LESSON 12: ESTIMATION OF K,




ESTIMATION OF K,

There are several methods to correctly estimate the dispersion coefficient K, in the Gaussian
zone:

i.  Empirical Formulas

ii. Chatwin Method 8 These Methods have been
described in the exercise lesson

iii. Moments Method

iv. Calibration Method

v. Velocity Field Method

vi. Graphic Method
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|CEA/ EMPIRICAL FORMULAS iy oo

The literature provides several formulas based on the multiple regression analysis of
experimental data.

McQuivey & Keefer (1974):

Q
K, = 0.058 —
x i,B
- Liu (1977):
U? U, 3/2
K. = — 0. _*
e=a a 018(U)
- Seo & Cheong (1998)
1.428

B 0.62
K, = 5.195 zyu, (7> (%)
0

Kashelipour & Falconer (2002):

K, = 10.612 zyu, (%)
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CHATWIN METHOD \ i TPTTE”

Chatwin rearranges the fundamental solution proposed by Taylor for 1D Fickian type
process as following:

M _(x-Ut)?
C(x,t) = e AKxt
A\/4nK,t
(x—Ut)2 M 1 M
— o 4Kyt — R =
A /4‘7TKx C+Jt AJ4rK,
In
(x — Ut)? R (x — Ut)? R
-> = ln——= — =tln——=
4K, t C+\t 4K, C+/t
And then:

R
= |tlIh——==C"

X U
— t
2K, 2K, C+t

K, Fictitious concentration
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CHATWIN METHOD LMY s s

Often the amount of mass M is unknown. In this case it is useful rewritting the term R:

M \({_Uimax)z C ¢ M R
C = e max — maxtmax =~ — —
T AJATK b B 1 A\ ATK,
SECTION 1
5 — r r .
And finally: ol S
c* J t+— i
2JK, 2K, it
of O
W|th v 4k &\ﬂ}
2 \8\
_ X N
C. t *u
C*= |t-In—"E €S tpay %o
C+\t st be
] -E'EI D.I5 1 ‘I..5 2 2?5 3 3..5 4 4?5 5
C t t [hours]
C*=—|t-In mar T mer t > tmax
C\/t K, and U are calculated by the slope and

the intercept of the dashed line
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MOMENTS METHOD LMY s s

When the process of dispersion occurs in the Gaussian zone, the variance of the cloud
increases linearly, i.e.:

do,?
dt
By applying the discretization method, it means:

. lgxz(tz) — 0, % (t1)
X2 t, —t;

Being:

fzo[x - ﬂx(ti)]zc(x, t;)dt

— T » Statistical moment of order Il
J_ Clx, t)dt

sz(ti) =

(t;) = == —> Statistical moment of order |
Hx

. . . g q [T_VI'\'EI_{‘&ITA
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MOMENTS METHOD LMY s s

In the practice, it is easier measuring C(x;, t) rather than C(x, t;). Hence we need to use
the temporal variance of the concentration in x;, .2 (x;).

Fisher in 1966 demonstrated that:

1 O'tz(xz) — Utz(x1)
2 t, —t

where

Y .
£ = Mj tC(x;, t)dt Stgtlstlca.l moment of orde.r I:
0 It is the time of the centroid in x;

A (T _
Utz(xi) = Mjo [t — ti]ZC(xi' t)dt —_—  Statistical moment of order Il

U. — X2 — X1 Mean velocity of the cloud
O L -t centroid between x; and x,

. . . g q [T_VI'\'EI_{‘&ITA
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| THE CALIBRATION METHOD DIPMM

The Calibration method is one of the most reliable methods to determine the mean velocity
U and the dispersion coefficient K,,.

The Calibration method assumes the Taylor solution being valid, i.e. for lumped insertion:

M _(x-Ut)?
C(x,t) = e At

AJATK ¢

Generally, the distribution depends on the initial distribution of C, then we can consider:

Amount of mass per unit area due to the
concentration C in the section ¢ at time t;.

dM c
7= (Srr tl)dg

By the fundalmental solution:
New reference system

(x—§-U(t-t)"
_ C(& t)dE 0 4Kx(t—t1)1
AK, . (t —t
JATK,( 1) New reference time

K} Distribution of C due to the
contribution C(&,t,)dé

dC

. . . g q [T_\II'\'EI_‘\‘E\ITA
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| THE CALIBRATION METHOD DIPMM

By integrating along x all the contributions of the generic distribution C(&, t;), we find:

+ o0 2
C(& ¢ (x—&-U(t-tq))
C(x,t) = & &) e AK(-t) (¢
o JAmK(t — ty)

It is worth noting that if we know C(x, t,), i.e. C(§,t,), we can evaluate C(x, t) and thus
C(x,t,), where t; is the initial condition time and t, a time of interest of the problem!

The calibration method uses this property, but it is focused on the temporal distribution of C,
instead of its spatial distribution, i.e.:

C(xr tl) - C(xr tZ) C(xlr t) - C(Xz, t)

This operation is not trivial and it needs of some assumptions. There are two main solutions:

i. Approximation of the Frozen Cloud

ii. Hayami Method

Let’s see the approximation of the Frozen Cloud

UNIVERSITA
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|CEA/ FROZEN CLOUD APPROXIMATION

It is worth noting that given C(x, t):
» Spatial distribution (t = t,;). The peak of concetration has the following characteristics:

—

Xmax = Xg = Uty
M M —  Chnax isin xg!

- AJanK t, AJATKy X/ U

Cmax

* Temporal distribution (x = x,,).

. dC 0 . K,* N x,2 K, Time of the peak of
—_ — = — = _— . .
max gy max U4 Uz 2 concentration in xy
M _(xn_Ut)z
C=———.¢ 4K, t — —p _ l; + Iy — 0
AJanK t /g a9t/
o M > fl o 1 MA4nK, 1 1 M 1 f
AJATK  t 2 AJanK t ATKt 2t A [anK ¢t 2t
n=Ut)? —Ut)2] _Gn-Ut)? _ _ _ _174)2 202 . 2
- e‘(x4ng) g = _i (x, —Ut)*] - X4th _ 2(x, —U)Ut — (x,, — Ut) g - Ut —x, g
dt| 4K,t 4K, t? 4K, t?
dC <U2t2 — Xp? 1) 0 U2t2 — x,2 + 2Kt —2K, + \/4Kx2 + 4U%x,,?
Fr oF = > =0 =— 0 =
2
dt 4K, t 2t c Z_\Is\tz max 212
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|CEA/ FROZEN CLOUD APPROXIMATION

f()oo tC(xn, t)dt . Xn K

Time of the centroid in x,,

ty=1== —=
g v [ -
Jy Cleptyde U~ U?

The peak of concetration time and the centroid time are different: t,,,, # t

The Frozen Cloud (F.C.) approximation assumes that the advection is much greater than
dispersion, i.e. Pe > 1. It implies that:

K, x, _ Xn

T < U > t = thax = F
Under this assumption, we can link temporal C distribution in a given section x; and spatial
C distribution in a given time t; as following:

cA @ ¢

1R

A

UNIVERSITA
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|CEA/ FROZEN CLOUD APPROXIMATION

Let’s analyze the concentration which is highlighted by blue circle in the two planes.

@ C (xl, t) —— C(x, El) The position x is reached travelling withU for At = t; —t

C(xy +U(t; —t),ty) The spatial distribution is expressed in t

@ c@,t) — Clxy,t)

C (xl, £, — X xl) The temporal distribution is expressed in x

The variables transformation is then given by: x = x; + U(t; — t)

cA Measured in x, In the practice:
?
Measured in x, C(xy,t) &= C(xyt)

The solution of the problem provides
K, and U

. . . g q [T_VI'\'EI_{‘&ITA
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ICEA/ FROZEN CLOUD APPROXIMATION i e
A

¢ in xq C
Frozen Cloud
>
€=x1+U(El—T)
-
T X £
Convolution of
A o - A _ Fundamental

‘ 2 C T att Solution
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ICEA/ FROZEN CLOUD APPROXIMATION

@—)Q C(xy,7) > C(E t) It is the initial condition of the dispersion equation
+ 0o = V)2
C ) E (x—E—U(t—_tl))
Q—>O C(x,t) = €.4) — e 4Kx(t-t)  g¢&
I JAnK, (t - ty)

lt=fz

cEr) o)
C(x, t. ) — ’_ — ¢ 4K (t2—t1) df (*)
2
J o JAnK, (T — ty)

+ 00

O-0 c(i)-Clx,0)

The distribution in (d) as fuction of the distribution in (a) can be estimated by replacing in ()
the variables transformations due to the Frozen Cloud, that are:

E=x,+U(t; — 1)
x=x,+U(t, —t)

. . . g q [T_VI'\'EI_{‘&ITA
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|CEA/ FROZEN CLOUD APPROXIMATION

In the latter the centroid position x, depends on the centroid position x; as following:

x; =%+ U(E, — ty)
Then: x=x, +U(t, —t) =x; +U(t, —t1) + U(t; — ¢t)
x=x; +UQt, —t; —t)
We can express the difference x — ¢ as:
x—&E=x,+UQRt,—t; —t) —x; —U(t; — 1)
—_— x—¢=UQRt, -2t —t+71) (%)

The (**) into (*) yields:

+ oo — — — _ 12
C( T (U(2t2—2t1—t-l-r)tU(t2—t1))
C(x,,t) = (5_1) — e 4Ky (t2—t1) dé
o JATK, (T — t)
+oo — 2(F. _F 2
C(ét Y (tz_t_1—t_+1')
C(x,,t) = € &) e 4Kx(t-t) (¢

I ATK (8 — £)
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|CEA/ FROZEN CLOUD APPROXIMATION

To conclude the demonstration, we need of expressing the initial concentration distribution
in terms of temporal concentration distribution. It is useful noting that:

dM _
— = C(&,t)dé = C(xq,T)UdT

A
And finally:
i C(xy,T)U U2 (tp—t; —t+D)*
— C(xz, t) = e 4Kx(t2-t1)  drt

4y VATK(E — )

The first attempt for U can be:

X2 T X
-t
U~2U

K} Flow velocity which is measured
on the free surface

UNIVERSITA

| Environmental Fluid Mechanics — Lesson 12: Estimation of K, i



|CEA/ THE HAYAMI SOLUTION

Another method to determine the pair (K,, U) was proposed by Hayami.
For Hayami the concentration distribution Cy considering the insertion point in x; is:

Co(x,t) = Clx, t)
HVE = R E T

k Taylor solution

M(x —x _(x-Up)?
—_— Cy(x,t) = ( ) e AKxt

AUt J4mK, t

The solution in the section of interest x, is the sum of the contribute C(x, T)UdTt inserting
in x; during the time t:

400

— C(tyb) = f

— 00

C(xli T)(xz — xl) o [xz_x1—U(t—‘[)]2

4K, (t—T) dr
(t — TVATK,(t — 7)

Bein C—M
& ¢=7
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ABOUT SOLUTE... Y s

The methods described above are effective only when the solute and insertion mode have
some characteristics

Solute:

* Negligible bio-chimics reactions

* Negligible adsorption by sediments Sodium Chloride

* Negligible toxicity Magnesium Sulfate

* High solubility > Sodium Nitrate

* Neutrally buoyant, i.e. Y5 = ¥, Sodium Dichromate } Most

* Easy to chimically analyze Rhodamine common
* Dye

* Cheap

. . . g q [T_VI'\'EI_{‘&ITA
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DI PADOVA

A B O UT SO LUTE Y . §] DEGLT STUDI

The modality of solute insertion depends on the variables of interest that one wants to
estimate.

* Lumped insertion

U (between two sections) S Guep fsardion

e Continuos insertion

* Lumped insertion

RN };«N 2?‘ Nk‘
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