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The Kelvin-Helmhotz instability occurs when there is a relative velocity between two layers
of fluid with different densities. This instability, however, is limited to the case of fluids whose
densities increase with the depth. Conversely, the instability araising on the fluids interface is
called Reyleigh instability. 

Kelvin-Helmhotz instability
Reyleigh instability
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Lets consider the small perturbation depitcted in the 
picture on the left.
A particle of havier fluid moves vertically. By 
continuity a particle of less dense fluid moves in the 
opposite way. 

The model of instability proposed by Kelvin and Helmhotz is based on the assumptions of:
- Uncompressible fluid
- Inviscid fluid with density 𝜌 = 𝜌 𝑧

It is worth noting that, being initially the havier particle in a lower layer, the exchange results
in an increment of the potential energy of the system. Accordingly the balance of the total
kinetic energy results to decrease.
The comparison between this increment of potential energy and the reduction of kinetic
energy is the criterion adopted to determine the instability of the perturbation.
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From the phisical point of view we can define the problem as following.

The particle A moves of d𝑧 along the vertical 𝑧
The force acting on the particle during the travel is:

Thus the work is:

Conversely, the particle B moves of −d𝑧 along the vertical, and then:
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The total work needed to change the particles position results to the following increasing of 
potential energy:

At the same time the variation of the particle velocity along the path can be expressed as:

According to the Boussinesq approximation, the kinetic energy does not depend on the 
density variation, therefore initially the kinetic energy of the two particles is:

Resulting in the total initial kinetic energy of:
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At the end of the exchange, the velocity of each particle is in the range between the velocity
in the initial and final position, due to the momentum exchange during the mixing process, 
namely:   

being 𝛼 0,1 the weight coefficient.

At the end of the exchange the kinetic energy of the system is:
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The variation of kinetic energy, ∆𝐸𝑘 = 𝐸𝑘0 − 𝐸𝑘1, due to the exchange results:   

The flow is stable when ∆𝐸𝑘 < ∆𝐸𝑝. By replacing the two energies into the inequality, we

find: 
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The flow is stable when the gradient Richardson number overcomes:   

It is worth noting that the maximum value is achieved when 𝛼 = Τ1 2. In this case:

The latter is the sufficient condition to ensure that the flow is stable!
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In this lesson we focus on the case of two fluid having different densities. Such a density is
assumed varying abruptly on the fluids interface as shown in the figure below.

This scenario is typical near the estuarine, where salt water (little more dense than fresh
water, Τ∆𝜌 𝜌 ≅ 3%) lays on the river bed.

Assumptions:
- 𝜌𝑖 and 𝑈𝑖 are constant into the layer 𝑖.
- 𝜌1 ≠ 𝜌2.
- 𝜌1 − 𝜌2 = ∆𝜌 ≪ 1
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Let us consider the previous scheme in presence of variation of the levels. These variations
are due to waves with length much larger than the layers depth, namely, we can assume 
hydrostatic distribution of the pressure along the vertical.

Due to the assumptions done, on the bottom considering the undisturbed case we estimate 
the pressure:

While along the section 1, we find:

Additional assumptions:
- Hydrostatic pressure distribution
- Horizontal bottom
- Dynamics forces due to accelerations are 

negligibly small

𝑝𝑏 = 𝑔𝜌1𝑧1 + 𝑔𝜌2𝑧2

𝑝1 = 𝑔𝜌1 𝑧1 + ∆1 − ∆2 + 𝑔𝜌2 𝑧2 + ∆2

the bottom is an isobaric plane
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The two pressures that are estimated on the isobaric plane have to be equal, i.e.:

And thus:

It means that, being ∆𝜌 ≪ 1, small variation of the free surface level entails a large variation
of the fluids interface of opposite sign. 
Otherwise, a variation of the level of the interface, ∆2, implies a negligibly small variation of 
the free surface, ∆1.
For this reason, when one wants to study the problems of the interface, it is usually assumed
that ∆1= 0.
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Let us consider a 1D open channel flow on assuming the rigid-lid approximation.

To classify the flow into the channel, we
introduce the densimetric Froude number as:

Where 𝑔′ = 𝑔 Τ∆𝜌 𝜌 is the reduced gravity due
to the buoyancy.
In the scheme of analysis, we have two Froude number, namely:

In both cases 𝑔′ has the same value, being Τ∆𝜌 𝜌1 ≅ Τ∆𝜌 𝜌2
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The equations governing the flow are:

In steady flow conditions they read:
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The shear stress on the interface is expressed by the following:

where 𝜌 ≅ 𝜌1 ≅ 𝜌2, i.e. the shear stress is the same between the two layers.

The friction factor 𝜆 is function of Re and Ri𝑔.

The resistance increases with Re and and decreases with Ri𝑔. In particular the 

buoyancy/sinking, quantified by Ri𝑔, reduces the momentum exchange.

In the litterature, the friction factor is introduced in different forms. The most common are 
here reported:

𝜏𝑖 = 𝜆𝜌 𝑈1 − 𝑈2 𝑈1 − 𝑈2

8𝜆 = 4𝐶𝑎 = 𝑓
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By rearranging the equation of the denser layer, we find:

The bottom shear stress has the same formula of 𝜏𝑖, and results:

By replacing the expressions of 𝜏𝑖 and 𝜏𝑏, the first equation yields:
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The uniform flow of the second layer depends on the 
conditions of the outermost layer.
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Usually:
- 𝑈1 = 0
- 𝐻 = 𝐻 𝑥 = 𝑐𝑜𝑛𝑠𝑡

Namely:

Accordingly, being 𝑧2 constant in uniform flow:
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And finally:
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The velocity within the layer 2 is:

It is worth noting that for the case air-water Δ𝜌 ≅ 𝜌 and 𝜏𝑖 ≅ 0, consequently the latter can 
be simplified in:

with 

In addition, we can assume 𝐶𝑎 = 𝛼𝐶𝑏.
It means that the uniform flow in the layer can be expressed in according to the Chezy
formula, as following:

being

The velocity in the layer is significantly lower than the velocity expected in the classical open 
channel flow condition, to the point where the regime observed could be laminar.
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