

condition where all the relative distances and the velocities are 

constant and where the accelerations are equal to zero

● We suppose the attacker can:

○ Record measurements during a steady state situation without 

influencing in any way the platoon behavior

○ Replays the recorded data while acting to either degrade the 

platoon performance or damage the vehicles involved in the 

platoon



Replay Attacks in CACC
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● We assume the attacker has already got full access to the cryptography 

keys and to the in-vehicle network and it is acting as an intelligent insider

● The controller of a legitimate vehicle starts relying on malicious 

information

● We however assume that the leader is immune to hacking, and is 

hence secure
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Autonomous Driving

Detection of Replay Attacks

● The leader vehicle broadcasts its velocity, acceleration, and a noisy 

signal

●

Actual control signal
Original control signal

● The leader vehicle generates the noisy control signal as
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Detection of Replay Attacks

● The following vehicles broadcast their speeds and their accelerations and 

read from the network the speed, the acceleration of the vehicle in front of 

them and the noisy signal generated by the leader

● is used to update the control law in the vehicle 1
● The noisy signal acts as a timestamped authentication signal which is 

propagated along the vehicles in the platoon formation through the 

control laws exploited in each vehicle

●



Platoon Virtual Model
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● We assume the leader vehicle is in a steady state and immune to malicious 

attacks

● We can model a virtual platoon up to vehicle i to be fed with the noise 

signal to estimate the acceleration of vehicle i-1 in absence of replay attacks

● We can then compare the estimate with the measure value and detect 

attacks



Platoon Virtual Model
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● The system evolution can be modeled as
Process noise

Measurement 
noise

Initial state

Objective: estimate the acceleration           of vehicle i-1 given input the 

noisy signal and assuming no replay

Noisy signal



Detection of Replay Attacks
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● The noisy behavior is propagated by each vehicle to the following one by 

updating the control action and by exchanging speed and acceleration 

signals through the network with the next vehicle

● Each vehicle has a control algorithm and a detection algorithm
● The control algorithm uses the information from the sensors and DSRC as 

previously described

● The detector instead uses the acceleration of the previous vehicle and the 

noisy signal



Detection of Replay Attacks
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Cross Correlator

● The i-th detector runs a virtual model that simulates the platoon up
to vehicle i (in its steady state) with given input the authentication 

signal

● The purpose of the model is to estimate the acceleration signal 

absence of attack starting from the noisy signal

● We use a cross-correlator to measure the correlation between signal

in

coming from the front vehicle and the estimateoutput of the mode

● If there is an attack, the output of the correlator should be zero
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Cross Correlator

● The cross correlation is computed over a time window with a given 

length

● Given two functions f and g, the cross correlation can be computed as

● A tradeoff between false detection and time of the detection is needed to 

choose the right window size with the purpose to properly detect the 

replay attack
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Cross Correlator

● Effect of the cross correlator
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Single realization Average over 100



Sensors in Autonomous Driving
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● Autonomous vehicle act based on i) Sense, ii)Understand, and iii) Act
● The sensing layer of vehicles is comprised of vehicular sensors that 

measure the physical properties of a vehicle’s state and surroundings

● By sensing information from different sensors, the car construct a 

representation of its environment

● We’ve already seen that distance measurement sensors allow for ACC and 

CACC

● Sensors can be divided based on their functions in safety, diagnostic, 

convenience, and environment monitoring



Sensors in Autonomous Driving
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● Safety sensors:

○ provide night vision, detect impending crashes, and tailor airbag 

deployment to each passenger’s weight and position

● Diagnostic sensors:

○ detect vehicle malfunctions and offer malfunction alerts to drivers

● Convenience sensors:

○ maintain high air quality within the vehicle, control automatic 

mirror dimming, perform automatic braking and acceleration

● Environment monitoring sensors:

○ track the vehicle’s surroundings, including traffic, street signage, and 

road conditions



Attack Vectors
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● The sensing layer is vulnerable to malicious interference conducted both 

physically and remotely

● Tampering requires the attacker to physically access the car to and attach 

something like electromagnetic actuators or sound-absorbent foam

● Remote attack can be either

○ Roadside: the attacker places stationary attack equipment on one or 

more locations along the roadside

○ Front/rear/side: the attack equipment is mounted on the 

attacker’s vehicle which follows the victim



The LiDAR

● Light Detection and Ranging (LiDAR) 

is an active remote sensing method 

or a sensor using this method to 

measure distance from nearby 

objects

● Active sensing is a way of analyzing 

the target of interest by exposing it 

to the energy (or signal) 

intentionally transmitted by the 

sensor itself
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The LiDAR
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● Two types of LiDAR
● Scanning:  mainly composed of laser transceiver(s) and a moving rotary 

system for scanning, which allows acquiring a round view

● Solid state: do not require moving parts to acquire a round view
● Currently however we use scanning LiDARs, as the latter generally are more 

expensive to obtain the same reliability



How do LiDARs Work

LiDAR Object

Transmitted laser pulse

t
1Reflected energy

Distance:

● The LiDAR rotates and measure such distances to create a cloud of points
● Multiple-layer LiDARs can also scan the slant angle
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Ambiguities

● Since the LiDAR sends pulses with a given periodicity, there might be 

ambiguities in the reception of a signal

● To limit uncertainties, LiDARs define the receiving time            and the 

dead time D

● After sending a pulse, a LiDAR waits for its echoes for the duration of the 

receiving time. The received echoes are considered as that of the last 

transmitted pulse

● The the LiDAR ignores all the echoes received from the end of the 

receiving time up to rec. Time + dead time, and then transmits again
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Ambiguities

● The LiDAR can hence detect objects up to a maximum distance, given by
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Aperture

● The LiDAR does not require a wide receiving angle if well calibrated
● Only echoes falling within the receiving angle can effectively affect the 

sensing result

● Te receiving transmission needs to cover the direction of the pulse 

transmission only during the maximum round trip time

● We can hence derive the receiving angle from the rotating speed and the 

maximum distance as
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What can an Attacker Do?

● Sensors transition curve comprise 

three regions

● The first line separates the silent 

region from the linear region 

where we actually have sensing

● The second threshold separate 

the linear region from the 

saturation region
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What can an Attacker Do? (2)
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● Saturation is a DoS attack
● The attacker can also spoof a sensor, deceiving the victim sensor by 

exposing it to the attacking signal which simulate particular 

circumstances

● Exploit a semantic gap between what the situation really is and what the 

sensor perceives it

● Example: earthquake and child shaking a seismometer have the same 

effect on the sensor



What can an Attacker Do? (3)
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● Sometimes, active sensors can take a particular waveform (ping 

waveform) to differentiate its echoes from the other inbound signals

● The attacker should first acquire the ping waveform and then relay it 

after an intentionally inserted delay

● This is spoofing by relaying

● Spoofing is generally very difficult to detect also due to the semantic gap



Blinding Attack
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● We can saturate LiDARs using light sources

● In particular, the attacker should point against the LiDAR a light source of 

the same wavelength as that used by the LiDAR

● Depending on the intensity of the light, the attacker can saturate a 

bunch of dots or an entire direction

● This type of saturation attack against LiDAR is called blinding attack

● Saturation attacks against LiDARs have some common characteristics



Common Features
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● Stealthiness against drivers and pedestrians
● In order to not hinder human driving and for eye safety, lidars use 

infrared (IR) lasers

● Invisibility of the medium also assists stealthiness in saturating
● Irrespectively of the intensity,  human drivers and pedestrians would be 

unaware, rendering the attack effective.



Common Features

86Autonomous Driving CPS and IoT 
Security

● Receiving angle
● A wide receiving angle is not essential for lidars to sense objects in the field 

of view

● Therefore, LiDAR receivers typically have much smaller receiving 

angles compared to the angle of view

● This can limit the effect of saturating, because the attacking light 

comes from a certain direction when the LiDAR rotates

● In reality, however, the receiving angles of lidars are much larger than 

required



Common Features

● Curved reception glass
● An oblique incidence of strong light onto the curved reception glass can 

cause the appearance of fake dots in directions other than that of the 

attacking source
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Effects of Saturation
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● Experiments conducted on a LiDAR commonly used for cars, UAVs, and 

robots

● The LiDAR used offers a tool for real time visualization of the collected info

● For saturation, only a light source is needed: a 30mW, 905nm laser 

module (40 USD) and a 800mW, 905nm laser module (350 USD)



Effects of Saturation

● With weak light source, the LiDAR observes numerous randomly 

located fake dots

● Fake dots only in the direction of the source
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Weak 
source

Strong 
source



Effects of Saturation

● With strong oblique light source the LiDAR sees fake dots also in 

direction other than that of the attacker’s source

● This confirms that curved glasses can change the incoming direction 

of light sources
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Effects of Saturation

● With strong direct light source the LiDAR becomes completely blind in a 

sector

Before

91Autonomous Driving CPS and IoT 
Security

After



Spoofing by Relaying: Ideal Spoofing
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● LiDARs measure distance as the round trip time of light

● The light source bounces on the first object it meets and then gets back 

to the transmitter

● The ideal spoofing procedure mimics this process
1) Prepare an attack tool composed of a receiver, an adjustable delay 

component, and a transmitter of the same wavelength as that used by the 

lidar

2) Aim at the target lidar with the attack equipment



Ideal Spoofing
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3) Receive the target lidar pulse signal using the receiver

4) Add the required delay using the delay component

5) Fire a laser pulse back to the target lidar using the transmitter

● Ideally this process creates a unique dot
● The delay components should be carefully computed for the attack to be 

effective

● In particular, we can compute the delay required to create an object at 

distance l from the LiDAR



Ideal Spoofing

● Let the distance between the spoofer and the victim LiDAR be l
s 
< l

● We want to generate a delay that makes an echo appear l - l
s
 

further than the spoofer, i.e., round-trip time for the 

distance l - l
s
 

● This distance is derived as d
i
 = 2 (l-l

s
) /  c

● Although the procedure is correct, we have limitations
● The LiDAR receiving angle must be facing the attacker for the attack to be 

effective

● The LiDAR ignores echoes received after a certain time → need to fire 

back within the receiving time
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Actual Spoofing
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● The laser pulse from the lidar diverges. Accordingly, the attacker receiver 

obtains multiple adjacent laser pulses

● Only a part of these pulses exactly head in the direction of the receiver
● Next, irrespective of how close the receiver and transmitter are placed in 

the attack tool, they are apart by a certain distance

● Consequently, there is a time difference (S) between the detection of a 

laser pulse by the receiver and the firing of a pulse toward the transmitter



Actual Spoofing

● Due to this space, we need to change the aforementioned equation for 

generating delays

where the last term is processing/propagation delay

● The time differences (T and S) are compensated by adding them to the ideal 

delay, because the delay component is triggered by the first received pulse

● The processing delay can be compensated likewise
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Spoofing Characteristics
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● Stealthiness: as for the saturation attack, the source is invisible to 

humans

● Inducing multiple fake dots: If the lidar rotates at a constant speed, an 

attacker can generate multiple fake dots with one attack tool

● This can be done by periodically firing back the attacking pulses, 

immediately after the first attacking pulse, with the same period as the 

Pulse Repetition Time



Spoofing Characteristics
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● Receiving angle: a small receiving angle limits the maximum number of 

fake dots inducible by a fixed spoofer → use multiple transmitters

● Curved Reception Glass: the oblique incidence of a strong laser pulse to 

readily induce fake dots in sectors, other than the direction of the attacker



Spoofing Experiments
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● The attacking tool first receives LiDAR’s generated pulses

● When the incoming pulses are captured by the photo detector, a 

comparator converts them into a series of 5V pulses

● Then, the pulses are fed to a function generator triggered by the first 

received pulses

● The function generator waits for a predefined delay and transmits a 

predefined number of copies of the output pulse to the PLD driver

● Finally, the PLD driver lets the PLD fire laser pulses as signaled



Spoofing Results

Results of multiple induced fake 

dots

Induced dots closer than 

spoofer
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LiDAR 3D Object Detection
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● LiDAR is better if estimated 3D objects

● Achieved via 3D object detection (deep learning) models, which output 3D bounding 

boxes

● We can group these models into three categories:

● Byrd’s-eye view (BEV)-based 3D object Detection: project point clouds into the 

top-down view and use CNN to perform the final decision



LiDAR 3D Object Detection
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● Voxel-based 3D Object detection: VoxelNet slices the point clouds into 

voxels and extract learnable features by applying a PointNet to each 

voxel

● A 2D convolution layer is applied in the final stage



LiDAR 3D Object Detection
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● Voxel-based 3D Object detection: VoxelNet slices the point clouds into 

voxels and extract learnable features by applying a PointNet to each 

voxel

● A 2D convolution layer is applied in the final stage



LiDAR 3D Object Detection
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● Point-Wise 3D Object detection: directly operate on point clouds for 3D 

object detection

● Two stage architecture: i) generate high-quality region proposals in the 

3D space, ii) regress bounding box parameters and classify detected 

objects



Adversarial Attacks
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● Besides spoofing fake points at the sensor levels, attacks to LiDAR 

include attacks towards its post-processing pipeline

● Let’s consider the pristine point cloud X, and the Apollo pipeline (BeV) 

with hardcoded features x

● Given the function phi that preprocesses feature maps and given T’, t’ 

as spoofed point coude and corresponding features maps, the attack 

can be modeled as
model

Sensor attack capabilities



Adversarial Attacks
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● The first adversarial attack to LiDAR has been proposed by Cao et al.

Cao, Yulong, et al. "Adversarial sensor attack on lidar-based perception 

in autonomous driving." Proceedings of the 2019 ACM SIGSAC 

conference on computer and communications security. 2019.

● They demonstrated a successful attack with 60 cloud points and 8 

degree horizontal angle

● However, a valid e.g., front vehicle contains around 2000 points and 

occupies about 15 degrees horizontal angle



Adversarial Attacks
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● Two situations where a vehicle contains a smaller number of points

● Occluded Vehicle: occlusion between objects make the occluded one 

being partially visible in points clouds (only closer solid objects are 

reflected)

● Distant vehicle: intensity of points decreases with increasing distance 

from the LiDAR

● In the end, LiDAR works as human eyes



On Occlusions
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● Attackers can hence spoof a vehicle by imitating occlusions and sparsity 

patterns

● We can abstract the neglected physical features as two occlusion 

patterns inside the LiDAR point clouds

● Inter occlusion: the occluder cause the occludee to be partially visible

● Related false positive condition: if an occluded vehicle can be detected 

in the pristin point cloud by the model, its point set will still be 

detected as a vehicle when directly moved to a front-near vehicle



On Occlusions
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● Intra occlusion: the facing surface of a solid object occludes itself in the 

point cloud which indicates that the LiDAR cannot perceive the interior 

of the object

● Related false positive condition: if a distant vehicle can be detected in 

the pristine point cloud by the model, its point set will still be detected 

as a vehicle when directly moved to a front near location



CARLO
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● What about countermeasures?
● We may base our anomaly detection on the intuition that some 

attacks violate laws of physics

● CARLO: oCclusion-Aware hieRarchy anomaLy detectiOn
● Harnesses occlusion patterns as invariant physical features to 

accurately detect spoofed fake vehicles

● Consists of two building blocks: i) free space detection, and ii) laser 

penetration detection



Free Space Detection
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● Integrate inter and intra 
occlusion to detect spoofed 
values

● Recalling that each laser in  

LiDAR sensor is responsible 

for perceiving a direction on 

the spherical coordinates, 

its resolution limits make it 

belonging to a thin frustum 

in the 3D space



Free Space Detection
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● The frustum as well as the straight-line path from the LiDAR sensor to any 

point in the point cloud is considered as free space

● The entire 3D space can be divided into free space and  occluded space

● The former is embedded at the point level, the latter at the object level

● Free space includes information from occluded space

● We hence leverage this information to detect fake vehicles



Free Space Detection
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● Due to inter-occlusion and intra-occlusion, we observe that the ratio f of 

the volume of FS over the volume of a detected bounding box should be 

subject to some distribution and upper-bounded by b

● This means that f is in (0, b]
● Since fake vehicles do not obey the occlusion pattern, their ratio 

should be large enough and bounded such that f is in [a,1)

● As long as a>b, we have opportunities to distinguish valid vehicles 

with the spoofed fake vehicles statistically
Cell free or not

Number of cells



Free Space Detection
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● Using the KITTI dataset, we can estimate the distribution of valid and fake 

vehicles

● We use the valid traces and the attack traces generated by the adversarial 

framework

● Though FSD is statistically significant, it is too 

time consuming to perform ray casting on all 

the detected bounding boxes in real time



Laser Penetration Detection
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● Each point in the point cloud represents one laser ray and the 

boundary between free space and occluded space

● Given a vehicle’s point set, its bounding box B also divides the 

corresponding frustum into three spaces

● the space between the LiDAR sensor and the bounding box

● the space inside the bounding box

● the space behind the bounding box

● From the perspective of the LiDAR sensor, the ratio g of the number of 

points located in the space behind the bounding box over the total number 

of points in the whole frustum should be upper bounded



Laser Penetration Detection
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● For the same reason, the ratio g’ of the spoofed vehicles is 

supposed to be large enough and lower bounded in a’ in (0,1)

Inside bounding 
box

Behind 
bounding box

Between sensor 
and bounding 
box

● Results on the KITTI dataset, showing 

separate but overlapping distributions



Hierarchy Design

● CARLO hierarchically  integrates FSD and LPD
● In the first stage, CARLO accepts  the detected bounding boxes and 

leverages LPD to filter the unquestionably fake and valid vehicles by two 

thresholds

● The remaining bounding boxes are uncertain and will be further fed into 

FSD for final checking
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CARLO Peroformance
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Collaborative Perception

● Collaborative perception has been proposed to enhance 

Connected Autonomous Vehicles’ (CAV) perception by sharing raw 

or processed sensor data among infrastructures or vehicles

● Early fusion sharing: directly exchange raw sensor data whose 

format is usually universal and can be naively concatenated

● Intermediate fusion: transmit feature maps (intermediate product) 

offering trade-off between network efficiency and perception 

accuracy

● Late fusion: share object bounding boxes
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Collaborative Perception
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Defenses and Data Fabrication

● Several security standards define how vehicle-to-everything (V2X) 

communications should be implemented to avoid attacks (e.g., 

authentication, access control,..)

● However, they cannot defend against data fabrication attacks, as 

attackers can modify the data before wrapping it into valid 

messages

● Furthermore, attackers can collude to create realistic but malicious 

data, so physics enabled rules may not solve the problem
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Data Fabrication Formulation

● We consider an attacker that aims at spoofing or removing an 

object in a collaborative perception CAV setting

● We can formulate the attack as an optimization problem

● We denote the LiDAR data at frame i from the attacker, victim, and 

other benign vehicles as A
i
, V

i
, j in {0,1,...,N}

● LiDAR data with the same frame index will be merged at the 

receiver to generate the result

● We denote pre-process data sharing as f and post-process data 

sharing as g
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Data Fabrication Formulation

● A normal collaborative perception for the victim on frame i can be 

described as

● The attacker replace f(A
i
) with malicious data, appending a minor 

perturbation to it

● The attack can be hence formulate according to a fitness function I 

and a constraint set C as
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Threat Model

● We assume that the attacker can physically control at least one 

vehicle participating in collaborative perception

● The attacker can hence directly manipulate the data to share

● We focus on early- and intermediate-fusion collaboration schemes 

where attacker need to subtly craft complicated structured data

● We assume the presence of benign vehicles that the attacker 

cannot control
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Attack Constraints

● Sensor physics and definition ranges: the attacker needs to obey 

basic rules in terms of data format, otherwise it is trivial to detect 

anomalies

● For instance, point clouds should have a reasonable distribution, 

with reasonable occlusion effects, the angle of laser should comply 

with LiDAR configuration

● Targeted Attacks: the attacker should be able to designate a target 

region for either spoofing or removal attacks
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Attack Constraints

● Real-time temporal constraints: collaborative perception is an 

asynchronous multi-agent system where each vehicle produces 

LiDAR images in cycles but is not synchronized in time

● Hence the attacker, to attack the victim’s perception at time i 

should respect some constraints

● i) the optimization of the perturbation shall be finished before the 

victim’s processed LiDAR data V
i
 is generated

● This means that the attacker cannot leverage the victim’s data on 

the same frame
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Attack Constraints

● ii) the optimization of the perturbation takes time, especially when 

the attack involves online adversarial machine learning

● To ensure that the perturbation is created and sent before its use, 

the attacker can either design fast real-time attacks or optimize the 

perturbation before frame i arrives
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Zero-Delay Attack Scheduling

● The key idea is to parallelize attack generation and perception 

processes

● The attacker can identify the set of vehicles that collaborate with 

the victim and align frame indices of their shared sensor data 

based on timestamps

● For each LiDAR cycle: i) for object spoofing the trajectory of the 

spoofed object is defined, ii) for removal use an object detection 

algorithm to localize the target
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Zero-Delay Attack Scheduling

● Then, optimize the malicious perturbation that can be used to 

attack the victim’s perception at the current frame

● Need to transform the perturbation into one that has a similar 

attack impact on the next frame → prediction

● Thus, the attacker has a single LiDAR cycle time to complete the 

optimization
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The Use of Cameras

● LiDAR and radars are generally more expensive than cameras, 

therefore it is preferable to use cameras to save money

● Autonomous cars are generally equipped with multiple cameras 

spaced around the vehicle

● Each camera provides monocular 

vision and resolve azimuth and 

elevation angles
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Example: Sign Recognition
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Sensor Fusion
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● To improve the performance of the sensing capabilities of cars, we can use 

sensor fusion techniques

● Sensor fusion refers to the process of merging information coming 

from different sensors related to the same scenario to reduce 

uncertainty

● Sensors can be either of the same type or based on different 

technologies (i.e., camera and LiDAR)



Example

● An example of calculation via sensor fusion is inverse variance 

weighting

● Let us consider two measurements   and with variance        and 

respectively

● Then, the fused measurement is given by

● Where the variance of the combined estimate is given by
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Classes of Fusion in Perception

● a) using the output of perception on one or more sensors to augment the 

input of other single-sensor perception

● b)  runs isolated perception for each sensor and fuses semantic outputs
● c) combines low-level (machine-learned) features from multiple perception 

sources to produce a unified output
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