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Environmental Fluid Mechanics – Lesson 12: Estimation of Kx

There are several methods to correctly estimate the dispersion coefficient 𝐾𝑥 in the Gaussian
zone:

i. Empirical Formulas

ii. Chatwin Method

iii. Moments Method

iv. Calibration Method

v. Velocity Field Method

vi. Graphic Method

These Methods have been
described in the exercise lesson



EMPIRICAL FORMULAS
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The literature provides several formulas based on the multiple regression analysis of 
experimental data. 

- McQuivey & Keefer (1974):

- Liu (1977):

- Seo & Cheong (1998)

- Kashelipour & Falconer (2002):
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Chatwin rearranges the fundamental solution proposed by Taylor for 1D Fickian type
process as following:

And then:

𝐶 𝑥, 𝑡 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡
𝑒
−
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡

𝑒
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡 =
𝑀

𝐴 4𝜋𝐾𝑥

1

𝐶 𝑡

𝑥 − 𝑈𝑡 2

4𝐾𝑥𝑡
= ln

𝑅

𝐶 𝑡

𝑅 =
𝑀

𝐴 4𝜋𝐾𝑥

𝑥 − 𝑈𝑡 2

4𝐾𝑥
= 𝑡 ln

𝑅

𝐶 𝑡

𝑥

2 𝐾𝑥
−

𝑈

2 𝐾𝑥
𝑡 = 𝑡 ln

𝑅

𝐶 𝑡
= 𝐶∗

ln

Fictitious concentration
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Often the amount of mass M is unknown. In this case it is useful rewritting the term R:

𝐶𝑚𝑎𝑥 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡𝑚𝑎𝑥

𝑒
−
𝒙−𝑈𝑡𝑚𝑎𝑥

2

4𝐾𝑥𝑡𝑚𝑎𝑥 𝐶𝑚𝑎𝑥𝑡𝑚𝑎𝑥 =
𝑀

𝐴 4𝜋𝐾𝑥
= 𝑅

And finally:

𝐶∗ = −
𝑈

2 𝐾𝑥
𝑡 +

𝑥

2 𝐾𝑥

𝐶∗ = 𝑡 ∙ 𝑙𝑛
𝐶𝑚𝑎𝑥 𝑡𝑚𝑎𝑥

𝐶 𝑡

𝐶∗ = − 𝑡 ∙ 𝑙𝑛
𝐶𝑚𝑎𝑥 𝑡𝑚𝑎𝑥

𝐶 𝑡

𝑡 ≤ 𝑡𝑚𝑎𝑥

𝑡 > 𝑡𝑚𝑎𝑥

with:

𝐾𝑥 and 𝑈 are calculated by the slope and 
the intercept of the dashed line 

1
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When the process of dispersion occurs in the Gaussian zone, the variance of the cloud
increases linearly, i.e.:

d𝜎𝑥
2

d𝑡
= 2𝐾𝑥

By applying the discretization method, it means:

𝐾𝑥 =
1

2

𝜎𝑥
2 𝑡2 − 𝜎𝑥

2 𝑡1
𝑡2 − 𝑡1

Being:

𝜎𝑥
2 𝑡𝑖 =

∞−׬
+∞

𝑥 − 𝜇𝑥 𝑡𝑖
2𝐶 𝑥, 𝑡𝑖 d𝑡

∞−׬
+∞

𝐶 𝑥, 𝑡𝑖 d𝑡

𝜇𝑥 𝑡𝑖 =
∞−׬
+∞

𝑥𝐶 𝑥, 𝑡𝑖 d𝑡

∞−׬
+∞

𝐶 𝑥, 𝑡𝑖 d𝑡

Statistical moment of order II

Statistical moment of order I
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In the practice, it is easier measuring 𝐶 𝑥𝑖 , 𝑡 rather than 𝐶 𝑥, 𝑡𝑖 . Hence we need to use 
the temporal variance of the concentration in 𝑥𝑖, 𝜎𝑡

2 𝑥𝑖 .

Fisher in 1966 demonstrated that:

where

𝐾𝑥 =
1

2
𝑈0

𝜎𝑡
2 𝑥2 − 𝜎𝑡

2 𝑥1
ഥ𝑡2 − ഥ𝑡1

𝜎𝑡
2 𝑥𝑖 =

𝐴

𝑀
න
0

+∞

𝑡 − ഥ𝑡𝑖
2𝐶 𝑥𝑖 , 𝑡 d𝑡

ഥ𝑡𝑖 =
𝐴

𝑀
න
0

+∞

𝑡𝐶 𝑥𝑖 , 𝑡 d𝑡

Statistical moment of order II

Statistical moment of order I.
It is the time of the centroid in 𝑥𝑖

𝑈0 =
𝑥2 − 𝑥1
ഥ𝑡2 − ഥ𝑡1

Mean velocity of the cloud
centroid between 𝑥1 and 𝑥2
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The Calibration method is one of the most reliable methods to determine the mean velocity
𝑈 and the dispersion coefficient 𝐾𝑥.

The Calibration method assumes the Taylor solution being valid, i.e. for lumped insertion:

𝐶 𝑥, 𝑡 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡
𝑒
−
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡

Generally, the distribution depends on the initial distribution of 𝐶, then we can consider:

d𝑀

𝐴
= 𝐶 𝜉, 𝑡1 d𝜉

Amount of mass per unit area due to the 
concentration 𝐶 in the section 𝜉 at time 𝑡1.

By the fundalmental solution:

d𝐶 =
𝐶 𝜉, 𝑡1 d𝜉

4𝜋𝐾𝑥 𝑡 − 𝑡1
𝑒
−

𝑥−𝜉−𝑈 𝑡−𝑡1
2

4𝐾𝑥 𝑡−𝑡1

Distribution of 𝐶 due to the 
contribution 𝐶 𝜉, 𝑡1 d𝜉

New reference time

New reference system
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By integrating along 𝑥 all the contributions of the generic distribution 𝐶 𝜉, 𝑡1 , we find:

𝐶 𝑥, 𝑡 = න

−∞

+∞
𝐶 𝜉, 𝑡1

4𝜋𝐾𝑥 𝑡 − 𝑡1
𝑒
−

𝑥−𝜉−𝑈 𝑡−𝑡1
2

4𝐾𝑥 𝑡−𝑡1 d𝜉

It is worth noting that if we know 𝐶 𝑥, 𝑡1 , i.e. 𝐶 𝜉, 𝑡1 , we can evaluate 𝐶 𝑥, 𝑡 and thus
𝐶 𝑥, 𝑡2 , where 𝑡1 is the initial condition time and 𝑡2 a time of interest of the problem!  

The calibration method uses this property, but it is focused on the temporal distribution of 𝐶, 
instead of its spatial distribution, i.e.: 

𝐶 𝑥, 𝑡1 → 𝐶 𝑥, 𝑡2 𝐶 𝑥1, 𝑡 → 𝐶 𝑥2, 𝑡

This operation is not trivial and it needs of some assumptions. There are two main solutions:

i. Approximation of the Frozen Cloud

ii. Hayami Method

Let’s see the approximation of the Frozen Cloud



FROZEN CLOUD APPROXIMATION
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It is worth noting that given 𝐶 𝑥, 𝑡 :
• Spatial distribution (𝑡 = 𝑡𝑛). The peak of concetration has the following characteristics:  

• Temporal distribution (𝑥 = 𝑥𝑛). 

𝑥𝑚𝑎𝑥 = 𝑥𝑔 = 𝑈𝑡𝑛

𝐶𝑚𝑎𝑥 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡𝑛
=

𝑀

𝐴 4𝜋𝐾𝑥 Τ𝑥𝑚𝑎𝑥 𝑈

𝐶𝑚𝑎𝑥 is in 𝑥𝑔! 

𝑡𝑚𝑎𝑥 →
d𝐶

d𝑡
= 0 𝑡𝑚𝑎𝑥 =

𝐾𝑥
2

𝑈4 +
𝑥𝑛

2

𝑈2 −
𝐾𝑥
𝑈2

𝐶 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡
∙ 𝑒

−
𝑥𝑛−𝑈𝑡

2

4𝐾𝑥𝑡 = 𝑓 ∙ 𝑔
d𝐶

d𝑡
= 𝑓𝑔′ + 𝑓′𝑔 = 0

𝑓 =
𝑀

𝐴 4𝜋𝐾𝑥𝑡
𝑓′ = −

1

2

𝑀4𝜋𝐾𝑥

𝐴 4𝜋𝐾𝑥𝑡

1

4𝜋𝐾𝑥𝑡
= −

1

2𝑡

𝑀

𝐴 4𝜋𝐾𝑥𝑡
= −

1

2𝑡
𝑓

𝑔 = 𝑒
−
𝑥𝑛−𝑈𝑡

2

4𝐾𝑥𝑡 𝑔′ = −
d

d𝑡

𝑥𝑛 − 𝑈𝑡 2

4𝐾𝑥𝑡
𝑒
−
𝑥𝑛−𝑈𝑡

2

4𝐾𝑥𝑡 = −
−2 𝑥𝑛 − 𝑈𝑡 𝑈𝑡 − 𝑥𝑛 − 𝑈𝑡 2

4𝐾𝑥𝑡
2

𝑔 = −
𝑈2𝑡2 − 𝑥𝑛

2

4𝐾𝑥𝑡
2

𝑔

d𝐶

d𝑡
= −

𝑈2𝑡2 − 𝑥𝑛
2

4𝐾𝑥𝑡
2

+
1

2𝑡
𝑓𝑔 = 0

𝑈2𝑡2 − 𝑥𝑛
2 + 2𝐾𝑥𝑡

4𝐾𝑥𝑡
2

= 0 𝑡𝑚𝑎𝑥 =
−2𝐾𝑥 + 4𝐾𝑥

2 + 4𝑈2𝑥𝑛
2

2𝑈2

𝐶

Time of the peak of 
concentration in 𝑥𝑛
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Environmental Fluid Mechanics – Lesson 12: Estimation of Kx

𝑡𝑔 = ҧ𝑡 =
0׬
∞
𝑡𝐶 𝑥𝑛, 𝑡 d𝑡

0׬
∞
𝐶 𝑥𝑛, 𝑡 d𝑡

=
𝑥𝑛
𝑈
+ 2

𝐾𝑥
𝑈2

The peak of concetration time and the centroid time are different: 𝑡𝑚𝑎𝑥 ≠ ҧ𝑡

Time of the centroid in 𝑥𝑛

The Frozen Cloud (F.C.) approximation assumes that the advection is much greater than
dispersion, i.e. 𝑃𝑒 ≫ 1. It implies that:

𝐾𝑥
𝑈2 ≪

𝑥𝑛
𝑈

ҧ𝑡 ≅ 𝑡𝑚𝑎𝑥 =
𝑥𝑛
𝑈

Under this assumption, we can link temporal 𝐶 distribution in a given section 𝑥1 and spatial
𝐶 distribution in a given time ҧ𝑡1 as following:

𝐶 𝐶

𝜏 𝜉ҧ𝑡1 𝑥1

𝐹.𝐶.

𝑥𝑡

1

2
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Let’s analyze the concentration which is highlighted by blue circle in the two planes.

1 𝐶 𝑥1, 𝑡 𝐶 𝑥, ҧ𝑡1

𝐶 𝑥1 + 𝑈 ҧ𝑡1 − 𝑡 , ҧ𝑡1

The position 𝑥 is reached travelling with 𝑈 for Δ𝑡 = ҧ𝑡1 − 𝑡

The spatial distribution is expressed in 𝑡

2 𝐶 𝑥, ҧ𝑡1 𝐶 𝑥1, 𝑡

𝐶 𝑥1, ҧ𝑡1 −
𝑥 − 𝑥1
𝑈

The temporal distribution is expressed in 𝑥

The variables transformation is then given by: 𝑥 = 𝑥1 + 𝑈 ҧ𝑡1 − 𝑡

𝐶

𝑡ҧ𝑡1 ҧ𝑡2

Measured in 𝑥1

Measured in 𝑥2

In the practice:

𝐶 𝑥1, 𝑡 𝐶 𝑥2, 𝑡
?

The solution of the problem provides
𝐾𝑥 and 𝑈
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𝐶 𝐶

𝜏 𝜉

𝐶 𝐶

𝑡 𝑥

ҧ𝑡1

ҧ𝑡2

𝑥1

𝑥2

Frozen Cloud

Frozen Cloud

Convolution of 
Fundamental
Solution

!!

in 𝑥1

in 𝑥2

at ҧ𝑡1

at ҧ𝑡2

𝜉 = 𝑥1 + 𝑈 ҧ𝑡1 − 𝜏

𝑡 = ҧ𝑡2 +
𝑥2 − 𝑥

𝑈

a

d

b

c
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a b 𝐶 𝑥1, 𝜏 → 𝐶 𝜉, ҧ𝑡1 It is the initial condition of the dispersion equation

b c 𝐶 𝑥, 𝑡 = න

−∞

+∞
𝐶 𝜉, ҧ𝑡1

4𝜋𝐾𝑥 𝑡 − ҧ𝑡1
𝑒
−

𝑥−𝜉−𝑈 𝑡− ҧ𝑡1
2

4𝐾𝑥 𝑡− ҧ𝑡1 d𝜉

𝑡 = ҧ𝑡2

𝐶 𝑥, ҧ𝑡2 = න

−∞

+∞
𝐶 𝜉, ҧ𝑡1

4𝜋𝐾𝑥 ҧ𝑡2 − ҧ𝑡1
𝑒
−

𝑥−𝜉−𝑈 ҧ𝑡2− ҧ𝑡1
2

4𝐾𝑥 ҧ𝑡2− ҧ𝑡1 d𝜉 ∗

c d 𝐶 𝑥, ҧ𝑡2 → 𝐶 𝑥2, 𝑡

The distribution in (d) as fuction of the distribution in (a) can be estimated by replacing in ∗
the variables transformations due to the Frozen Cloud, that are:  

ቊ
𝜉 = 𝑥1 + 𝑈 ҧ𝑡1 − 𝜏

𝑥 = 𝑥2 + 𝑈 ҧ𝑡2 − 𝑡
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In the latter the centroid position 𝑥2 depends on the centroid position 𝑥1 as following: 

𝑥2 = 𝑥1 + 𝑈 ҧ𝑡2 − ҧ𝑡1

Then: 𝑥 = 𝑥2 + 𝑈 ҧ𝑡2 − 𝑡 = 𝑥1 + 𝑈 ҧ𝑡2 − ҧ𝑡1 + 𝑈 ҧ𝑡2 − 𝑡

𝑥 = 𝑥1 + 𝑈 2 ҧ𝑡2 − ҧ𝑡1 − 𝑡

We can express the difference 𝑥 − 𝜉 as: 

𝑥 − 𝜉 = 𝑥1 + 𝑈 2 ҧ𝑡2 − ҧ𝑡1 − 𝑡 − 𝑥1 − 𝑈 ҧ𝑡1 − 𝜏

𝑥 − 𝜉 = 𝑈 2 ҧ𝑡2 − 2 ҧ𝑡1 − 𝑡 + 𝜏 ∗∗

The ∗∗ into ∗ yields: 

𝐶 𝑥2, 𝑡 = න

−∞

+∞
𝐶 𝜉, ҧ𝑡1

4𝜋𝐾𝑥 ҧ𝑡2 − ҧ𝑡1
𝑒
−

𝑈 2 ҧ𝑡2−2 ҧ𝑡1−𝑡+𝜏 −𝑈 ҧ𝑡2− ҧ𝑡1
2

4𝐾𝑥 ҧ𝑡2− ҧ𝑡1 d𝜉

𝐶 𝑥2, 𝑡 = න

−∞

+∞
𝐶 𝜉, ҧ𝑡1

4𝜋𝐾𝑥 ҧ𝑡2 − ҧ𝑡1
𝑒
−
𝑈2 ҧ𝑡2− ҧ𝑡1−𝑡+𝜏

2

4𝐾𝑥 ҧ𝑡2− ҧ𝑡1 d𝜉
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To conclude the demonstration, we need of expressing the initial concentration distribution
in terms of temporal concentration distribution. It is useful noting that:

d𝑀

𝐴
= 𝐶 𝜉, ҧ𝑡1 d𝜉 = 𝐶 𝑥1, 𝜏 𝑈d𝜏

And finally:

𝐶 𝑥2, 𝑡 = න

−∞

+∞
𝐶 𝑥1, 𝜏 𝑈

4𝜋𝐾𝑥 ҧ𝑡2 − ҧ𝑡1
𝑒
−
𝑈2 ҧ𝑡2− ҧ𝑡1−𝑡+𝜏

2

4𝐾𝑥 ҧ𝑡2− ҧ𝑡1 d𝜏

The first attempt for 𝑈 can be:

•

•

𝑈 =
𝑥2 − 𝑥1
ҧ𝑡2 − ҧ𝑡1

𝑈 ≅
2

3
𝑈𝑀

Flow velocity which is measured
on the free surface
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Another method to determine the pair 𝐾𝑥, 𝑈 was proposed by Hayami.
For Hayami the concentration distribution 𝐶𝐻 considering the insertion point in 𝑥1 is:

𝐶𝐻 𝑥, 𝑡 = 𝐶 𝑥, 𝑡
𝑥 − 𝑥1
𝑈𝑡

Taylor solution

𝐶𝐻 𝑥, 𝑡 =
𝑀 𝑥 − 𝑥1

𝐴𝑈𝑡 4𝜋𝐾𝑥𝑡
𝑒
−
𝑥−𝑈𝑡 2

4𝐾𝑥𝑡

The solution in the section of interest 𝑥2 is the sum of the contribute 𝐶 𝑥1, 𝜏 𝑈d𝜏 inserting
in 𝑥1 during the time 𝜏:  

𝐶 𝑥2, 𝑡 = න

−∞

+∞
𝐶 𝑥1, 𝜏 𝑥2 − 𝑥1

𝑡 − 𝜏 4𝜋𝐾𝑥 𝑡 − 𝜏
𝑒
−
𝑥2−𝑥1−𝑈 𝑡−𝜏 2

4𝐾𝑥 𝑡−𝜏 d𝜏

Being 𝐶 =
𝑀

𝐴



ABOUT SOLUTE…

Environmental Fluid Mechanics – Lesson 12: Estimation of Kx

The methods described above are effective only when the solute and insertion mode have
some characteristics

Solute:

• Negligible bio-chimics reactions

• Negligible adsorption by sediments

• Negligible toxicity

• High solubility

• Neutrally buoyant, i.e. 𝛾𝑠 ≅ 𝛾𝑤

• Easy to chimically analyze

• Dye

• Cheap

Sodium Chloride

Magnesium Sulfate

Sodium Nitrate

Sodium Dichromate

Rhodamine

Most
common
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The modality of solute insertion depends on the variables of interest that one wants to 
estimate.

Variables Modality

𝑈 (between two sections)
• Lumped insertion
• Step insertion

𝑘𝑧
𝑘𝑦

• Continuos insertion

𝑘𝑥
𝐾𝑥

• Lumped insertion


